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ABSTRACT Metabolic Syndrome (MetS) constitutes of metabolic abnormalities that lead to non-
communicable diseases, such as type II diabetes, cardiovascular diseases, and cancer. Early and accurate
diagnosis of this abnormality is required to prevent its further progression to these diseases. This paper
aims to diagnose the risk of MetS using a new non-clinical approach called ‘‘genetically optimized
Bayesian adaptive resonance theory mapping’’ (GOBAM). We evolve the Bayesian adaptive resonance
theory mapping (BAM) by using genetic algorithm to optimize the parameters of BAM and its training input
sequence. We use the GOBAM algorithm to classify individuals as either being at risk of MetS or not at risk
of MetS with a related posterior probability, which ranges between 0 and 1. A data set of 11 237 Malaysians
from the CLUSTer study stratified by age and gender into four subcategories was used to evaluate the
proposed GOBAM algorithm. The comparative evaluation of our results suggested that the GOBAM
performs significantly better than other classical adaptive resonance theory mapping models on the area
under the receiver operating characteristic curves (AUC) and others criteria. Our algorithm gives an AUC
of 86.42 %, 87.04 %, 91.08 %, and 89.24 % for the young female, middle aged female, young male,
and middle-aged male subcategories, respectively. The proposed model can be used to support medical
practitioners in accurate and early diagnosis of MetS.

INDEX TERMS Metabolic syndrome, adaptive resonance theory, Bayesian ARTMAP, genetic algorithm.

I. INTRODUCTION
Metabolic syndrome (MetS) comprises metabolic abnormal-
ities that are defined by abdominal obesity, dyslipidemia,
hyperglycaemia, impaired glucose metabolism, and hyper-
tension. It is characterized by two major non-communicable
diseases (NCDs)–the cardiovascular disease (CVD) and
type II diabetes mellitus (T2DM) [1]–[3]. Growing evi-
dence shows MetS as a high predictive factor of developing
CVD [4], [5] and T2DM [6]. MetS is also connected with
the risk of other NCDs such as cancer, blood clotting, psychi-
atric disorders, polycystic ovary syndrome, and sub-clinical
hypercortisolism [7].

MetS as a global pandemic is prevalent in Africa [8], [9],
Europe [10], the United States [11], [12], and Asia [13]–[15].

Malaysia is not exempted from the global MetS pandemic.
In fact, the prevalence of MetS in Malaysia is high compared
with other Southeast Asian countries, where 32.1 to 42.5 %
of Malaysians have been diagnosed with MetS [16]. Studies
have also shown an average MetS prevalence 33.0 % in
Malaysian Adults [17] and adolescents [18]. Thailand also
has a high prevalence ofMetS where 32.0 % of all Thai adults
have MetS [19]. This has resulted in heightened levels of
NCDs in Malaysians [20] and other Southeast Asians such
as the Thais.

NCDs present themselves as a consequence of MetS
and have the highest morbidity and mortality rate in
Malaysia [21]. The global economic burden ofMetS resulting
from this high morbidity and mortality rate has increased
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urgency for researches to address the associative risk factors–
early detection, and diagnosis of MetS [22], [23]. The need
for early diagnoses, management, and treatment of MetS
cannot be overlooked due the significant health burden
incurred [24].

The dichotomous approach is the traditional diagnosis
of MetS using clinically approved binary diagnostic cri-
teria. The most common definitions were proposed by
the World Health Organization (WHO) [25], the National
Cholesterol Education Program–Third Adult Treatment
Panel (NCEP ATP III) [26], the International Diabetes
Federation (IDF) [27], the European Category for the
Study of Insulin Resistance (EGIR) [28], American Heart
Association–National Heart, Lung, and Blood Institute
(AHA/NHLBI) [29], and the Harmonized (Joint Interim
Statement) definition [30]. These expert bodies determined
the dichotomous diagnostic criteria for MetS which requires
three or more of the following MetS risk factors:
• Waist Circumference (WC) ≥ 102 cm for men and WC
≥ 88 cm for women;

• Increased Triglyceride (TG)≥ 150 mg/dl or being under
treatment;

• Low, High-density Lipoprotein Cholesterol (HDL-C) <
40 mg/dl for men and HDL-C < 50 mg/dl for women
or being under treatment;

• Elevated blood pressure, Systolic Blood Pressure (SBP)
≥ 130 mmHg, or Diastolic Blood Pressure (DBP) ≥
85 mmHg or receiving anti-hypertensive medications;

• Increased Fasting Plasma Glucose (FPG) ≥ 100 mg/dl
or treatment for hyperglycaemia.

Despite sharing common risk factors, the dichotomous
approach varies in terms of relevance and positive predictive
value resulting in the non-uniformity of these definitions.
Additionally, dichotomizing the risk factors leads to infor-
mation loss because MetS is predicted by isolating con-
tinuous MetS risk factors. The threshold cut-off point of
the MetS risk factors for each of the dichotomous MetS
definitions is population specific. This makes it difficult
to apply the same definition evenly across different pop-
ulations [31]. Furthermore, there are disparities in MetS
diagnosis due to different definitions of MetS [32]. Cur-
rently, a standard recommendation for the specific treat-
ment of MetS is unavailable. However, Ginsberg suggested
that MetS can be treated by considering each compound-
ing abnormality or components regardless of whether they
occur in isolation or otherwise [33]. Since guidelines for
MetS management recommends addressing each MetS risk
abnormality in isolation, a diagnosis method which includes
all the risk factors is required. In a bid to find a diag-
nostic measure of MetS which encompasses all the MetS
risk factors, scholars have proposed the application of
three main non-clinical methods. These non-clinical methods
include statistical methods [34]–[49], mathematical quantifi-
cation [50]–[53], and machine learning [54]–[59] techniques.
A detailed review of these techniques will be presented in
Section II.

This paper examines the potential of genetically optimizing
the BayesianAdaptive Resonance TheoryMapping (BAM) in
order to diagnose the risk ofMetS. The BAM is a combination
of Fuzzy Adaptive Resonance Theory Mapping (FAM) with
Bayesian learning. In the BAM, the hyper-rectangular cate-
gory shape of the FAM is interchanged with Gaussian hyper-
sphere category shapes, and the volume of the hypersphere
has the ability to grow and shrink as categories are created.
This flexibility afforded to the volume of the hypersphere
reduces the creation of unnecessary categories. Thus, this
makes the predictive performance of BAM better than the
FAM. BAM applies Gaussian categories and replaces the
competitive learning of FAM with Bayesian learning to train
the input samples. The patterns in FAM are linked with the
Gaussian categories while probabilistic inference is used to
link the Gaussian spheres with classes to perform Adaptive
Resonance Theory Mapping (ARTMAP) learning. However,
the BAM is sensitive to parameter tuning and the order sample
pattern sequence.

This paper proposes the Genetically Optimised Bayesian
Adaptive Resonance Theory Mapping (GOBAM) for MetS
diagnosis. In pursuing this objective, the proposed solution
offers the following contributions:

1) We propose GOBAM which optimizes the parameters
of BAM and training sample sequence using Genetic
Algorithm (GA);

2) Generation of a probability value to measure the sever-
ity of the risk of MetS;

3) While comparisons of classifiers in current studies
focus solely on predictive accuracy, the focus of this
study is to improve their accuracy and generalization
using different performance measures that are impor-
tant to medical diagnostic tests, e.g. Area Under the
Receiver Operating Characteristic Curve (AUC), sen-
sitivity, specificity; and

4) A comprehensive analysis between GOBAM and three
other types of Adaptive Resonance Theory (ART)mod-
els: FAM [60], BAM [61], and Genetic-FAM (GA-
FAM) [62] for classification of MetS using a real-
world sample dataset of 33,459 Malaysian participants
partitioned into four categories according to gender and
age.

As far as existing literature is concerned, no published articles
diagnosed MetS using any kind of ART model.

II. LITERATURE REVIEW
This section briefly discusses the studies related to the dif-
ferent types of statistical, mathematical quantification, and
machine learning techniques used to diagnose the risk of
MetS. This is then followed by a description of the different
types of ARTMAP networks and their progression to the
BAM.

A. STATISTICAL TECHNIQUES
The statistical techniques proposed for the diagnosis of MetS
include the Principal Component Analysis (PCA), z-score,
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and Confirmatory Factor Analysis (CFA). All these statistical
techniques are used to derive a value known as Continuous
MetS (cMetS) score. The cMetS score represents the level of
the risk of MetS based on the MetS risk factor measurement
values. The z-score was the earliest statistical technique used
to generate a cMetS score by Batey et al. [34] in 1997. The
cMetS is computed using the z-score by taking the difference
between the sample mean of each attribute and each sam-
ple value in the population, and dividing the result by the
standard deviation of each attribute in the population [35],
[36], [38], [43], [45]. The PCA operates by decreasing the
dimensionality of the attributes of a dataset in order to make
data more interpretable while preserving the relevant infor-
mation [47]. Dimensionality reduction results in the output
of principal components. In the context of MetS, the largest
principal component derived from a PCA–which explains the
maximum total variance of the all MetS risk factor values
of a population–represents the cMetS score [37], [39], [41],
[44], [46]. The PCA is also used to find relevant associations
of risk factors with MetS [40]. CFA accounts for the common
variance amongst attributes of a dataset. It is used to check
how well the variables in a hypothesis fits in an existing
model. The application of CFA in the diagnosis of MetS
involves the selection of variables from prior MetS models
which are used to compare between existing hypothesized
MetS models. Studies have recorded the CFA in the develop-
ments of the cMetS score [42], [48], [49]. However, the sta-
tistical methods are sample specific, and the same model
cannot be applied to different populations. Also, the impact
of all the MetS risk factors is assumed to be equal leading to
unaccountability in their different effects.

B. MATHEMATICAL FORMULATIONS
Mathematical formulations have also been applied to derive
the risk of MetS. Jeong et al. [50] derived the Areal Simi-
larity Degree (ASD) to quantify the risk of MetS in Kore-
ans. The risk factors’ weight is derived from eigenvector
priority estimation. The weights provide a visual assessment
of MetS using radar chart by using a single value ranging
between 1 to 0. However, the performance measure of their
formula was not evaluated. Therefore, the risk of MetS was
quantified with weighting the risk factors in the ASD with
weights obtained by Quantum Particle Swarm Optimization
(QPSO) [52]. The performance of the ASD with QPSO was
also evaluated with MediBoost, which is a machine learning
technique [53]. Soldatovic and his colleagues also derived a
risk quantification score called the ‘‘siMS score’’ [51]. The
siMS score is compared across different populations. In com-
parison, the method proved to be superior to the Framingham
risk score in the diagnosis of the risk of MetS.

C. MACHINE LEARNING TECHNIQUES
Machine learning techniques were widely used in the pre-
diction of MetS. For example, Logistic Regression, Sup-
port Vector Machine, and Artificial Neural Network (ANN)
were used to predict MetS in schizophrenic patients [58].

Biochemical parameters such as Homoeostatic Model
Assessment-Insulin Resistance (HOMA-IR) and serum
adiponectin were included in the MetS risk factors for the
prediction of six-year incidence of MetS using ANN. The
technique gave a sensitivity and specificity of 93.0 % and
91.0 %, respectively [54]. However, these risk factors are
difficult to measure and may not be efficient in daily clinical
practice. As an easy and low-cost identificationmethod, ANN
was used to predict MetS [63]. Romero-Saldana et al. [59]
applied Decision Tree and Multiple Logistic Regression
to predict MetS with accuracy, sensitivity and specificity
of 94.2 %, 91.6 %, and 95.7 %, respectively. However, body
fat mass, waist-to-height ratio, andwaist-to-hip ratio included
as part of the risk factors for the prediction of MetS in
their work are not clinically recognized as risk factors of
MetS. In another study, Fuzzy ANN was used to search
for significant combinations of risk factors connected with
MetS [55]. Furthermore, the association between the tradi-
tional MetS risk factors, human nuclear receptors responsible
for regulating fatty acid storage and glucose metabolism,
and environmental factors was investigated using Back-error
Propagation ANN (BPANN) [64]. This study only sought to
find associations of MetS with new risk factors.

In MetS diagnosis, predictive accuracy is the capac-
ity of a diagnostic test to distinguish between individuals
with or without MetS. Murguia-Romero et al. [56] used
BPANN to predict MetS. They found that there was a three-
fold increase in the positive predictive value of using machine
learning techniques to predict MetS than the current clini-
cal dichotomous method. Also, in [53], the MediBoost out-
performed the ASD with AUC, sensitivity and specificity
of 99.38 %, 98.77 %, and 99.55 %, respectively. This further
emphasizes the robustness of machine learning methods in
the prediction and diagnosis of the risk of MetS. However,
BPANN is a black box algorithm. Explicit information relat-
ing to the risk quantification of MetS that is required by both
individuals and clinical practitioners is not available in the
output of BPANN.

Adaptive Resosnance Theory (ART) was first proposed by
Grossbert [65]. It is an incremental learning algorithm which
leverages on the cognitive and neural ability of the brain to
quickly learn, and recognize objects and patterns. ART learns
in real time using unsupervised learning. The competency of
ART to provide a solution to the stability-plasticity problem,
i.e., the ability to learn new input patterns while remain-
ing stable to insignificant patterns, prompted its supervised
learning adaptation called the ARTMAP [66]. ARTMAP
consists of two ART networks connected by an associative
learning network and an inner controller that can carry out
fast and stable incremental learning as a supervised learning
system. The initial modification of the ART and ARTMAP
networks are the Fuzzy ART (FA) [67] and FAM [60]
algorithms.

FAM is an ART network integrated with Fuzzy logic which
comprises of two ART networks, ARTa and ARTb related
by an intermediary ART network, ARTm. ARTa and ARTb
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are self-organizing ART networks that have stable category
recognition. Learning creates hyper-rectangular categories
where input patterns will be mapped to classes. However,
these hyper-rectangular categories can only increase and are
insensitive to the pattern of input data. FAM is sensitive
to statistical overlapping between clusters [68], [69]. For
the purpose of clarity, categories, and clusters will be used
interchangeably in this paper. This problem results in the
formation of a high number of pattern recognition clus-
ters with the overlapping allocation of nodes referred to
as category proliferation. Category proliferation creates an
output neural network architecture consisting of a redun-
dant number of categories which incurs a high compu-
tational and memory allocation cost with a reduction in
classifier performance. ART with spatial and temporal evi-
dence integration for dynamic predictive mapping, ART-
EMAP [70], Gaussian ARTMAP [71], [72], PROBART [69],
and ARTMAP-IC [72] are examples of FAM variants that
have been proposed as solutions to the problem of category
proliferation.

Progressively, a more successful approach to the prob-
lem associated with FAM was proposed as the Bayesian
ART (BA) and BAM [61]. BA and BAM architecture is an
integration of the Bayes’ theorem into theART andARTMAP
architecture, respectively. BAM is a neural network structure
which estimates category and class probabilities with high
prediction performance and computational efficiency [61].
It integrates the features of the FAM with Bayesian prob-
ability inference. Instead of the hyper-rectangular structure
of categories in the FAM network, categories are represented
as Gaussian hypersphere/hypervolume categories. The Gaus-
sian function replaces the fuzzy set theory in the ARTMAP
network thereby allowing for patterns which were wrongly
allocated or stuck in the hyper-rectangular corners to be
correctly placed in appropriate hypersphere categories. The
Gaussian categories allow categories to increase and decrease
by constraining the cluster hypervolume, and thus providing a
well-defined representation of input patterns. The BAM clas-
sifies patterns using statistical learning and inference giving it
more flexibility and adaptability. Class prediction depends on
all the clusters that are statistically linked with the class rather
than the hard category assignment based on the winning cat-
egory in the FAM. Overall, a better generalization of pattern
classification is realized by the learning and inference of the
BAM network. However, the classification performance of
the BAM depends on the choice of the optimal training input
sequence and parameter settings. These two indicators are
important because the choice of the training input sequence
influences the selection of appropriate algorithm parameter
settings. Therefore, these two tasks must be carried out simul-
taneously.

In this paper, we concentrate on the optimization of the
BAM network for the diagnosis and prediction of MetS.
This is because BAM is an incremental supervised learning
algorithm consisting of both probabilistic inference and ART
properties with minimal expected loss.

III. METHODOLOGY
A. BAM
Real time distributed data is represented using multidimen-
sional Gaussian clusters in BA. These cluster are shaped as
hyperspheres. Each sphere is parameterized with the mean
of the sample data associated with the cluster, the covariance
matrix, and a priori probability. The mean is the central mass
of the Gaussian hypersphere, the covariance matrix defines
its shape and the a priori probability represents its superi-
ority over other clusters. There are three main stages in the
BAM network, namely cluster selection, cluster pairing, and
learning.

1) CLUSTER SELECTION
All current clusters are eligible to be selected during training
phase. The j-th cluster of each D-dimensional sample x is
represented by a posterior probability of category ωj given
x defined as follows,

P
(
ωj|x

)
=

p
(
x|ωj

)
P(ωj)∑NC

n=1 p(x|ωn)P(ωn)
, (1)

where x is the sample input, ωj represents the j-th cluster.
P(ωj) is the assumed prior probability of the j-th cluster,
defined as

P(ωj) =
nj∑NC
j=1 nj

, (2)

whereNC is the number of clusters and nj represents the num-
ber of counts of training samples categorized into the cluster
j. p(x|ωj) represents the conditional probability density of x
given cluster ωj defined as

p(x|ωj)=
1

(2π )
D
2 |6j|

1
2

exp
[
−
1
2

(
x − µj

)T
6−1j

(
x−µ̂j

)]
,

(3)

where µj and 6j are the D-dimensional mean vector and
D× D co-variance matrix of j-th cluster, respectively.
The cluster with the highest posterior probability is

selected as the winning cluster G, computed as

G = arg max
j∈Nc

(
P
(
ωj|x

))
. (4)

The robustness of the BA is enforced by selection of a
winning, G cluster–ωj that either has the largest value of the
prior probability p(ωj) or the cluster with the closest distance
to the current sample input or both. The addition of the Bayes’
theorem as another condition for selection also enables the
accurate selection of a winning cluster.

2) CLUSTER MATCH (VIGILANCE TEST)
The vigilance test is carried out to constrain the size of the
winning cluster, G. The test ensures that the volume of the
Gaussian hypersphere G, VG, does not exceed the maximum
volume of a hypersphere, Vmax for a winning cluster as fol-
lows:

VG ≤ Vmax. (5)
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where VG is the determinant of the Gaussian covariance
matrix, 6G is computed as the product of each dimensions’
variances, σ as follows:

VG , det (6G) =

d∏
i=1

σ 2
Gd . (6)

If the vigilance test (5) is passed by the winning cluster,
then match tracking criterion will be checked. However, if G
fails the vigilance test, then it is removed from the current
competition by setting its posterior probability with (1) to
zero, and the search continues until a winning cluster that
passes test is selected. If no cluster from the existing clusters
passes the vigilance test then a new cluster is created with a
hypervolume that meets (5).

3) MATCH TRACKING
In themap field of the BAMnetwork, the class posterior prob-
ability is used to update the winning class category P(yi|G).
A class posterior probability threshold, Pmin, is set as follows,

P(yi|G) ≥ Pmin, (7)

such that if it is less than the class posterior probability, then
the i-th class will be associated with the winning G category;
P(yi|G) is derived from the BAM matrix K = [Nij]Y×NC ,
where Y is the number of classes, NC is the number of
clusters, and the ij-th input into the BAM matrix K , Nij is the
number of training input samples that are associated to the
j-th cluster and belonging to the i-th class of the Y classes.
P(yi|G) is calculated as

P(yi|G) =
Nij∑Y

i=1
∑NC

j=1 Nij
, (8)

where i = 1, . . . ,Y , and j = 1, . . . ,NC . The full derivation
of (8) using Bayes’ theorem can be found in [61].

Match tracking will occur if P(yi|G) satisfies (7) and the
winning cluster G will be associated with the class Yi. How-
ever, if the match tracking criterion is not met, then match
tracking is triggered by decreasing the maximum hypervol-
ume, Vmax, by a small value δ as follows,

Vmax,new = VG − δ, 0 < δ � VG. (9)

Vmax,new should be small enough to remove the current win-
ning category VG from the competition and initiate a search
for a newwinning cluster. The newwinning cluster must have
a new hypervolume that is less than Vmax as in the vigilance
test (5). This search iterates until the new winning category is
found.

4) CLUSTER LEARNING
If the selected category G meets the vigilance test (5) and
match tracking criterion (7) requirements, then the category
parameters–mean vector µG and covariance matrix 6G–will
be updated as follows:

µ̂Gnew =
NG

NG + 1
µ̂Gold +

1
NG + 1

x, (10)

6̂Gnew =
NG

NG + 1
6̂Gold +

I
NG + 1

(
x − µ̂Gnew

)
×
(
x − µGnew

)T
, (11)

where N new
G = N old

G + 1. NG is the number of samples
that are categorized by the G-th cluster and I is an identity
matrix. Then the process will go back to cluster selection step
explained in Section III-A.1 to learn the next input sample.

5) CLUSTER CREATION
A new cluster is created using

µ̂NC = x

6̂NC = η(Vmax)1/DI (12)

such that the parameters of the cluster (10): the mean of the
cluster µ̂NC and the variance of the cluster 6̂NC are initialized
with the training input sample x, and η(Vmax)1/DI , where η
is a small positive value and I is a D × D identity matrix,
respectively.

6) INFERENCE IN BAM
Inference in the BAM network involves the use of all clusters
associated to a class in order to define the class label during
testing. Therefore, the class selected for a test sample x is
defined as

yi = argmax
i
P(yi|x) (13)

where yi is the class label for the test sample x and P(yi|x) is
defined as

p(yi|x) =

∑NC
j=1 P(yi|G)p(x|ωj)P(ωj)∑Y

i=1
∑NC

j=1 P(yi|G)P(x|ωj)P(ωj)
(14)

where P(yi|G), p(x|ωj), and P(ωj) are defined in (8), (3),
and (2), respectively.

The pseudo-code for the BAM algorithm is represented in
algorithm 1. BAM has the advantage of solving the category
proliferation problem by using Bayesian theory and proba-
bility to create and update the clusters. It achieves inference
through the posterior probability. Clusters are illustrated as
Gaussian hyper-volumes. However, the maximum hypervol-
ume parameter, Vmax, of the BAM is sensitive to reiterative
search that leads to high computational time and the cre-
ation of more clusters. These resulting clusters reduces the
predictive performance of the BAM. Moreover, BAM is also
sensitive to the sequence order of its input patterns. Therefore,
these factors should be considered to get the optimal solution.

B. GENETIC ALGORITHM
GA is an optimization technique that is supported by the
genetic and natural evolutionary concept of survival of the
fittest. It is applied interchangeably with conventional heuris-
tic search techniques. Candidate solution is referred to as pop-
ulations, wherein the optimal solution is chosen after multiple
iterative computations of each population’s fitness value. The
fitness value derived from the fitness function is an essential
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FIGURE 1. Flowchart of genetically optimized Bayesian ARTMAP.

parameter that determines the fitness of each chromosome.
GA works by encoding complex structures of a population
as a fixed length of binary strings, i.e., 2s and 3s, referred to
as chromosomes. Populations in the GA, represented as chro-
mosomes, are generated successively and alternately until the
required solution is found. Searching is an exhaustive process
of exploring and exploiting large search spaces resulting in
a high chance of convergence without getting stuck in the
local minima. The search process is conducted by population
selection, recombination, and mutation. After that, chromo-
somes are ranked from the least-fit to the most-fit based on

their fitness value. After that, chromosomes are ranked from
the least-fit to the most-fit based on their fitness value. The
selection produces a mating pool of equal-sized populations
(||P′||, ||P||) using selection techniques such as the roulette
wheel selection. Only the superior chromosomes survive the
selection process. Those survivors are referred to as the par-
ents.

The major operations that affect the performance of a GA
are crossover and mutation. In crossover, genes from the
parent chromosomes are selected for reproduction based on
the probability Pc (the cross over probability or crossover
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Algorithm 1 BAM Algorithm
Require:

Samples: A = (x1, x2, . . . , xN ), where xN ∈ <D

Class label for each sample: y
Maximal hypervolume: Vmax
Vigilance parameter bias: δV
Match tracking class probability threshold: Pmin

Ensure: Class posterior probability P(yi|G) as in (7)
1: Input a vector xN
2: if No clusters exist in ART network then
3: Create a new cluster as NCnew as in (12)
4: else
5: Compute a cluster posterior probability P

(
ωj|x

)
as

in (1)
6: Compute the index of winning cluster G as in (4)
7: Compute VG as (6)
8: if VGk ≥ Vmax then
9: if All the categories do not pass the vigilance test

then
10: Create a new category NCnew as in (12)
11: else
12: Remove yG from selection and continue from

Step 6 with the next chosen cluster
13: end if
14: end if
15: end if
16: Update the category frequency count Nij
17: Compute the class posterior probability P(yi|G) as in (8)

18: if P(yi|G) ≥ Pmin then
19: The map field learning takes place
20: Update µ̂G,new as in (10)
21: Update 6̂G,new as in (11)
22: else
23: if Match tracking fails with all categories then
24: Create a new category as NCnew

25: else
26: Remove µ̂G,new from selection
27: Remove 6̂G,new from selection
28: Continue from Step 17 with a next candidate cate-

gory
29: Update a maximal hypervolume Vmax as in (9)
30: end if
31: end if
32: if j < G then
33: Continue from Step 1 with j← j+ 1
34: end if

rate) between two selected individuals. The crossover oper-
ator selects genes from each chromosome and creates a new
offspring. This is a random mechanism for exchanging genes
using the one-point crossover, two-point crossover or homo-
logue crossover. Enough chromosomes are generated to
replace the discarded chromosomes. Thus, constancy in the

FIGURE 2. Chromosome representation.

number of chromosomes is ensured after each iteration. The
mutation operator then subtly alters the genes codes of the
new off-springs by randomly exchanging 0s with 1s or vice
versa. Fitness values are evaluated for the offsprings and the
mutated chromosomes, and this process is repeated. Mutation
prevents all solutions in a population from falling into a local
optimum.

IV. GENETICALLY OPTIMISED BAYESIAN
ARTMAP (GOBAM)
GA can enable rapid convergence and a reduction of general-
ization errors in classifiers. Parameter optimization has been
proposed to tackle problems associated with FAM using var-
ious evolutionary computation techniques [73]–[76]. How-
ever, to the best of our knowledge, no one has attempted to
optimize the parameter settings and order of input sequence
in the BAM neural network for medical diagnosis. Therefore,
we propose GOBAM to diagnose MetS. As previously men-
tioned, a biased training sequence and under-tuned param-
eters affects the BAM’s classification performance and its
stability. Here, we utilize GA to search for an optimal com-
bination of parameter values and training sample sequence
in order to increase the predictive performance of BAM.
The GOBAM algorithm is described in algorithm 2 and its
flowchart in Fig. 1. There are two parameters that affect the
performance of BAM, i.e., (i) maximal hypervolume: Vmax,
(ii) vigilance parameter bias: δV .

A. CHROMOSOME DESIGN
The sequence of training sample and parameter settings of the
BAM network will be optimized using GA. The illustration
in Fig. 2 is a representation each chromosome in the search
space.

Each chromosome g contains the followings:

1) The training sample sequence, g1T ∼ gNT , where N
is the total number of training sample. g1T ∼ gNT
is encoded using permutation encoding. Each ele-
ment of this chromosome subset must be a unique
element representing the index of a training sample
input.

2) The maximum hypervolume gVmax which is encoded
using real values ranging between [0] and [100].

3) The vigilance parameter bias, gδV , represents the values
of parameters δV .

Ten population of chromosomes g(pop), pop = 1, . . . , 10,
are randomly initialized as possible candidate solutions. The
sequence numbers of the training samples are randomly
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Algorithm 2 GOBAM Algorithm
Require:

Samples: [(x1, y1), (x2, y2), . . . , (xN , yN )], xN ∈ <D

Training sample sequence chromosome: g1T ∼ gNT
Maximum hypervolume chromosome: gVmax

Vigilance parameter bias chromosome: gδV
Size of the population: pop
Maximum number of generations: maxGen

Ensure: the best chromosome gbest from the population
g(pop)

1: Initialize individual chromosomes g1T ∼ gnT , gVmax , gδV
in population g(pop)

2: Evaluate the fitness fAUC of each chromosome in popu-
lation g(pop)

3: while maximum iteration iter is not reached or conver-
gence is not reached do

4: for i = 1 to maxGen do
5: Perform k-fold cross-validation of BAM
6: Calculate fitness fAUC for each chromosome g
7: end for
8: if Convergence occurs then
9: Return best chromosomes gbest
10: else
11: Select the best pair of chromosomes based on the

value of fitness function fAUC
12: Perform crossover and mutation as described in

Section IV-A to obtain new chromosomes gnew
13: else
14: Increase selection value to include optimum solu-

tions
15: Decrease mutation value to converge onto solutions
16: end if
17: Update population g(pop) with new chromosomes

gnew
18: Update count iter
19: end while

ordered along with the values of the BAM parameters. The
initialized chromosomes are passed into the BAM network
for training and testing.

B. FITNESS EVALUATION
Next, GOBAM evaluates the fitness of each candidate solu-
tion in the BAM network and determines its fitness values
using the fitness function. Our proposed algorithm is driven
by the fitness function which enables the GA’s search for opti-
mal parameters and sequence of input patterns for the BAM.
The fitness evaluation of the proposed GOBAM algorithm
uses the AUC instead of accuracy because accuracy measures
performance in relation to the total number of only the correct
predictions while AUC is a summary measure of accuracy
derived from the Receiver Operating Characteristic (ROC)
curvewhich encompasses the sensitivity and specificity of the
algorithm. The AUC is the estimated trapezoidal integration

calculated in (15) as follow [77]:

fAUC =
∑
ϕ

{
[sϕ ·1(1− t)]+

1
2
[1s ·1(1− t)]

}
(15)

where 1(1 − t) = (1 − t)ϕ − (1 − t)ϕ−1, 1s = sϕ − sϕ−1,
and ϕ is an index.

C. SELECTION
The two parent individuals use the roulette wheel selection
process. In the roulette process, chromosomes with the best
fitness relative to the fitness values of the other chromosomes
in the population have a higher chance of being selected.
The selected parent chromosomes will be used to create
new chromosomes using the GA operations–crossover and
mutation.

D. CROSSOVER AND MUTATION
Crossover and mutation for the order of sample sequence and
the BAMparameters are carried out differently because of the
difference in the encoding process.

As depicted in Fig. 3, partially mapped crossover
(PMX) [78] technique is applied for generating the offspring
of the sequence order chromosome g1T ∼ gNT in order to get
the sequence order with the best fitness value. This technique
is chosen because it does not allow for tie ranks in the
offspring chromosome. After crossover, each element in the
offspring chromosomes has to be a unique entry as is required
in the sequence order of the training sample of the BAM
network. Given two selected parents, Parent A and Parent B,
PMX generates two offspring chromosomes, Offspring A and
Offspring B, by uniformly selecting two random points in
each of the parent chromosomes and swapping the elements
within the bounds of those points. Each element in Parent A
is mapped to the element in the same position in Parent B.
Subsequently, the remaining blank fields in Offspring A are
filled with elements from Parent A. However, if the element
to be copied from Parent A to Offspring A is already present
in Offspring A, then that element from Parent A will be
exchanged with the element from Parent B which is mapped
to the element in Parent A. This pattern continues until all
the blank chromosome fields in Offspring A have been filled.
Then the blank fields in Offspring B will be filled in by
elements in Parent B not already present in Offspring B in
the same order. Fig. 3 illustrates the crossover and mutation
process of generating an offspring chromosome. Mutation is
then carried out by randomly swapping two elements of each
offspring chromosome.

The single point crossover is applied to the BAMparameter
which is encoded as a real valued number. As shown in Fig. 3,
this crossover technique generates offspring chromosomes
by selecting one crossover point and swapping all the ele-
ments from that point between the parent chromosomes.
The mutation of the BAM parameter offspring chromosome
involves the addition and subtraction of some random float
numbers.
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FIGURE 3. Chromosome crossover and mutation of the training sequence and BAM parameters.

V. EXPERIMENTS
A. MATERIALS
The dataset used in this study was compiled from the Clus-
tering of Lifestyle risk factors and Understanding its asso-
ciation with stress on health and well-being among school
Teachers in Malaysia (CLUSTer) study from March 2013 to

March 2014 [79]. The University Malaya Medical Center
(UMMC) ethic committee provided the approval to con-
duct the CLUSTer study. At baseline 11,237 teachers aged
20 to 69 years were selected via sampling of six out of the
12 Malaysian states. Schools qualified for the study were
ranked based on the statistics of primary and secondary
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TABLE 1. Characteristics of CLUSTer dataset [79]. Values are n (%) or mean ± standard deviation with minimum value (Mn) and maximum value (Mx).
Diabetes mellitus case is identified when fasting blood glucose ≥ 5.5 (mmol/L) and/or physician diagnosed diabetes mellitus. Hypertension case is
identified when Systolic BP ≥ 130 mm Hg and / or diastolic BP ≥ 85 mm Hg and / or physician diagnosed hypertension.

schools from theMinistry of Education, Malaysia for the year
2013. Participants were asked to answer a questionnaire and
also engage in the required health screening procedures.

B. CLINICAL AND LABORATORY ASSESSMENTS
Measurement of WC was taken from the umbilicus, between
the rib margin and the iliac crest at the end of normal expira-
tion using non-elastic tape. SBP and DBP measurement were
taken by a calibrated oscillometric sphygmomanometer on
the left arm after a little rest.

Blood samples used to measure FPG total cholesterol,
HDL-C, and TG was drawn from all the study participants
after overnight fasting of 12–14 hours. These tests were
measured as in-vitro diagnostic tests. The characteristics of
the dataset are shown in Table 1.

C. IMPLEMENTATION
We implemented the proposed GOBAM algorithm in Matlab
R2014a (8.3.0.532) on an Intel(R) Core(TM) i5-4200U CPU
@ 1.6GHz 64-bit computer with 8.00 GB RAM. The algo-
rithm was compared to standard ARTMAP algorithms such
as FA, BAM, and GA-FAM on the CLUSTer [79] dataset
as shown in Table 1. The age of participants was classified
into six subject categories by gender and by age categories:
young (between 20 and 39 years), middle-aged (between
40 and 64 years), and old (exceeding 65 years). There were
no male participants over the age of 65 and only three female
participants were identified. Therefore, only four categories
of datasets will be used for the training and evaluation of our
proposed GOBAM model–Young Male, Middle-age Male,
Young Female, and Middle-age Female.

Due to the different scales of the risk factor measurements,
it was necessary to normalize the input data to fit into a new

range from 0 to 1 as follows:

xinew =
xi − ximin

ximax − ximin

. (16)

where xi is the i-th metabolic syndrome risk factor, xinew is
the new normalized input value, and ximax and ximin are the
maximum and minimum values, respectively.

We used the 10-fold cross validation technique [80] to cal-
culate the classification performance measures of our model.
The results were averaged over 10 trials of 10-fold cross
validation on each data set, while recording the balanced
crossed validation performance measure on the hold-out test
fold. The number of generations was set to 50. This is to
reduce the bias of random sampling from the training dataset.
Two different criteria were applied to terminate the training:
(i) training was stopped if the mutation operator value is less
than 0.01 and (ii) the training was stopped if the selection
operator value was greater than 0.9.

D. PERFORMANCE EVALUATION METHODS
For machine learning classifiers where the problem requires a
binary decision solution, as is the case for the MetS diagnosis
in this paper, the performance of classifiers is evaluated using
performance metrics known as predictive biomarkers [81]:
accuracy, AUC, sensitivity, specificity, precision or positive
predictive value (PPV), and negative predictive value (NPV).
These quantitative performance metrics are derived using the
metric values from the confusion matrix in Table 2. The con-
fusion matrix shows the comparison between each predicted
class with its actual class in four types of metrics values:

• True positives (TP) is the count of actual people with
MetS correctly classified as having MetS.
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TABLE 2. Calculation of sensitivity and specificity for a specific cut-off
point of the predicted probability P: true positive (TP), false positive (FP),
false negative (FN), and true negative (TN).

• True negatives (TN ) is the count of actual people without
MetS correctly classified as not having MetS.

• False positives (FP) is the count of actual people with
MetS incorrectly classified as not having MetS.

• False negatives (FN ) is the count of actual people with-
out MetS incorrectly classified as having MetS.

Note that the actual classification of MetS is based on any of
the clinical definition ofMetS such as the NCEPATP III [26].

Below are the formulas for the various performance evalu-
ation methods

1) ACCURACY
Accuracy is the ability of a classifier to accurately diagnose
a disease.

Accuracy =
(TP+ TN )

(TP+ FP+ FN + TN )
× 100 (17)

2) SENSITIVITY
Sensitivity is the ability of a classifier to correctly diagnose
diseases amongst all actual disease classes.

Sensitivity =
TP

(TP+ FN )
× 100 (18)

3) SPECIFICITY
Specificity is the ability of a classifier to correctly diagnose
non-diseased amongst all actual non-diseased classes.

Specificity =
TN

(FP+ TN )
× 100 (19)

4) POSITIVE PREDICTIVE VALUE
PPV is the probability that people classified by the model as
having the disease actually have the disease.

PPV =
TP

(FP+ TP)
× 100 (20)

5) NEGATIVE PREDICTIVE VALUE
NPV measure is the probability that the people classified as
not having the disease actually do not have the disease.

NPV =
TN

(FN + TN )
× 100 (21)

6) RECEIVER OPERATING CHARACTERISTIC CURVE
The ROC curve captures the performance of the diagnosis
system over the entire range of sensitivity and specificity
values [82]. It is a two-dimensional plot which compares

the performance of different diagnostic methods by visualiz-
ing their classification performances across different cut-off
points. The confusion matrix consists of two class classifica-
tions: positive class (+1) and negative class (−1). It is plotted
with sensitivity (18) on the y-axis and the 1-Specificity (19)
values on the x-axis as a curve which lies between 0.5 and
1 with a value close to 1 indicating a very reliable classifier.

7) FRIEDMAN TEST
The Friedman test is a non-parametric test that ranks a per-
formance measure of multiple algorithms for each data set
separately [83]. The algorithm with the best performance
measure is ranked highest, followed by the second best in rank
and so on. In the case where algorithms are tied, an average
ranks are assigned.

VI. EXPERIMENTAL RESULTS
In this section, we present experimental results to assess the
performance of the proposed GOBAMmethod, and compare
it with the classical ARTMAP algorithms–FAM, BAM, GA-
FAM. The classification results are presented in Table 3
based on the four subcategories dataset–young male, middle-
aged male, young female, and middle-aged female. The table
shows the results of the number of categories generated,
classification accuracy, AUC, sensitivity, specificity, positive
and negative predictive value generated over 10-fold cross
validation. The highest values are presented in bold face for
each performance measure in the table. The AUC, accuracy,
sensitivity, and PPV values of the GOBAM were higher than
the other classic ARTMAP models for all the sub category
datasets. This result confirms the superiority of the GOBAM
model over the other ARTMAP models compared.

The ROC curves comparing the GOBAM, FAM, BAM,
and GA-FAMmodels for the young male, middle-aged male,
young female and middle-aged female are presented in Figs.
4a, 4b, 4c, and 4d, respectively. The AUC values of the
GOBAM model were 85.85 %, 86.85 %, 90.89 %, and
88.10 % for young male, middle-aged male, young female,
and middle-aged female sub category datasets, respectively.

Table 4 shows the results of the Friedman statistical test
for comparing the proposed GOBAM model with the FAM,
BAM, and GA-FAMmodels. The results of the eight subcate-
gories for all the performance measures presented in Table 3
are averaged and ranked using the Friedman statistical test.
The Friedman test ranks the performancemeasures in ascend-
ing order with the largest number representing the highest
performance measure. The ranking of the proposed GOBAM
model is 4.0, 3.0, 4.0, 1.5, 4.0 and 1.75 for AUC, accu-
racy, sensitivity, specificity, PPV, and NPV, respectively. The
ranking of the Friedman statistical test shown in Table 4
revealed that the AUC (p < 0.002), accuracy (p < 0.001),
sensitivity (p < 0.001), and PPV (p < 0.02) values of
the proposed GOBAM model ranked significantly higher
than the FAM, BAM, and GA-BAM models. This further
reiterates the higher performance of the GOBAMmodel over
the compared ARTMAP models.
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TABLE 3. Performance comparison of the categorized datasets of FAM, BAM, GA-FAM, and GOBAM models (averaged over 10 trials of 10-fold
cross-validation). For each model, the mean ± standard deviation are shown.

TABLE 4. Ranking of performance measures averaged over all the
datasets using the Friedman statistical test.

However, the test ranked low in specificity (p < 0.001) and
NPV (p < 0.001) values. Low specificity means the ability
of GOBAM to identify individuals without MetS according
to the JIS definition is low. Invariably, this means GOBAM
is able to identify individuals with risk factor measurements
that are close to the threshold as having MetS.

VII. DISCUSSION
The sensitivity of the ART networks towards the number of
input samples and the order of input optimizing the BAM
causes instability in category generation. In this paper, GA is
applied to optimize the BAMparameter and the order of input
sequence has stabilized the categories generation leading to
the higher predictive performance measures in Table 3.

It is clear from the results that the proposed GOBAM
model outperforms all the other classical ARTMAP algo-
rithms in four measures–AUC, accuracy, sensitivity, and pos-
itive predictive value–for all the subcategories. However,
the proposed GOBAMmodel had lesser specificity and NPV
values. MetS is not considered as a disease but an abnormal-
ity which may lead to fatal diseases [30]. Since the NPV
is the probability of the subject not actually being at risk
of MetS, a misclassification is acceptable and will not be
fatal to individuals. In fact, a low NPV and specificity can
be a motivating factor for individuals to change towards a

more positive lifestyle like healthy diet and increased exercise
which can further reduce the risk of MetS [84].

Specificity of model tests how well individuals are actu-
ally classified as being negative. As sensitivity of a model
increases, its specificity is reduced [85]. A highly specific
model rules out the risk of MetS if the sample is positive.
Once again, in the case of MetS, a low specificity value is not
an indication of low predictive performance. The fact that an
individual is diagnosed as being at risk of MetS even though
he is not at risk will motivate him toward a healthier lifestyle.
This diagnosis is helpful to individuals because the proposed
GOBAM is less specific and has wider applicability in the
management of MetS.

In this paper, we focus on the diagnosis of MetS for
Malaysians especially in people with borderline measure-
ment values. MetS is a lifestyle abnormality and not a dis-
ease [2]. Therefore, emphasis should be not only on accu-
rately diagnosing those individuals with the abnormality but
also individuals at risk of having the abnormality in the near
future, i.e., those with borderline MetS risk factor measure-
ments. From the results of the GOBAM, consideration should
be given to the false positive metric in this respect.

The proposed GOBAM model outputs a posterior proba-
bility that is associated with the class category of an input.
The probability value which ranges from 0 to 1 is a value
which indicates the level of classification of the model on
a particular input sample. The posterior probability value
can be effectively used in clinical applications of MetS. For
example, let us assume that a middle-aged male presents with
a BMI of 28 kg/m2 and MetS risk factor measurement values
as shown in Table 5. According to the JIS [30] definition,
he will not be diagnosed as being at risk of MetS (See
Section I). However, his risk factor measurement values have
exceeded the threshold of fasting glucose and are at border-
line in waist circumference, HDL-Cholesterol overweight,
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FIGURE 4. ROC curves and AUC values comparing GOBAM and classic ARTMAP models for the four data set subcategories. (a) Young male. (b)
Middle-aged male. (c) Young female. (d) Middle-aged female.

and blood pressure threshold risk factor values. To identify
these risks, GOBAM generates probability estimations for
each class prediction which can aid in ranking an individual
with borderline values. After running this sample through our
proposed GOBAMmodel, this middle aged male is classified
as having MetS with 0.8367 posterior probability. This result
could assist medical practitioners to provide support and
management to their patients at an early stage before the
increase in the risk of MetS.

By optimizing the parameters and sequence of input,
the proposed GOBAM model obtains better performance on
accuracy, AUC, and sensitivity. Our proposed model supports
the diagnostic decision of medical practitioners by giving
them a labeled diagnosis of the risk ofMetS. Early knowledge
of the risk of MetS especially in patients who present with
borderline measurement values will be of assistance in clini-
cal practice. Both the patients and their medical practitioners
will be aware of the risk of the abnormality and can chart
out preventive and management solutions to prevent further

progression. Furthermore, the burden of cost associated dis-
eases such as T2DM, CVD, and cancer [86] resulting from
the presence of MetS will be greatly reduced. Additionally,
emotional burdens such as depression, oxidative stress and
distress have been known to be associated with the presence
of MetS and its associated diseases [87]–[89]. Health and
lifestyle management such as dietary management [90] and
increased physical exercise [91] can be used to reduce the
risk of MetS and its progression. Early awareness of the
risk of MetS obtained from our proposed model will assist
in designing individualized clinical and personalized health
management systems of MetS.

This study has the following limitations. First, the cohort
study for the dataset used was restricted to Malaysians school
teachers. Secondly, the incidence of MetS was low in the
dataset, hence the low rate of true positive predictions. This
bias was decreased by performing the 10-fold cross validation
and averaging the results. Moreover, results from the other
classic ARTMAP algorithms are similar to the results from
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TABLE 5. MetS measurements of a Male Individual according to the
dichotomous method.

the proposed GOBAM algorithm. This further ensures the
robustness of the results obtained.

VIII. CONCLUSION
In this work, a new approach for MetS diagnosis is explored
by genetically optimizing the hypervolume parameter of the
BAM and its sequence of training input samples to build a
model for the diagnosis of the risk of MetS. The purpose
of applying and investigating this approach is to improve
the predictive performance of the BAM to diagnose the
risk of MetS in relation to age and gender. The predictive
performance of the proposed GOBAM was evaluated using
results generated from a 10-fold cross validation process on
CLUSTer dataset of Malaysians stratified according to age
and gender. The proposed GOBAM model was compared
with FAM, BAM, and GA-FAM based on the AUC, accuracy,
sensitivity, specificity, PPV, and NPV.

The goal of this work is to develop an intelligent model
which will assist clinical practitioners in improving the qual-
ity of life of their patients. The results of our proposed model
will reduce the risk ofMetS which could lead to fatal diseases
such as the T2DM and CVD. We have also illustrated the
practical applicability of the proposed GOBAMmodel in the
clinical practice of MetS diagnosis. Our proposed GOBAM
model generates a probability value as an indication of how
well a patient is classified as being at risk of MetS. The pro-
posed model enables the early diagnosis of the risk ofMetS at
a stage where treatment and management are more effective.
This will help to reduce the progression of MetS which may
result in actual diseases such as T2DM and cardiovascular
diseases.

Considering the rapid increase in the prevalence of MetS
annually [14], a perceptive intelligent diagnosis mechanism
has been developed to support the diagnosis of the risk of
MetSwith a probability value. Therefore, our proposedmodel
is timely for the intervention of the risk of MetS. The model
can be applied to support both clinical practitioners and
individuals in clinical and personalized health management
systems. The information provided by our proposed model
will reduce the financial and emotional burdens related to
the presence of MetS. Furthermore, individuals can be moti-
vated by the early knowledge of the risk of MetS to lead a
healthier lifestyle and implement preventive measures. Our
proposed method is relatively feasible and cost effective in

diagnosing MetS because it requires are measurement values
from the clinically recognized risk factors-fasting blood glu-
cose, high blood pressure, triglyceride, HDL-Cholesterol and
waist circumferences. This renders our proposed method to
be easily applicable in both clinical and personalized health
care systems.
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