
Received August 16, 2018, accepted September 24, 2018, date of publication November 9, 2018, date of current version March 8, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2877793

Wavelets for Electrocardiogram:
Overview and Taxonomy
WEI LI
School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China

e-mail: li-wei@seu.edu.cn

This work was supported in part by the National Natural Science Foundation of China under Grant 61806055, in part by the Natural
Science Foundation of Jiangsu Province under Grant BK20160697, and in part by the Fundamental Research Funds for the Central
Universities under Grant 2242018K40068.

ABSTRACT Physiological and pathological information within electrocardiogram (ECG) is crucial for the
diagnosis of heart diseases. Computer-aided diagnosis for the ECG signals has drawn growing research
attention up to date. Automatic ECG analysis mainly includes signal denoising, wave detection, and heartbeat
classification. These three issues are relevant that the signal denoising can help attenuate the noises and
accentuate the typical waves in ECG signals for wave detection, and wave detection can help locate the
typical ECG waves and acquire the diagnostically valuable heartbeats based on these waves for the heartbeat
classification. The wavelet-based methods play important roles in the three issues, but these methods are
scattered and unorganized in the literature. In order to manifest the value of these methods, this paper
contributes an overview and taxonomy on them. This paper does the comprehensive summary and systematic
categorization on the methods for signal denoising, wave detection, and heartbeat classification according to
the deep analysis of their methodological characteristics. By doing so, this paper not only uncovers the inner
mechanism that why wavelet-based methods are suitable for ECG analysis but also reveals the designing
principles that thesemethods potentially follow. Finally, this paper has provided an outlook for the developing
prospect of ‘‘wavelets for ECG’’ in the future.

INDEX TERMS Wavelets for electrocardiogram, signal denoising, wave detection, heartbeat classification,
overview and taxonomy.

I. OUTLINE AND INTRODUCTION
A. OUTLINE AND CONTRIBUTION
Electrocardiogram (ECG) plays an important role in diag-
nosing heart diseases, because ECG signals record the car-
diac electrical activity, which conveys important pathological
information about human heart’s condition. By analyzing the
characteristics of ECG, doctors are able to judge whether
the heart situation is normal or not, and know what trou-
bles the heart confronts with. However, due to the limited
ability of naked eyes and the complicated variations of ECG
data, it is impractical and even impossible for doctors to
cope with large amounts of ECG data in a limited time.
Therefore, computer-aided diagnostic systems have drawn
growing research interests up to date. By automatically doing
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ECG analysis, such systems can help doctors to enhance the
diagnostic efficiency and reduce the misdiagnosis rate.

ECG analysis mainly includes signal denoising, wave
detection, and heartbeat classification. Heartbeat classifica-
tion can help diagnose the cardiac diseases, such as the
arrhythmias, the myocardial infarctions, and so on. Typical
waves in ECG signals usually contain abundant informa-
tion about the cardiac diseases, so wave detection can help
acquire the diagnostically valuable heartbeats from the sig-
nals. Although ECG signals are easily interfered by a variety
of noises, signal denoising can help attenuate these noises
and accentuate the typical ECGwaves [1], [2].Wavelet based
methods for ECG analysis are classical and famous, but they
are scattered and unorganized in the accessible literature
resources. This work attempts to summarize these approaches
into a complete overview and categorize them into a sys-
temic taxonomy. By summarization and categorization, this
overview and taxonomy aims to uncover the philosophy
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behind these methods and the potential designing principles
they follow, for the purpose ofmaking these approaches better
to be understood, utilized, and improved, so as to further
inspire new ideas and innovations in the future.

The framework of this paper is as bellows. As the part
of outline and introduction, Section I not only clarifies the
outline and the contribution of this paper, but also introduces
the basic knowledge of ECG and wavelet transform; as the
part of main body, Sections II provides the in-depth analysis
and the systemic summary on the wavelet based methods for
signal denoising, wave detection, and heartbeat classification,
respectively, and also displays the performances of these
methods; as the part of conclusion and outlook, Section III
concludes the methodologies and provides the outlook for
their developing trends in the future.

On the whole, this paper will display a full picture of
wavelet methodology for ECG analysis on the basis of
the summarized philosophies and principles. Therefore, this
paper can also serve as amanual for researchers in the relevant
fields to evaluate their works. Such amanual can not only pro-
vide readers with an overall understanding of the classical and
the popular technologies for ECG analysis from the wavelet
perspective, but also help them to fast know the essential ideas
and the representative performances of these technologies.

B. INTRODUCTION OF ELECTROCARDIOGRAM
ECG is a time-varying signal reflecting the ionic current flow,
which causes the cardiac fibers to contract and subsequently
relax. Usually, ECG can be obtained by recording the poten-
tial difference between two electrodes placed on the surface
of the skin. Generally, there are three main components in
ECG: the P wave, the QRS complex, and the T wave. Each
of them has a fairly unique pattern.

In early years, researchers inclined to model ECG signals
for analyzing them. There exist various mathematical models
of ECG in the literature, but almost all of them are limited to
perfectly periodic waveforms. These models usually describe
ECG by the P wave, the QRS complex, and the T wave
separately [3].

One of the most representative ECGmodels is based on the
Gaussian pulse:

v(t) =
n=+∞∑
n=−∞

[φP(t − τP − nθ )

+φR(t−τR−nθ )+φT (t − τT − nθ )]. (1)

In Eq. (1), subscript P indicates the P wave; subscript T
indicates the T wave; subscript R indicates the QRS complex
for the sake of brevity; θ denotes the period, and thus the
periodicity can be verified by v(t + θ ).
Furthermore, the P wave can be modeled as

φP(t − τP) = aPexp[−
(t − τP)2

2b2P
]. (2)

The QRS complex can be modeled as

φR(t − τR) = [a(0)R + a
(1)
R
d
dt
+ a(2)R

d2

dt2
]exp[−

(t − τR)2

2b2R
].

(3)

The T wave can be modeled as

φT (t − τT ) = aT exp[−
(t − τT )2

2b2T
]. (4)

In Eq. (2)-(4), aP, aR and aT denote the amplitude coeffi-
cients; bP, bR and bT denote the width parameters; τP, τR and
τT denote the center positions.

Many other models can also faithfully describe ECG, so
long as they can keep the shape similarity between the basis
functions and the ECG segments [4]–[6]. For example, some
models use the Gaussian pulses to represent each of the P, Q,
R, S and T waveforms individually, which thereby breaks the
QRS complex into three separate waveforms; some models
use sine and cosine pulses to simulate each waveform; other
models describe the QRS complex by means of the triangular
pulse; still other models adopt the pulses with other shapes to
represent the waveforms.

In real applications, ECG signals usually show sophisti-
cated variations for different patients across temporal and
physical conditions. Even for the healthy subjects, the signals
are not the same from one to the other, either. Although a
number of approaches have tried to develop the mathematical
models of ECG, they cannot precisely specify the potential
variations. Considering the variability of ECG signals, cur-
rently, the analytic methods based on mathematical models
are rarely used for ECG analysis in comparison with the
numerical methods, especially those capable of capturing the
local characteristics of ECG in practice. Despite so, these
mathematical models still can help us better understand ECG.

C. INTRODUCTION OF WAVELET TRANSFORM
ECG signals can be regarded as the non-stationary random
process. Fourier transform is not suitable for ECG analysis,
because it characterizes the signals in a global way but ignores
the local information. Although short-time Fourier transform
divides long time signal into short segments of the equal
length and then computes the Fourier transform separately on
each segment, the big pitfall of short-time Fourier transform
comes from its fixed resolution. Usually, the width of the
windowing function relates to how the signal is represented.
A wide window gives better a frequency resolution but a poor
time resolution. A narrow window gives a good time resolu-
tion but a poor frequency resolution. Therefore, short-time
Fourier transform is unsuitable to analyze the ECG signals of
varying frequency as well.

Wavelet transform expands the signals in terms of the
wavelet function that is localized in both time and frequency.
Basically, wavelet transform should only allow the changes
in time extension instead of the shape. Wavelet transform
overcomes the weakness of the fixed resolution of short-time
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Fourier transform. Wavelet transform can provide good time
resolution for high-frequency events, and good frequency res-
olution for low-frequency events. Hence, wavelet transform is
quite suitable for ECG analysis.

Given a signal f (t), its Continuous Wavelet Trans-
form (CWT) is formulated as:

F(a, τ ) = < f (t), ψa,τ (t) >

=
1
|a|1/2

∫
+∞

−∞

f (t)ψ(
t − τ
a

)dt, (5)

In Eq. (5), a is the scaling parameter and τ is the translating
parameter, where a ∈ R+ and τ ∈ R. The scaling parameter
can either compress or dilate the signal. When a is relatively
small, the signal will be more contracted; when a is large,
the signal will be stretched out. The translating parameter is
related to the location of the window, as the window is shifted
through the signal. Wavelet basis function ψa,τ (t) is obtained
by translating and scaling the mother wavelet ψ(t) which is
continuous in both time and frequency domains. The overline
symbol represents the operation of complex conjugate. More
concretely, ψa,τ (t) is given by:

ψa,τ (t) =
1
|a|1/2

ψ(
t − τ
a

). (6)

Discrete Wavelet Transform (DWT) is any wavelet trans-
form for which the wavelets are discretely sampled. To obtain
DWT, in F(a, τ ), the scaling parameter a needs to be dis-
cretized by a = bj where j ∈ Z and b > 0, and the translating
parameter τ should be discretized by τ = bjkT where k ∈ Z
and T > 0. Here, j is the frequency scale; k is the time scale;
T is the constant depending on mother wavelet. Especially,
when b = 2 and j > 0, DWT is called as ‘‘dyadic’’.

Furthermore, multi-resolution analysis is widely-used for
designing DWT in practice. Multi-resolution analysis enables
a signal to be decomposed into the coefficients at different
scales. Usually, such process can be derived from the fil-
ter bank consisting of low-pass and high-pass filters. These
filters decompose the input signal into low-frequency and
high-frequency components, and the low-frequency compo-
nent continues to be further decomposed in the similar man-
ner. Such process will be repeated till reaching the expected
maximum decomposition level.

II. WAVELETS FOR ECG ANALYSIS
A. WAVELETS FOR SIGNAL DENOISING
1) PHILOSOPHY
ECG signals are usually polluted by physiological and tech-
nological noises, which include baseline wander, power-line
interference, electromyographic artifact, motion artifact, and
so forth. Wavelet based methods occupy quite an important
position for the issue of ECG signal denoising. Basically,
these methods include four steps: decomposing the signals
by the wavelet transform; deciding the threshold value based
on the prescribed rules; using the thresholding function to
filter the coefficients; reconstructing the signals based on
the filtered coefficients by the inverse wavelet transform.

The thresholding function is important for wavelet based
denoisers. In general, the hard thresholding function can
well preserve the sharpness of the original signal due to the
discontinuity characteristics, but such kind of thresholding
is vulnerable to the high-frequency noises; on the contrary,
the soft thresholding function is smooth, but such kind of
thresholding may distort the reconstructed signals. There are
also many researchers attempting to design the thresholding
function that can integrate the merits of both hard and soft
thresholding and at the same time overcome the shortcomings
of them, such as the non-negative garrote thresholding func-
tion, the polynomial thresholding function, and so on. The
threshold calculation rule is crucial as well. If the threshold
value is too large, the thresholding function will bear many
noisy components of the signals; if the threshold value is too
small, the thresholding function will discard the useful com-
ponents. Therefore, it is appropriate to keep balance between
the removal of noises and the conservation of signal waves.
Widely-used threshold calculation rules primarily include the
sqtwolog rule, the minimax rule, the heursure rule, the rigr-
sure rule, and so forth [7]–[9].

2) METHODOLOGY
a: MOTHER WAVELET SELECTION IS IMPORTANT FOR
SIGNAL DENOISING
Seljuq et al. [10] have recommended Daubechies9 (Db9) as
the mother wavelet function of the DWT for ECG signal
denoising. Lin et al. [11] have chosen the Symlets5 (Sym5)
based DWT with the soft thresholding and the sqtwolog
rule for removing the electromyographic artifact from the
ECG signals. Li et al. [12] have selected the Sym6 based
DWT with the soft thresholding and the sqtwolog rule for
reducing the noises in the ECG signals. By using the Genetic
Algorithm (GA), El-Dahshan [8] has found that the Db7 or
Db8 based DWT is more suitable to cope with the low-noise
ECG signals, and that the Sym5 or Sym6 based DWT is more
appropriate to deal with the high-noise ones. Sawant and
Patii [13] have suggested using the Biorthogonal2.4 (Bior2.4)
based DWT with the soft thresholding and the heursure rule
for tackling the electromyographic artifact in the ECG sig-
nals, and utilizing the Db9 based DWT with the hard thresh-
olding and the sureshrink rule for handling the power-line
interference of the signals. Biswas et al. [14] have pointed
out the particular advantage of the Bior5.5 based DWT in
suppressing the power-line interference in the ECG signals.

b: PERFORMING THRESHOLDING ON THE WAVELET
COEFFICIENTS IN A SUITABLE MANNER PLAYS A
SIGNIFICANT ROLE IN THE PROCESS OF DENOISING
Smith et al. [15] have designed the polynomial thresholding
function, and then optimized the polynomial coefficients by
the least-squares minimization for ECG signal denoising.
Tulsani and Gupta [16] have optimized the polynomial coef-
ficients by the artificial bee colony algorithm for denoising
the ECG signals. Zhang et al. [17] have decomposed the
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ECG signals by the DWT based on the Mallat algorithm,
and adopted the composite thresholding function that per-
forms hard and soft thresholding separately in different levels
of the DWT for tackling the baseline wander, the power-
line interference and the electromyographic artifact in the
signals. Zhang et al. [18] have combined the hard thresh-
olding and the soft thresholding for coping with the noises
in the ECG signals. The combining ratio and the regula-
tory factors are automatically computed according to the
maximum and the minimum values of wavelet coefficients.
Mithun et al. [19] have utilized the Discrete Meyer (Dmey)
based DWT with the adjustable thresholding function to sup-
press the electromyographic artifact and the motion artifact
in the ECG signals. This adjustable thresholding function
combines the advantages of both hard and soft thresholding
functions, and has a parameter to adjust the thresholding
from the hard to the soft modes. Mallaparapu et al. [20]
have crafted a thresholding function by mixing the hard
and the non-negative garrote functions to denoise the ECG
signals. Wang et al. [21] have improved the single-wavelet
thresholding based on the non-negative garrote threshold-
ing function by the double-wavelet lifting scheme for han-
dling the baseline wander, the power-line interference and
the electromyographic artifact in the ECG signals. Patil
and Holambe [22] have set the adaptive threshold value in
terms of the level-dependent minimax rule base on the DWT
for handling different kinds of noises in the ECG signals.
Yi and Song [23] have presented the adjustable thresholding
function with the level-dependent sqtwolog rule based on
the DWT for tackling different kinds of noises in the ECG
signals. This thresholding function can be adjusted from the
hard to the soft modes according to the actual signal sit-
uations. Poornachandra [24] has devised the Subband level
dependent Median (S-median) threshold based on DWT for
recovery of the ECG signals contaminated by the noises.
Awal et al. [25] have put forward the modified S-median
threshold with the additional level dependent adaptation fac-
tor based on the optimal wavelet function and the optimal
decomposition level to cope with the composite noise in the
ECG signals.

c: THE STRENGTHS OF WAVELET TRANSFORM AND
DIFFERENT TYPES OF TECHNIQUES CAN BE COMBINED TO
IMPROVE THE DENOISING PERFORMANCE
Liu et al. [26] have carried out ECG signal denoising by
the Independent Component Analysis (ICA) in conjunction
with the DWT based denoiser. Li et al. [27] have com-
bined Coiflets5 (Coif5) based DWT, Fast Fourier Trans-
form (FFT) based bandpass filter, and nonlinear Bayesian
filter in one framework to cope with the noises in the ECG
signals. The Coif5 based DWT can eliminate the power-line
interference and the high-frequency noises; the FFT based
bandpass filter can remove the baseline wander; the non-
linear Bayesian filter can reduce the Gaussian noise and
the electromyographic artifact. Hao et al. [28] have presented
the Multivariate Wavelet Denoising (MWD) algorithm based

on the techniques of subspace and Principal Component
Analysis (PCA) for dealing with the white Gaussian noise
in the ECG signals. The key element of this Subspace
and PCA based MWD (SP-MWD) algorithm is introduc-
ing an orthogonal matrix that divides the observation data
into the signal subspace and the noise subspace to facili-
tate the wavelet based denoising. Rajankar and Talbar [29]
have designed the Wavelet Neural Network (WNN), which
involves the wavelets into the activation function of the
Multi-Layer Perceptron Neural Network (MLP-NN), for
eliminating the white Gaussian noise in the ECG signals.
Alyasseri et al. [30] have suggested combining the DWT
with the β-hill climbing technique for suppressing the white
Gaussian noise in the ECG signals. β-hill climbing can help
find the optimal parameters of the DWT so as to obtain the
minimum of the mean square error between the original and
the denoised signals. Jenkal et al. [31] have employed the
Adaptive Dual Threshold Filter (ADTF) in conjunction with
the DWT based denoiser for depressing the white Gaussian
noise in the ECG signals. ADTF relies on the mean value of
the signal in the moving window to calculate the high and
the low thresholds. Hesar and Mohebbi [32] have proposed
the model based Bayesian denoising framework, which uti-
lizes the DWT based thresholding with the Variational Mode
Decomposition (VMD) to lower the noise impact on the ECG
signals and then adopts the Marginalized Particle-Extended
Kalman Filter (MP-EKF) with the Fuzzy Based Adaptive
Particle Weighting (FBAPW) technique to further tackle the
noises in the signals. In this framework, the VMD is con-
ducive to reducing the negative influence of the DWT based
thresholding on the sharp signal waves, and the FBAPW
technique is beneficial for adjusting the MP-EKF to the sig-
nificant morphological changes and different noise measure-
ments of the signals.

d: DUAL-TREE COMPLEX WAVELET TRANSFORM CAN WORK
AS A CAPABLE WAVELET BASED DENOISER
Dual-Tree Complex Wavelet Transform (DTCWT) calcu-
lates the complex transform of a signal by means of two
separate DWT decompositions. DTCWT can overcome the
drawbacks that may be encountered by the DWT, such as
the oscillations around singularities, the lack of shift invari-
ance, the poor directional selectivity, and the severe fre-
quency aliasing. Wang and Ji [33] have shown the capabil-
ity of the DTCWT for ECG signal denoising. Shemi and
Shareena [34] have found the capability of the double-density
DTCWT to deal with the composite noise in the ECG signals.
Zhang et al. [35] have leveraged the DTCWT and the median
filtering to denoise the ECG signals before doing arrhythmia
classification by the recurrent neural network and the density
based clustering technique. B’charri et al. [36] have tuned
the parameters of the DTCWT based denoiser to search for
the best threshold function, the optimal threshold value, and
the most suitable decomposition level to handle the noises in
the ECG signals.
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e: THE MODE DECOMPOSITION CAN BE INTEGRATED WITH
WAVELET TRANSFORM FOR DENOISING THE SIGNALS
Empirical Mode Decomposition (EMD) decomposes a sig-
nal into a reasonably small number of approximately har-
monic components, which are referred to as intrinsic mode
functions, in the time-frequency plane. Li and Li [37] have
presented the ECG signal denoising method based on the
cooperation of the EMD and the wavelet adaptive thresh-
olding technique. This method utilizes the EMD to make up
the indetermination for choosing the wavelet function, and
then adopts the wavelet adaptive thresholding technique to
prevent the distortion effect of EMD. Kabir and Shahnaz [38]
have resorted to the collaboration of the EMD and the
DWT for denoising the ECG signals. This approach carries
out windowing in the EMD domain to reduce the noises
from initial intrinsic mode functions, and then denoises the
yielded signals by the DWT. Nevertheless, as the weakness,
EMD lacks the mathematical theory and exhibits too many
modes that are difficult to interpret. In contrast to EMD,
Empirical Wavelet Transform (EWT) is a fully adaptive and
data-driven signal processing technique with well-defined
mathematical backgrounds. EWT performs mode decom-
position using the adaptive wavelet filter bank based on
the boundaries that are computed from the segmentation of
the signal Fourier spectrum. Singh and Sunkaria [39] have
made use of the EWT with the technique of mode sub-
traction for dealing with different kinds of noises in the
ECG signals. Synchro-SqueezedWavelet Transform (SSWT)
can also realize the adaptive time-frequency decomposition,
which is the goal of EMD. But different from EWT, SSWT
brings together the wavelet analysis and the reallocation tech-
nique. Daubechies et al. [40] have proposed the SSWT that
reallocates the CWT coefficients to obtain a concentrated
time-frequency picture, from which the instantaneous fre-
quency lines can be extracted. SSWT is capable of decom-
posing the superposition of well-separated modes with the
analytic wave shape functions sufficiently close to the expo-
nential function. But as the weakness, this transform is quite
easy to mix up the high-frequency modes, which more or less
limits its application for the spike-shape signals. Yang [41]
has relieved much of such trouble by the synchro-squeezed
WPT. Synchro-squeezed WPT combines together the WPT
of a certain geometric scaling, the reallocation technique for
sharpening the phase space representation, and the clustering
algorithm for mode decomposition. This transform not only
can provide the effective mode decomposition and the accu-
rate instantaneous property estimation, but also has better
resolution than the SSWT to distinguish the harmonic modes
with high frequencies. It is worth noting that the SSWT and
the synchro-squeezed WPT are also the powerful tools for
ECG signal denoising.

B. WAVELETS FOR WAVE DETECTION
1) PHILOSOPHY
Typical waves of ECG signals mainly refer to the P, Q, R, S
and Twaves. Because the QRS complexes contain significant

information about the cardiac diseases, like most researches
in the literature, this paper focuses the issue of ECG wave
detection on QRS complex finding. Usually, QRS complex
detection can be reduced to the problem of R peak detection,
due to that once the R wave, which has the most salient peak
in the QRS complex, is located, the Q and the S waves can
also be easily found. Hence, in practice, the QRS complex
location can be represented by the R peak location as well.
Wavelet transform is achieved by the convolution of the
wavelet basis function and the target signal, and if there is an
event in the signal with a similar morphology to the wavelet,
a peak will appear in the convolution result. Thus, the wave-
like oscillation property of wavelets makes wavelet transform
inherently suitable for QRS complex detection. Moreover,
wavelet transform can exploit the multi-scale information
of signals. By using wavelet transform, the energy of any
QRS complex will tend to concentrate around a specific time
point across several successive scales. With such multi-scale
information, it can be easy to distinguish the QRS com-
plexes from other high waves as well as different kinds
of noises [42]–[44]. Note that, in this work, wavelet based
detectors not only include the methods that directly detect the
typical waves in ECG signals using the wavelet transform, but
also involve those doing detection based on the ECG signals
whose waves have been accentuated by the wavelet based
denoisers.

2) METHODOLOGY
a: IT IS BEST TO USE THE WAVELET SIMILAR TO THE
TARGET WAVEFORM FOR WAVE DETECTION
Haddadi et al. [45] have suggested using the Db4 based
DWT for QRS complex detection based on the ECG sig-
nals due to that this wavelet is similar to the QRS com-
plex. Kaur et al. [46] have demonstrated the advantage of the
Db6 based DWT for detecting the QRS complexes in the
ECG signals. Balachandran et al. [47] have leveraged theDb6
based DWT to process the ECG signals for R peak finding.
Wang and Eklund [48] have utilized the Db6 based DWT to
generate the masks for the potential QRS complexes in the
ECG signals, and then narrowed down the searching to the
masked regions for accurately finding the QRS complexes.
Sabherwal et al. [49] have used the Db6 based DWT to
deepen the S valleys of the ECG signals firstly, and then
detected the S valleys and the R peaks independently; after
that, they have estimated the R peak locations using the
detected S valleys, and finally fused together the R peak esti-
mation and the R peak detection for QRS complex locating.
Das et al. [50] have taken advantage of the Morlet based
CWT with the zero-crossing technique for R peak detection
based on the ECG signals. Li et al. [43] have found that the
quadratic spline wavelet based DWT is suitable for detecting
the QRS complexes in the ECG signals. Chen et al. [51]
have recommended the DWT with the quadratic Bior spline
mother wavelet for locating the QRS complexes in the
ECG signals.
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b: WAVELET BASED DETECTORS USUALLY CARRY OUT
THRESHOLDING OR MAXIMA FINDING BASED ON THE
WAVELET COEFFICIENTS AT SUITABLE SCALES
Abdelliche et al. [52] have performed thresholding on the
fused real parts at scale 3 and scale 4 of CWT for making
the QRS complexes of the ECG signals more salient, and
then implemented the zero-crossing testing on the imaginary
part at scale 4 of CWT for locating the QRS complexes.
Aqil et al. [53] have suggested detecting the R peaks by
means of the maxima finding based on the CWT coefficients
at scale 6, which corresponds to the maximum energy of
the ECG signals. Yochum et al. [54] have located the QRS
complexes in the ECG signals based on the threshold that is
automatically determined by the histogram representation of
the CWT coefficients at scale 38. Pal and Mitra [55] have
recommended finding the maxima of the fused detail coef-
ficients from scale 3 to scale 5 of the DWT for QRS complex
detection based on the ECG signals. Sahoo et al. [56] have
carried out thresholding on the fusion of the detail coeffi-
cients from scale 3 to scale 5 of the DWT for detecting the
QRS complexes in the ECG signals. Rai and Chatterjee [57]
have put forward the R peak detection method based on
the ECG signals by means of finding the maxima of the
fused detail coefficients from scale 3 to scale 5 of the DWT.
Banerjee et al. [58] have taken advantage of the fusion of the
detail coefficients at scale 4 and scale 5 of the DWT to set
the threshold for QRS complex detection based on the ECG
signals.

c: TEMPORAL THRESHOLDING AND MORPHOLOGICAL
THRESHOLDING ARE COMPLEMENTARY TO THE WAVELET
BASED THRESHOLDING FOR DETECTING THE WAVES
By taking advantage of the temporal and the morphological
characteristics of ECG signals as the thresholds, the temporal
thresholding and the morphological thresholding can effec-
tively cooperate with the wavelet based thresholding for wave
detection. Here, the temporal characteristics mainly refer to
the timing interval properties and the morphological charac-
teristics primarily refer to the amplitude properties of ECG
signals. Razavi andMohammadi [59] have performed thresh-
olding on the maxima of the CWT coefficients in the moving
window based on the ECG signals to detect the R peak candi-
dates. If the distance of the two detected R peaks is more than
the threshold of 1.5 times the average RR-interval length, this
approach returns to the previous R peak location and performs
detection using the smaller threshold. Zidelmal et al. [60]
have fused the detail coefficients of the DWT to set the
threshold for detecting the QRS complexes in the ECG sig-
nals, and then made use of the smaller threshold to search
back for the missed ones if the distance between two QRS
complexes is bigger than the threshold of 1.5 times the current
RR-interval length. Lin et al. [11] have denoised the ECG
signals by the DWT based thresholding for making the R
peaks more discernable, and then used the amplitude and
the interval thresholds in the adaptive searching window for

R peak detection. If the maximum value in the searching
window is higher than the estimated amplitude threshold,
such location should correspond to the R peak; if the distance
between two R peaks is longer than the threshold of 1.4
times the average RR-interval length, this method searches
back and uses the smaller amplitude threshold to find the R
peaks again. Jenkal et al. [61] have denoised the ECG signals
by the DWT based thresholding for making the QRS com-
plexes more perceptible, and then detected all the possible
QRS complexes by the relatively small amplitude threshold,
and finally removed the false QRS complexes by a moving
threshold window whose size is determined by the maxi-
mum QRS complex duration and the maximum heart rate.
Qin et al. [62] have denoised the ECG signals by the DWT
based thresholding for making the R peaks more detectable,
and then adopted the signal mirroring technique to convert the
large negative R peaks to the positive ones based on the pro-
cessed signals, and finally truncated the local maxima by the
amplitude threshold and the interval threshold to locate the
R peaks.

d: THE EXTENSIONS OF WAVELET TRANSFORM ARE ALSO
POWERFUL FOR THE DETECTION TASK
As an extension of DWT, Wavelet Packet Transform (WPT)
recursively decomposes the approximation and detail coef-
ficients using the same filtering and down-sampling tech-
niques as used in DWT. Attributing to a more detailed
decomposition, WPT allows the flexible signal analysis for
a desired frequency band in contrast to the prefixed octave
frequency bands [63]. Vega-Martinez et al. [64] have utilized
the WPT to process the ECG signals for making the QRS
complexes more distinctive, and then calculated the envelops
of the processed signals, and finally carried out threshold-
ing on the enveloped signals to locate the QRS complexes.
Chouakri et al. [65] have designed the QRS complex detec-
tion routine that processes the nodes of both Haar based
WPT and Db10 based WPT by the histogram approach
based on the ECG signals. Singh and Sunkaria [66] have
improved the performance of QRS complex detection based
on the ECG signals by using the adaptive wavelet at each
scale in the WPT tree and the adaptive threshold in each
detection channel before combining the results from dif-
ferent channels. As another extension of DWT, Stationary
Wavelet Transform (SWT) maintains a dyadic sampling of
the scales, but the time steps are not subsampled at each level
and hence are not dyadic. SWT can overcome the lack of
translation invariance of DWT [63]. Merah et al. [67] have
taken advantage of the SWT to detect the R peaks in the
ECG signals. Farashi [44] has also utilized the SWT for R
peak detection based on the ECG signals. As an extension
of CWT, S-Transform (S-T) is derived by the phase cor-
rection of the CWT with the window being the Gaussian
function. S-T can provide the frequency-dependent resolu-
tion whilst maintaining a direct relationship with the Fourier
spectrum. Zidelmal et al. [68] have computed the Shannon
Energy (ShE) from the local spectrum based on the S-T to
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detect the QRS complexes in the ECG signals. As another
extension of CWT, SSWT integrates the synchro-squeezed
technique with CWT. SSWT can effectively decompose
a class of superpositions of intrinsic mode type compo-
nents and accurately estimate the instantaneous proper-
ties of these components. Herry et al. [69] have acquired
the SSWT-derived phase information, and incorporated this
information into the Optimized Knowledge Based Detec-
tor (OKBD) to improve the performance of R peak detection
based on the ECG signals.

e: HILBERT TRANSFORM CAN COOPERATE WITH WAVELET
TRANSFORM TO IMPROVE THE DETECTION PERFORMANCE
Hilbert Transform (HT) is capable of analyzing the instanta-
neous attributes of signals. This transform is complementary
with wavelet transform for the task of wave detection. Sab-
herwal et al. [70] have used the DWT to denoise the ECG
signals, and then adopted the derivatives of the reconstructed
signals to enhance the QRS complexes, and finally employed
the HT with the peak-finding logic for R peak detection.
Rakshit and Das [71] have utilized the DWT and the ShE
Transform (ShET) to attenuate the noises and accentuate
the QRS complexes in the ECG signals, and then lever-
aged the peak-finding logic based on the HT to detect the
R peaks.

C. WAVELETS FOR HEARTBEAT CLASSIFICATION
1) PHILOSOPHY
The main challenges for the issue of ECG heartbeat classifi-
cation are the large intra-class variation and small inter-class
difference of ECG data, which are caused by the facts that the
heartbeats in the same class may present different characteris-
tics across subjects and conditions but that those from differ-
ent classes may exhibit similar temporal and morphological
properties. Feature designing and classifier learning are the
essential stages in the methodological pipeline for heartbeat
classification in general. Feature designing is important and
fundamental in the pipeline, because this stage establishes
a platform for the subsequent procedures. Note that, in this
work, wavelet based features not only include the features
that are directly extracted from the coefficients of wavelet
transform for ECG data, but also involve those acquired based
on the ECG characteristic points that have been located by the
wavelet based detectors. Wavelet based features been widely
used for heartbeat classification, because they can capture
the local characteristics of ECG data. Good features can
project ECG heartbeats into a discriminatory space where the
samples in the same class stay close together and those from
different classes reside far apart. However, in real applica-
tions, the heuristics of designing process and the complicacy
of ECG data unavoidably limit the feature power. Therefore,
learning the classifiers that can further improve the intra-class
compactness and inter-class separation of heartbeat samples
in the feature space is also important and indispensable for
classification [1], [72], [73].

2) METHODOLOGY
a: BY USING WAVELET BASED FEATURES, NEURAL
NETWORKS ARE QUITE DISCRIMINATIVE FOR HEARTBEAT
CLASSIFICATION
Sarkaleh and Shahbahrami [74] have designed the Wavelet
Coefficient Feature (WCF) for the ECG heartbeats using
the maximum, the minimum and the variance of the DWT
coefficients, and then leveraged the MLP-NN based on this
feature for arrhythmia classification. Sarma et al. [75] have
acquired the features of the normalized subband energy,
the average subband energy, and the relative average subband
energy based on the DWT of the ECG heartbeats, and then
learned the MLP-NN based on these features for arrhythmia
recognition. Özbay et al. [76] have carried out the T2FCM
clustering to group the ECG heartbeats into the clusters with
different memberships, and then used the DWT to extract the
WCF which is made up of the decomposition coefficients
from these heartbeats with the training patterns obtained from
fuzzy clustering, and finally performed the MLP-NN based
on this feature for the arrhythmia discrimination. Das and
Ari [77] have taken advantage of the mixture of the WCF,
the Temporal Feature (TF), and the S-T Feature (STF) as
the representation of each ECG heartbeat, and then used the
MLP-NN based on this representation for classifying the
arrhythmias. Here, the WCF contains the mean, the maxi-
mum, the minimum and the standard deviation of the DWT
coefficients; the TF consists of the pre-RR, the post-RR,
the local-RR and the average-RR intervals; the STF is com-
prised of the statistical attributes of the time-frequency con-
tour and the time maximum amplitude plot from the S-T.
Rai et al. [78] have concatenated the WCF, the TF and the
Morphological Feature (MF) together as the representation
of each ECG heartbeat, and then applied the MLP-NN based
on this representation for recognizing the arrhythmias. Here,
the WCF is comprised of the mean, the variance and the stan-
dard deviation of the DWT coefficients; the MF is composed
of the amplitudes of P, Q, R, S and T waves and the number of
R peaks, where these signal characteristic points are detected
by means of the DWT; the TF is formed by the standard
deviations of the RR, the PR, the PT, the ST, the TT and the
QT intervals. Thomas et al. [79] have performed the FFT on
the absolute values of the DTCWT coefficients of the ECG
heartbeats, and then calculated the logarithm of the Fourier
spectrum to obtain the WCF; after that, they have combined
the WCF with the TF and the Higher Order Statistics (HOS)
feature together to construct the feature space, and ultimately
employed the MLP-NN in the feature space for discriminat-
ing the arrhythmias. Here, the TF is the ratio between the
pre-RR and the post-RR intervals; the HOS feature consists
of the variance, the skewness and the kurtosis of the QRS
complexes. Rai and Chatterjee [57] have crafted the MF for
the ECG heartbeats based on the uniformly sampled points
around the R peaks which are detected by means of the DWT,
and thenmade use of the Probabilistic Neural Network (PNN)
in the feature space for identifying the arrhythmias. Here,
the MF contains the amplitudes of 21 points sampled around
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each R peak with the equal step. Patil and Singh [80] have
combined the TF and the MF together to construct the feature
space of the ECG heartbeats, and then adopted the wavelet
based classifier, WNN, in the feature space for discriminating
the arrhythmias. Here, the TF and the MF are extracted
from the QRS complexes detected by means of the DWT;
the TF is comprised of the pre-RR and the post-RR inter-
vals, the QRS complex duration, and the ratio between the
post-RR and the pre-RR intervals; the MF is the R peak
amplitude. Sumathi et al. [81] have obtained the MF of the
ECG heartbeats from the QRS complexes detected by means
of the DWT, and then utilized the Adaptive Neuro-Fuzzy
Inference System (ANFIS) in the feature space for arrhythmia
identification. Here, the MF contains the amplitudes of Q, R
and S waves and the two slope values of each R wave; the
ANFIS is a kind of neural network that is based on the fuzzy
inference system.

b: DEEP LEARNING FURTHER EXPLOITS THE
POTENTIALITIES OF NEURAL NETWORKS FOR WAVELET
BASED CLASSIFICATION
Luo et al. [82] have extracted the Time-Frequency Repre-
sentation (TFR) from each ECG heartbeat by the Modified
Frequency Slice Wavelet Transform (MFSWT), and then
adopted the Stacked Denoising Autoencoder (SDA) based
on this representation to do patient-specific arrhythmia clas-
sification. Rahhal et al. [83] have resorted to the Convo-
lutional Neural Network (CNN), which is made up of the
alternating convolutional and pooling layers as well as the
additional fully-connected layers, for classifying the arrhyth-
mias. This method pre-trains the CNN model by a large
amount of auxiliary image data at first, and then learns the
pre-trained model based on the over-complete TFR which
is extracted from each ECG heartbeat using the CWT with
different mother wavelets. Yildirim [84] has proposed the
Deep Bidirectional Long-Short Term Memory (DBLSTM)
network with the input layer of Wavelet Sequence (WS) to
classify the arrhythmias. This approach utilizes the WS layer
to produce the sequences that contain themain ECG segments
and their DWT subbands, and then delivers these sequences
into the DBLSTM network for the classification. Li and
Li [85] have constructed the Local Deep Field (LDF) for
multiple-beat arrhythmia classification. This method learns
the deep MLP-NN model within each local chart of the
ECG data manifold that has been denoised by means of the
DWT. Local regionalization can help tackle local variations
of the data, and deep models can explore the hidden class
information within local distributions.

c: BY USING WAVELET BASED FEATURES, SUPPORT VECTOR
MACHINE IS VERY DISCRIMINATORY FOR CLASSIFYING THE
HEARTBEATS
Li et al. [86] have designed the ECG heartbeat features which
include theWCF optimized by the Linear Discriminant Anal-
ysis (LDA) and the Kernel ICA (KICA) feature extracted
from the PCA subspace of the raw data, and then learned

the Support Vector Machine (SVM) based on these features
for arrhythmia classification. Here, the WCF consists of the
mean, themaximum, theminimum and the standard deviation
of the DWT coefficients. Ye et al. [87] have concatenated the
WCF, the TF and the ICA feature together to construct the
ECG heartbeat feature space, and then performed the SVM in
the feature space for arrhythmia recognition. Here, the WCF
is formed by the DWT coefficients; the TF is comprised of
the pre-RR, the post-RR, the local-RR and the average-RR
intervals; the ICA feature is calculated based on the raw data.
Elhaj et al. [88] have combined the PCA of the WCF and
the ICA of the HOS feature together to construct the feature
space of the ECG heartbeats, and then used the SVM with
the kernel of Radial Basis Function (RBF) in the feature
space for arrhythmia discrimination. Here, the WCF is made
up of the DWT coefficients; the HOS feature is comprised
of the skewness and the kurtosis of the QRS complexes.
Daamouche et al. [89] have formulated the polyphase rep-
resentation of the wavelet filter bank and the SVM within
a Particle Swarm Optimization (PSO) framework based on
the ECG heartbeats for arrhythmia identification. This frame-
work applies the generated DWT to each heartbeat with the
normalized periodic length to obtain the WCF, and then adds
the TF to the WCF before doing classification by the SVM.
Here, the WCF consists of the DWT coefficients; the TF is
composed of the pre-RR and the local-RR intervals and the
QRS complex duration. Garcia et al. [90] have extracted the
Temporal Vectorcardiogram (TVCG) feature by the complex
network, and then concatenated this feature with the DWT
based autocorrelation feature, the TF and the MF together
as the representation of each ECG heartbeat, and finally
employed the PSO to optimize this representation and the
SVM for classifying the arrhythmias. Here, the DWT based
autocorrelation feature is obtained by applying the autocor-
relation function to the DWT subbands; the TF is composed
of the pre-RR, the post-RR and the local-RR intervals, the
QRS complex and the T wave durations, and the presence or
absence of the P-wave; the MF is made up of the amplitudes
of 37 points sampled from each heartbeat in a certain way.
Cheng and Dong [91] have computed the feature using the
correlation coefficients between the normal ECG heartbeat
template and each testing heartbeat sample, and then imple-
mented the SVM based on the combination of this feature
and other kinds of features for arrhythmia classification.
Alickovic and Subasi [92] have performed the multi-scale
PCA based on the DWT coefficients for ECG signal denois-
ing, and then employed the autoregressive model for feature
extraction based on the denoised signals, and finally utilized
the SVM with the sequential minimal optimization in the
feature space for recognizing the arrhythmias. Venkatesan
et al. [2] have acquired the frequency-domain feature of the
Heart Rate Variability (HRV) signals, which are extracted
from the ECG data, based on the R peaks detected by the
DWT, and then utilized the SVM in the feature space for
discriminating the arrhythmias. Herry et al. [69] have inte-
grated the SSWT-derived phase feature, the TF and the MF

25634 VOLUME 7, 2019



W. Li: Wavelets for ECG: Overview and Taxonomy

together as the representation of the ECG heartbeats, and
then carried out the SVM based on this representation for
identifying the arrhythmias. Here, the SSWT-derived phase
feature, the TF and the MF are extracted from the QRS
complexes detected by the collaboration of the OKBD and
the SSWT; the TF contains the pre-RR, the post-RR and the
average-RR intervals and the QRS complex duration; the MF
is the R peak amplitude.

d: BESIDES NEURAL NETWORKS AND SUPPORT VECTOR
MACHINE, MANY OTHER KINDS OF CLASSIFIERS ALSO
SHOW STRONG CAPABILITY FOR THE CLASSIFICATION
BASED ON WAVELET TRANSFORM
Li et al. [93] have designed the WCF for the ECG heartbeats
using the coefficients of the DWT with the mother wavelet
selected from Reverse Bior6.8 (RBior6.8), Fejer-Korovkin22
(FK22), and so forth, and then adopted the Metric Learning
to Rank (MLR) to improve the discriminative ability of the
feature space, and finally measured the Minority Based Dis-
similarity (MBD) between the feature sets for multiple-beat
arrhythmia classification. Abdullah et al. [94] have concate-
nated the WCF with the TF which is extracted based on the
R peaks detected by the DWT together as the representation
of each ECG heartbeat, and then implemented the quadratic
discriminant analysis on the basis of this representation for
arrhythmia recognition. Here, the WCF contains the mean,
the standard deviation, the skewness and the kurtosis of the
DWT coefficients; the TF consists of the pre-RR and the
post-RR intervals and the ratio of the pre-RR interval over
the total period of each heartbeat. Kumar and Inbarani [95]
have devised the MF based on the ECG characteristic points
which are detected by means of the DWT, and then taken
advantage of the Neighborhood Rough Set (NRS) to classify
this feature for arrhythmia discrimination. Here, the MF is
composed of the amplitudes of P, Q, R, S and T waves. Jung
and Lee [96] have acquired the ECG heartbeat features by
performing both PCA and LDA on the WCF that is com-
prised of the DWT coefficients firstly, and then classified
these features by the K-Nearest Neighbor (KNN) algorithm
for arrhythmia identification; after that, they have tested
the classified samples using the fitness rule, and ultimately
reclassified the misclassified ones by the weighted KNN
technique. Elhaj et al. [97] have combined the PCA of the
WCF and the ICA of theHOS feature together to construct the
ECG heartbeat feature space, and then utilized the Bayesian
and Extreme Learning Machine (B-ELM) technique in the
feature space for classifying the arrhythmias. Here, the WCF
is made up of the DWT coefficients; the HOS feature is
formed by the skewness and the kurtosis of the QRS com-
plexes. Pan et al. [98] have used different kinds of features
together to describe the ECG heartbeats, and then carried
out the Random Forest (RF) for recognizing the arrhythmias.
Here, these features include the variance of the raw data,
the variance of the DWT coefficients, the PCA of the raw
data, the PCA of the DWT coefficients, the min-max ratio
of the DWT coefficients, the autocorrelation feature of the

DWT coefficients, and the TF which is the adjacent heartbeat
intervals. Banerjee and Mitra [99] have obtained the Wavelet
Cross Spectrum Feature (WCSF) and the Wavelet Coherence
Feature (WCoF) from the Cross Wavelet Transform (XWT)
between each pair of the ECG heartbeats, and then classified
these features by the thresholding technique for identifying
the inferior myocardial infarction.

e: SUBSPACE METHODS CAN REMOVE THE REDUNDANT
DIMENSIONS OF WAVELET BASED FEATURES BEFORE
CLASSIFIER LEARNING
Martis et al. [100] have designed the WCF using the DWT
coefficients of the ECG heartbeats, and then reduced the
feature dimension by the technique selected from the PCA,
the ICA, and the LDA, and finally performed arrhythmia
classification by the classifiers of the MLP-NN, the PNN,
and the SVM, respectively, based on the processed feature.
By comparison, they have found that, based on the WCF,
the combination of the ICA and the PNN produces the best
performance. Martis et al. [101] have acquired the feature
subspaces of the ECG heartbeats by applying the PCA to
the WCF and the discrete cosine transform coefficient fea-
ture, respectively, and also by applying the ICA to each
of these two features; after that, they have employed the
KNN, the Decision Tree (DT), and the MLP-NN indepen-
dently in the each feature subspace for arrhythmia recog-
nition. By comparison, they have found that, based on the
discrete cosine transform coefficient feature, the coopera-
tion of the ICA and the KNN yields the best performance.
Martis et al. [102] have devised the WCF for the ECG heart-
beats using the coefficients of the DWT with the carefully
selected basis function, and then used the PCA to reduce
the dimension of the WCF before doing arrhythmia dis-
crimination by the SVM, the MLP-NN, and the Gaussian
Mixture Model (GMM), respectively. By comparison, they
have found that, in combination with the PCA and the
SVM, the Sym2 based WCF generate the best performance.
Martis et al. [103] have applied the PCA to the ECG heart-
beats, the error signals of linear prediction model, and the
WCF composed of the DWT coefficients independently to
obtain three feature subspaces for arrhythmia identification.
By comparison, they have found that, in cooperation with the
SVM, the raw data based PCA achieves the best performance.
Rajagopal and Ranganathan [104] have evaluated different
linear and nonlinear subspace approaches in collaboration
with the PNN for classifying the arrhythmias based on the
WCF that consists of the DWT coefficients of the ECG
heartbeats. By comparison, they have found that, based on
theWCF, the collaboration of the tangential contrast function
based fast ICA and the PNN leads to the best performance.
Nazarahari et al. [105] have generated the suitable wavelet
functions for the ECG heartbeats by means of the polyphase
representation of the wavelet filter bank within a hybrid GA
and PSO (GA-PSO) framework, and then taken advantage
of the PCA to reduce the dimension of the WCF that is
comprised of the generated DWT coefficients, and finally
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adopted theMLP-NN in this feature subspace for recognizing
the arrhythmias.

f: WAVELET PACKET TRANSFORM PROVIDES AN EFFECTIVE
TOOL FOR FEATURE EXTRACTION
Li and Zhou [106] have calculated the Shannon
Entropy (ShEnt) of each terminal node of the WPT for the
ECG heartbeats at first, and then composed the entropies
as the feature; after that, they have combined this fea-
ture with two adjacent RR intervals together to construct
the feature space, and at last utilized the RF in the fea-
ture space for the classification. Li et al. [107] have used
the WPT to decompose the ECG heartbeats into differ-
ent frequency bands, and then calculated the Approximate
Entropy (AppEnt) of the decomposition coefficients as the
feature, and finally classified this feature by the SVMwith the
parameters estimated by the PSO for arrhythmia recognition.
Kutlu and Kuntalp et al. [108] have designed the HOS fea-
ture that contains the variance, the skewness and the kurtosis
of the WPT coefficients of the ECG heartbeats, and then
carried out the KNN based on this feature for arrhythmia dis-
crimination. Shahnaz et al. [109] have acquired the intrinsic
mode functions by the EMD firstly, and then implemented
the WPT merely on the selected dominant intrinsic mode
functions; after that, they have extracted the HOS feature that
is formed by the variance, the skewness and the kurtosis of
the WPT coefficients, and ultimately classified this feature
by the KNN algorithm. Li et al. [110] have crafted the WCF
for the ECG heartbeats using the maximum, the standard
deviation and the singular value of the WPT coefficients, and
then implemented the MLP-NN in the feature space with the
use of the GA to decrease the feature dimension and optimize
the classifier parameters for classifying the arrhythmias.

g: FLEXIBLE ANALYTIC WAVELET TRANSFORM CAN BE
UTILIZED TO OBTAIN THE USEFUL ENTROPY FEATURES
Flexible Analytic Wavelet Transform (FAWT) is a rational-
dilation wavelet transform, which is allowed to easily adjust
the parameters of the quality-factor, the redundancy, and
the dilation factor for analyzing the signals. FAWT can
be implemented by the iterative filter bank. At each level
of the iterative filter bank, this wavelet transform has one
low-pass and two high-pass channels. The two high-pass
channels separate the negative and positive frequencies and
provide the analytic bases for the signals. For diagnosing the
atrial fibrillation, Kumar et al. [111] have used the FAWT
to obtain the subbands from the ECG heartbeats, and then
extracted the Log Energy Entropy (LEEnt) and the Permuta-
tion Entropy (PeEnt) features from the subbands, and finally
adopted the RF to classify these features. For diagnosing the
myocardial infarction, Kumar et al. [112] have utilized the
FAWT to decompose the ECG heartbeats into the subbands,
and then computed the Sample Entropy (SaEnt) feature from
these subbands, and finally adopted the SVM with the linear,
the polynomial, the RBF, and the Morlet wavelet kernels,
respectively, to classify this feature. It is worth mentioning

that the SVM with the wavelet kernel can also be seen as a
kind of wavelet based classifier. From another perspective,
HRV signals usually carry useful information related to the
nature of heart diseases. For diagnosing the congestive heart
failure, Kumar et al. [113] have employed the FAWT to
decompose the HRV signals into the subbands at first, and
then computed the Accumulated Fuzzy Entropy (AFEnt) and
the Accumulated Permutation Entropy (APEnt) features from
the cumulative sums of these subbands; after that, they have
ranked the feature samples according to their discrimination
ability, and at last classified the ones of comparatively high
discrimination ability by the SVM with the linear, the RBF,
and the Morlet wavelet kernels, respectively. For diagnosing
the coronary artery disease, Kumar et al. [114] have decom-
posed the HRV signals using the FAWT firstly, and then
extracted two nonlinear features, the K-Nearest Neighbor
Entropy Estimator (KNNEE) and the Fuzzy Entropy (FuEnt),
from the decomposed subbands; after that, they have imple-
mented the ranking technique to select the discriminative
feature samples, and ultimately classified the selected ones
by the SVM with the RBF and the Morlet wavelet kernels,
respectively. Besides, Kumar et al. [115] have applied the
FAWT to decomposing the ECG heartbeats, and then cal-
culated the Cross Information Potential (CIP) feature from
the real values of the decomposition coefficients, and finally
made use of the SVM with the RBF and the Morlet wavelet
kernels, respectively, to classify this feature. In addition,
Tunable-Q Wavelet Transform (TQWT) can also be treated
as a kind of FAWT. TQWT facilitates the signal analysis
by means of the easily adjustable parameters which are the
quality-factor, the redundancy, and the number of decompo-
sition levels. Also for diagnosing the coronary artery disease,
Patidar et al. [116] have decomposed the heart rate signals
that are acquired from the ECG data into various subbands
using the TQWT at first, and then extracted the nonlinear
feature, centered correntropy, from the decomposed detail
subbands; after that, they have carried out the PCA to trans-
form the feature space, and at last taken advantage of the SVM
with the RBF, the Morlet wavelet, the Mexican hat wavelet
kernels, respectively, to classify this feature.

D. METHOD PERFORMANCE
Commonly-used databases for research on ECG analy-
sis mainly include the MIT-BIH Arrhythmia Database,
the MIT-BIH Noise Stress Test Database, the MIT-BIH
Normal Sinus Rhythm Database, the MIT-BIH Atrial Fib-
rillation Database, the MIT-BIH Malignant Ventricular
Arrhythmia Database, the PTB Diagnostic ECG Database,
the Fantasia Database, the QT Database, the Apnea-
ECG Database, the BIDMC Congestive Heart Failure
Database, the St.-Petersburg Institute of Cardiological Tech-
nics 12-lead Arrhythmia Database, and so forth. Their
introductions and resources are available on the website
http://www.physionet.org/physiobank/database.

Representative wavelet based methods for signal denois-
ing are summarized in Tables 1-3. The evaluation metrics
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TABLE 1. Representative wavelet based methods for signal denoising (Part 1).

VOLUME 7, 2019 25637



W. Li: Wavelets for ECG: Overview and Taxonomy

TABLE 2. Representative wavelet based methods for signal denoising (Part 2).
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TABLE 3. Representative wavelet based methods for signal denoising (Part 3).
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TABLE 4. Representative wavelet based methods for wave detection (Part 1).
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TABLE 5. Representative wavelet based methods for wave detection (Part 2).

for comparing the denoised and the original ECG signals
include Signal-to-Noise Ratio (SNR), Mean Square Error
(MSE), and Root MSE (RMSE). For these metrics, subscript
‘‘in’’ means input, subscript ‘‘out’’ means output, and sub-
script ‘‘imp’’ means improvement. For them, larger SNR and
smaller MSE/RMSE indicate better performances. Besides,
the negative SNR is used to measure the added noises rather
than the original signals. In Tables 1-3, abbreviations for

different kinds of noises are as follows: White Gaussian
Noise – WGN; Baseline Wander – BW; Power-Line Inter-
ference – PLI; Electromyographic artifact – EMG; Motion
Artifact – MA; Composite Noise – CN.

Representative wavelet based methods for wave detec-
tion are summarized in Tables 4-5. The evaluation metrics
for QRS complex detection include Sensitivity (SEN), Pos-
itive Predictive Value (PPV), and Accuracy (ACC). Due to
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TABLE 6. Representative wavelet based methods for heartbeat classification (Part 1).
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TABLE 7. Representative wavelet based methods for heartbeat classification (Part 2).
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TABLE 8. Representative wavelet based methods for heartbeat classification (Part 3).
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TABLE 9. Representative wavelet based methods for heartbeat classification (Part 4).

the close relationship between the QRS complex and the
R peak, in some works, the performance of QRS com-
plex detection is evaluated by R peak detection instead.
In Tables 4-5, abbreviations of the detector parameters
used for thresholding or maxima finding are as follows:
Scale – S; Detail – D; Approximation – A. Subscript
numbers for S, D, and A indicate the level in wavelet
transform.

Representative wavelet based methods for heartbeat classi-
fication are summarized in Tables 6-9. The classification per-
formance is measured by SEN, PPV, Specificity (SPE), and
ACC. As the special cases, if the denotation is accompanied
with the phrase ‘‘detected by’’, such denotation indicates the
wavelet based detector, and in this case, the corresponding
features are extracted from the characteristic points located
by this detector; if the denotation is accompanied with the
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phrase ‘‘denoised by’’, such denotation indicates the wavelet
based denoiser, and in this case, the corresponding features
are extracted from the signals processed by this denoiser.

The results in Tables 1-9 are on the basis of widely-used
benchmark ECG databases. Although there may be multiple
results from more than one group of experiments for each
method in the literature, we only report the most significant
and representative results for conciseness and comparability.
Actually, the main contribution of this paper is the com-
prehensive summary and systematic categorization of the
representative wavelet based approaches, rather than the per-
formance competition of them, for ECG analysis. Although
these results can reflect which methods perform better or
worse for the given tasks, we do not plan to overemphasize
the advantages or disadvantages of them. In our opinion,
every coin has two sides, and any method can be studied and
developed. Moreover, all the inspiring results represent the
past, and technologies progress everyday. Therefore, study-
ing the good ideas contained in these methods ought to be
muchmore meaningful than addressing the pure performance
competition, which may perhaps be unfair due to different
experimental conditions.

III. CONCLUSION AND OUTLOOK
A. CONCLUSION
For the issues of signal denoising, wave detection, and heart-
beat classification in ECG analysis, plentiful wavelet based
methods come forth every year and have trended diversifica-
tion up to date. This overview and taxonomy has concentrated
on comprehensive summary and systematic categorization of
the methods based on wavelets for ECG analysis. By doing
so, this paper has not only uncovered the inner mechanism
whywavelet basedmethods are suitable for ECG analysis, but
also revealed the designing principles these methods poten-
tially follow.

All the methods have been categorized according to the
summarized designing principles in this paper. Although
these principles seems various, we can further conclude
these principles as ‘‘3-C’’ patterns: choosing, cooperating,
and creating. Choosing strategy means manually or opti-
mally selecting the functions, parameters, or coefficients of
wavelet relevant models; cooperating strategy means bor-
rowing strengths from the techniques that supplement or
complement the adopted wavelet based approaches; creating
strategy means improving or innovating novel methods based
onwavelet transform that may partially or fully break through
the current solution stereotypes. Although the 3-C patterns
are conceptually distinct from each other, they are usually
unified in one scheme in practice. More broadly, technology
cannot leave human knowledge and intelligence, and inno-
vation has been deeply marked by the spirit of times. In this
era, technology develops rapidly and world changes dramat-
ically. The 3-C patterns also coincide with the humanistic
implications: sometimes, choice is as important as efforts,
cooperation is as important as competition, and creativity is
as important as skills.

B. OUTLOOK
Although wavelet based methods have achieved encouraging
performances for ECG analysis, there are still challenges
haunting them. For signal denoising, useful information and
noises are sometimes entangled together, and in such a sit-
uation, the useful information may perhaps be damaged if
the noises are forcibly suppressed by the denoisers. For wave
detection, signal distortions often occur in real scenarios,
so that the waves are probably different from their standard
morphologies more or less, which brings certain difficulty to
the detectors. For heartbeat classification, it is usually hard
to ensure the discriminative power and generalization ability
of the classifiers especially when the signals undergo serious
variations in the feature space.

Progress of artificial intelligence technologies will pro-
mote the development of ECG analysis methods. We tenta-
tively look forward to the prospective trends of these meth-
ods in the following. For signal denoising, progress of the
subspace learning technology may stimulate the reformation
of wavelet based methods. Wavelet based denoisers usually
map ECG signals to the wavelet space for better processing
the noises. Subspace learning can help alter the structure of
the wavelet space so that useful signal components are con-
centrated on a low-dimensional embedding while undesired
noises are scattered in other dimensions. For wave detection,
progress of the compressed sensing technology may motivate
the renovation of wavelet based methods [117]. Compressed
sensing has advantage in capturing the sparse and salient
information of signals. Typical waves in ECG signals are
sparse and salient in nature, so compressed sensing can be
quite beneficial for wavelet based detectors to accurately
locate these waves even they are distorted to a certain degree.
For heartbeat classification, progress of the deep learning
technology may inspire the innovation of wavelet based
methods [118]. Deep learning simulates the process of human
perception and cognition, and it has strong discrimination
power and generalization ability for handling complicated
ECG heartbeats. The collaboration between deep learning
and wavelet based classifiers can be expected to effectively
capture the useful local characteristics in signal details and
accurately discover the class information in complicated data
variations.

We further provide an outlook for the technological devel-
opment trends for ECG analysis in the future at a more
macroscopic level. From the methodology perspective, doing
denoising, detection, and classification together in a seamless
end-to-end system will become a new direction for ECG
analysis technologies. Systemizing these three procedures
together for the same final target will be not only beneficial
for avoiding the information loss caused by the procedural
gap, but also conducive to largely increasing the practicality
of wavelet based or other kinds of methods. From the appli-
cation perspective, development of wearable technologies has
largely broadened the application scope of health andmedical
monitoring. Wearable ECG analysis plays a crucial role in
the wearable ECG monitoring systems [119]. Wearable ECG
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data inevitably confronts much more severe challenges than
the traditional Holter ECG data, and these challenges will
promote the progress of the analysis techniques which also
include the methods based on wavelets. From the data per-
spective, huge amounts of ECG data will be produced with
the rapid development and promotion of heart monitoring
systems. The requirement of analyzing big ECG data will
necessarily lead to the revolution of relevant technologies,
which will also have a profound influence on wavelet based
methods [120].

The era of wavelet methodology for ECG analysis seems
close to end, because currently no proposal only depends
on wavelet techniques to do denoising, detection, or classi-
fication. However, end is another beginning. More and more
wavelet techniques have been collaboratingwith or integrated
into new approaches. Based on the performances of wavelets
for ECG in history and today, we have enough confidence to
believe that such methodology will be able to survive with the
development of technologies and thrive in the new epoch of
innovation revolution.
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