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ABSTRACT Mining the community structure in the real-world networks has been a hot topic in the field of
complex networks, and has emerged as a prominent research area and continues to grow with the introduction
of requirements for personalized recommendation. However, most of the existing community detection
algorithms are based on global information, fewer works are devoted to detecting the communities hidden
in the network by using local information. To this end, in this paper, we propose two improved signed
modularity functions to evaluate the community properties in complex network, and then we apply these
indicators to identify the community structure by using the local information since it is difficult to obtain
the global information in practice. During the dynamic expansion, each local community will absorb the
neighboring node with the highest positive energy; in addition, a new local community is generated when all
local communities cannot contain the neighboring node. Finally, the algorithm has been applied to unsigned
networks and signed networks, respectively. The experimental results show that the division results given by
our proposed algorithm are in line with the actual ones in artificial and real-life networks.

INDEX TERMS Community detection, global community, local modularity, local information, local

community.

I. INTRODUCTION

As the information technology expands rapidly, the interac-
tions on man-man, man-object, and object-object are becom-
ing increasingly frequent and complicated. The information
generated by different individuals and their interaction forms
a complex system in which each individual plays a different
role (e.g., bridge node, terminal node), and that individuals
belong to the same cluster within a certain range of area
(usually, there exists a core individual). Over the past two
decades, researchers have studied the important characteris-
tics, features or effects that are concealed inside the system
by abstracting systems into complex networks or graphs, for
instance, social networks [1]-[3], citation networks [4]-[6],
transportation systems [7], international war networks [8] and
so on. Although these characteristics have always existed on
real life, they have not received sufficient attention. However,
it is these characteristics that make the evolution of systems
appear to become relatively diverse. Among then, several
important topics have been extensively investigated: commu-
nity structure [9] expounded that an individual is much more
connected with members within the community than those

outside the community; influential spreaders [10] explained
that the more the interaction of an individual, owned the more
influential is not necessarily correct, and that an influential
spreaders can also be measured by other indicators; six degree
of separation [11] indicated that any two individuals could be
connected through at most five intermediaries; the butterfly
effect [12] explicated that the complexity of the development
of things, a small change can be drive the long-term and
huge chain reaction of the whole dynamic system; cascade
effect [13] interpreted that individual behavior will affect the
system reliability and lead to a series of unexpected events,
to name but a few.

In particular, the community structure has attracted a great
deal of concern since the community hidden in the net-
work — whether it is an unsigned network with positive
edges or a signed network with positive edges and negative
edges — represents the similarity of the internal members,
and the similarity is of great significance for the prediction
and the recommendation in the era of the big data [14].
So, researchers have proposed a series of algorithms that
perform well for different networks (unsigned or signed,
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undirected or directed, and unweighted or weighted) in term
of accuracy or efficiency. For instance, in unsigned networks,
Newman and Girvan [9] proposed the GN algorithm based
on the betweenness, Blondel et al. [15] offered the Louvain
algorithm for optimizing the function of modularity which
is proposed by Newman and Girvan [9], and Li et al. [16]
studied the dynamical system and the general function
of modularity to detect the community; in signed net-
works, Gomez et al. [17] presented an improved func-
tion of modularity used to detect the community structure,
Traag and Bruggeman [18] combined the Potts model to
improve the function of modularity, Li et al. [8] studied
the hostile or alliance of relationship in the war network;
Wen et al. [19] introduces the maximal-clique graph to study
the overlapping community detection, etc.

Although there exists many effective community detection
algorithms, they are based on the global information for com-
munity detection, that is to say, the global information must
be considered during the operation of the algorithm since it
will exert an influence on the formation of the local com-
munity. However, it is difficult or even impossible to obtain
global information, which makes the above algorithms unable
to perform efficiently and accurately in general. Hence,
in order to solve the above problems, some researchers have
proposed algorithms for local community detection by using
local information, such as Clauset [20] proposed a detection
algorithm based on local modularity, Luo et al. [21] proposed
a new local modularity for community detection and so on.

Local community detection algorithms verified that local
information can be used for the community detection, but
these algorithms [20], [21] are mainly used to detect a local
community rather than all communities. In fact, these algo-
rithms start from an initial node to detect nodes that are in
the same community with the initial node, meanwhile the
maximum number of community members must be set up,
it means that the problem of global community detection
using local information has not been solved. In order to
control community size, Eustance et al. [22], [23] presented
aratio function based on the local community neighborhood.
A new detection method for overlapping communities is pro-
posed in [24], which a structural center is mining by the local
density and the relative distance of a node, and then expands
community structure based on identified structural centers.
In [25], the characterization of the short texts outperformed
in the classification, which suggests that local information
might improve its global characterization in large documents.

Thus, we propose a dynamic expansion algorithm that
uses local information for community detection. The
proposed algorithm is slightly similar to the random walk
algorithm [26], while our algorithm is equivalent to multi-
ple walkers moving around the network, at the same time,
the walkers will choose and join the best community that are
most beneficial to them; it is also similar to the label propaga-
tion algorithm [27], but only one node has a community label
at the beginning of the proposed algorithm, and dynamically
transfers community label or adds new community label with
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the increase of the detection area; the proposed algorithm
is also more similar to the greedy algorithm [28] because
only the most valuable community is retained when multiple
individuals choose and try to join the community.

The main contributions can be summarized as follows:

1) The function of signed modularity is proposed to mea-
sure the division result of global community. The func-
tion takes into account the sign property of the signed
network by the value of the function, and can be con-
verted into the original function of modularity proposed
by Newman et al.

2) The signed local modularity is proposed to measure
the quality of the local community. Compared with the
existing signed modularity, the information used in the
new function is the local information.

3) A dynamic expansion algorithm for global commu-
nity detection using local information is proposed. The
information used by the algorithm is built on local com-
munity information or individual information, which
means that the information is directly contacted by indi-
viduals or local communities. Meanwhile, the number
of communities will expand gradually from one to the
right number, and the operation of expansion depends
on the energy value of the community.

The rest of this paper is structured as follows. Section II
introduces existing community detection algorithms and
measure indexes. Section III presents the improvement works
we have done. Section IV describes the proposed algorithm
and analyzes the time complexity. Section V shows the results
of detection in different networks. Finally, some concluding
remarks are summarized in Section VI.

Il. MOTIVATION
A. RELATED WORKS
Most of the researches on community detection algorithm
start with unsigned networks because there are fewer con-
straints to be considered, and these networks are also the basis
for studying other types of networks.

In unsigned networks, Newmam and Girvan [9] proposed
a community detection algorithm based on betweenness. The
algorithm is divided into four steps: the first step is to calcu-
late the betweenness for all edges in the network; the second
step is to remove the edge with the highest betweenness;
the third step is to recalculate the betweenness for edges
that remaining in the network; the fourth step is to repeat
the second step and the third step until there is no edge left.
It can be known that the algorithm takes a lot of time to
calculate the betweenness, that is, the time complexity is as
high as O(n?), where n represents the number of nodes in the
network, thus it can work well in the sparse network.

By optimizing the modularity, Blondel et al. [15] offered
a fast detection algorithm, which can be divided into two
steps: in the first one, each node can be considered as an
independent community, and then the node moves into its best
community — the node falling into the community will max-
imize the modularity of the community; in the second period,
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the nodes belonging to the same community are folded into
new ones to rebuild the network, and then repeat the first stage
until the value of modularity cannot be improved. For large-
scale networks, the speed of the algorithm can be greatly
accelerated during the execution of the algorithm.

By combining with vector distance and sparse spectral
clustering, Mahmood and Small [29] presented a novel algo-
rithm for community detection. First, the n nodes in the
network are mapped into n-dimension real space such that
each dimension represents a certain type of distance from a
particular node to the i-th node. Then, using the Gaussian
kernel function to convert the distance vector into a similarity
score vector, we can know that for two nodes belonging
to different communities, their distance is infinite and the
similarity score is zero. Next, each column vector is selected
and a remainder of it is used to find a matrix of symmet-
ric linear coefficient in the similarity score vector. Finally,
spectral clustering is performed on the coefficient matrix, and
the detected segmentation results are indicated by the second
least significant eigenvector of a symmetric Laplacian matrix.

The CDFR and the CDFR-U algorithm based on the
fuzzy relations were proposed by Luo et al. [30], which the
NGC node (Nearest node with Greater Centrality) plays an
important role that determines the community label of each
node. The centrality of each node is calculated according to
the degree of each node and the degree of the direct neighbors,
and then a special algorithm is used to find the NGC nodes
and calculate the fuzzy relation between each node and its
NGC node. To get a community partition scheme, a threshold
needs to be set, which determines whether the node is a
new community or the community in which belongs to its
NGC node. Similarly, Moosavi et al. [31] implemented com-
munity mining of social networks in four steps: preprocessing
on dataset, user frequent pattern mining to obtain harmonious
groups, confirmation of harmonious groups as small commu-
nities, and expanding a small community.

In addition to the above algorithms, many scholars
have studied community detection in unsigned networks
and proposed quite a few novel algorithms. For example,
Khan et al. [3] studied virtual community detection algorithm
based on the common interests of individuals in social net-
works; He et al. [32] used segmentation technology to divide
the network into thousands of sub-networks to study scal-
able communities; Deng et al. [33] studied the community
detection algorithm of directed networks with owner-member
relationship based on clustering coefficients and classical
probability graph model; Qi et al. [34] combined linkage
behavior and edge content to present a novel edge-induced
matrix factorization algorithm.

Although there are many mature algorithms for commu-
nity detection in unsigned network, these algorithms cannot
be always directly used in real-world networks since some
networks in the real-world are signed. Therefore, a multi-
tude of scholars have proposed many community detection
algorithms that can be applied into signed networks after
considering the sign property of signed networks.
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Yang et al. [35] proposed a random walk algorithm in
signed networks. Firstly, a node without a community tag will
be selected as the starting node, then the node can conduct a
certain number of walks to determine the set of node that it
can reach. Next, a truncation function is proposed and used
to determine which nodes are located in the same commu-
nity with the initial node, in the meanwhile, the function of
truncation considers the distribution of positive edges and
negative edges between the community and the remaining
part. As shown in [35], the result of the matrix presents the
characteristics of the block matrix, and the matrix will be
divided into different block matrices that characterize differ-
ent communities by using the calculated truncation function
to segment.

Cai et al. [36] improved a multi-objective discrete particle
swarm optimization algorithm that can be used for multi-
resolution network clustering. In the first step, the initial-
ization phase generates the initial population information,
including position, velocity, individual optimal solution, and
neighborhood. The second step is the iterative update phase,
first, randomly selects a particle from the neighborhood as
the leader; then, calculates the new velocity and position of
each particle, meanwhile adds a small disturbance to the new
location; finally, the location after the disturbance is evalu-
ated, the neighborhood information and optimal solution of
the individual are updated according to the evaluation result.

Liu et al. [37] proposed a multi-objective evolutionary
algorithm based on the similarity. The authors put forward
two new indexes for taking into account the sign property
of the signed network: one of the indexes is the signed
similarity index based on the existing similarity index [38];
another one is the signed tightness index according to the
existing tightness index [38]. During the execution of the
algorithm, the node will be moving into another community
when the movement makes the signed tightness of commu-
nity increased, but the node will be independent as a new
community if the move operation cannot increase the signed
tightness of community. A special case is that multiple com-
munities have the same nodes in the execution of the algo-
rithm, so the two communities will be merged into one new
community when they have more than half of the common
nodes.

At the same time, Jiang [39] applied the Signed Stochastic
Block-Model into community detection; Harakawa et al. [40]
divided the web video by constructing a weighted signed
network and maximizing the local modularity; Li et al. [41]
proposed a new algorithm based on the improved function of
the modularity and the density, while studied the performance
of the proposed algorithm under various parameters.

Most of the algorithms introduced above are based on
global information for community detection. However, with
the increasing demand of personalized recommendation,
which enables quite a few scholars have studied the commu-
nity detection algorithm for specific individuals.

West et al. [S] proposed eigenfactor recommendation based
on citation, which recommends similar articles for users
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from the hierarchical structure of citations. In the first step,
a citation network is constructed based on the citation rela-
tionship among papers. In next step, the eigenfactor ranking
is performed on each node in the citation network, which
shows the best performance compared with the traditional
PageRank algorithm since citation networks contain no loops.
In the third step, the hierarchical mapping equation is used to
cluster the network according to the previous results and then
help to reveal the multi-level structure for modularity. The
final step is to provide the corresponding expert, classic, and
serendipity papers to specific user to achieve the purpose of
the personalized recommendation.

According to the motion information of different individ-
uals, Liu and Wang [42] classified the individuals in the net-
work by a new similarity index, and implemented the targeted
recommendation. The algorithm can be divided into four
stages. In the first stage, four different dimensions (position,
duration, proximity to other objects, speed of motion) are
modeled, and the key features are extracted by applying the
appropriate kernel into different dimensions in order to calcu-
late the similarity. In the second phase, multi-modal diffusion
process and weighted similarity measure are constructed.
The third period uses dense sub-graph detection algorithm
to divide individual trajectories by probabilistic clustering.
In the fourth stage, the similarity is calculated according to
the specific user, and the on-line recommendation is carried
out by the memory-based collaborative filtering algorithm.

Athria and Thampi [43] studied the proximity of the posts
through linguistic features, and then implemented post rec-
ommendations for members within the community. First, they
clustered post from five aspects: sentiment, emotion, theme,
stylistics and psycholinguistic. Then, according to the posts
that the related users like or share, the clustering vector is
constructed by the five aspects, and the user’s community
division is realized by dividing the clustering vector. Finally,
the recommended posts and individuals are determined based
on the acceptability function defined in the post and the
popularity function defined in the post and the individual.

There are still many algorithms to be recommended
through community detection. For example,
Parimi and Caragea [44] introduced community similarity
and sense of belonging; Rafailidis [45] combined non-
negative matrix factorization and spectral clustering
algorithms to implement community detection and recom-
mendation in signed networks; Qiu et al. [46] implemented
community detection by processing the rating matrix of the
network instead of the entire network; Amancio [47] model-
ing texts as complex network to study features of the language
that reflects particular choices made by individuals or groups.

B. MEASURE INDEXES

Newman and Girvan [9] proposed the community structure
that is defined as a set of nodes in which the number of edges
inside the same community is higher than the number of
edges connecting the neighboring communities. Meanwhile,
the index of modularity is also proposed for measuring the
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quality of the community, the greater the value, the better the
community structure. The index is defined as follows:
0=Y(—a)=Y (="~ W)
ieC ieC
where C is the division result of the communities in the net-
work, for the unweighted (or weighted) network, e;; describes
the fraction of the total number (or weights) w; ;, of edges
within community i to the total number (or weights) w of
edges in the network, a; indicates the proportion of the total
number (or weights) w; of edges associated with the nodes
of community i to double the total number (or weights) w of
edges in the network.

However, the above function of modularity cannot be
applied into the signed network directly since there exist
negative edges. Using the existing function of modularity,
Gomez et al. [17] put forward the function of modularity for
signed networks. It can be formulated as:

it “w
SN = Gt = TG G
Q= 2wt + 2w~ ’ 2)

where Q means a weighted sum of the two parts of the value
of modularity; w:r or w; describes the positive or negative
weights of the edges of the node i; w;; represents the weights
of the edge between the node i and the node j; C; denotes
the community in which the node i is located; 6(C;, Cj) is a
piecewise function of variables C; and C;, which is one if the
variables are equal, and zero otherwise.

In fact, we usually know the community partition scheme
in advance when constructing the network. At this point,
more desirable to give the similarity between the detection
result given by the algorithm and the actual result, not just
the quality of the division result. Therefore, Danon et al. [48]
used related fundamentals of information theory to propose
a numerical indicator of Normalized Mutual Information
(NMD). It can be expressed as:

—2 %, Nyln(z )
NMI = m — 3
ZiNl‘_ln# + ZJ-N_J'ZI’ZTJ

where N represents a difference matrix between the detection
result and the actual partition; N;; describes an element on
row i and column j of matrix N, N; indicates the sum of the
elements on row i of matrix N, and N; denotes the sum of the
elements on column j of matrix N. Equation (3) measures the
degree of correlation between the two partitioned results, and
the range of value lies in [0, 1]. The larger the value, the more
similar the two results; the smaller the value, the more dissim-
ilar the two results.

Although the equations mentioned above can measure
the quality of the community, they all use global infor-
mation to measure the quality of the local community.
Luo et al. [21], [49] offered a metric called local
modularity M to measure the ratio of the edges within the
local community to the edges outside the local community.
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FIGURE 1. Local community: U |J C | B|J Nbrg represents the network;
C B is a local community; C is the core of local community; U is
unknown area; B is the boundary of local community; Nbrg is the
neighbor of B.

The metric is given as follows:

M= o)

€out

where e;, indicates the number of edges within the local
community, e,,; denotes the number of edges outside the
local community.

lll. OUR WORKS

A. LOCAL COMMUNITY

The definition of community structure has been mentioned
above, but using the previous definition violates the premise
of using local information because local information means
the part that the current individual or community can reach,
and the part that can be reached through the intermediary is an
unknown area for the current individual or community. Thus,
the concept of local community needs to be defined.

Definition 1 (Local Community): In the network, there
exists a node set C where the nodes are with the same
community label, and there are a large number of edges with
the same sign within C, while the sign of edges outside C
are different from the sign of edges inside C, or the sign of a
small number of edges outside C are same as the sign of inner
edges of C.

Fig.1 shows one of the local communities in the network.
An edge is represented by a short line with an endpoint (or two
endpoints) in Nbrg or B or C; C | B is a local community;
U describes the area that is unknown to the local community;
C represents the core of the local community — the two nodes
of the edges belong to the local community; B denotes the
boundary of the local community — one node of the edges
belong to the local community, while the other one may be
considered as an independent local community or located in
another local community; Nbrg indicates the neighbor of the
local community — one node of the edges must belong to the
local community, while the other one may be considered as
an independent local community or located in another local
community.
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B. IMPROVED SIGNED MODULARITY

After analysing the existing signed modularity function pro-
posed by Gémez et al. [17], it can be found that it is weighted
by the modularity of the positive and negative communities,
and the modularity value does not fully express the character-
istics of signed networks. Compared with unsigned networks,
signed networks have two kinds of sign at the same time.
If the sign property of the network can be expressed in the
detection results, it will give more meaning to the detection
results, thus how to show it has become a meaningful research
content.

According to the modularity function proposed by
Newman and Girvan [9], if we divide the network into two
sub-networks, one sub-network holding only positive edges,
and the other one including only negative edges. Then when
the modularity of the two sub-networks is calculated, their
results actually differ by a sign. At the same time, the com-
munity detection problem is generally directed at the positive
community, that is, to ensure that there are a large number
of positive edges within the community, and there are a large
number of negative edges between the communities. So we
can use the modularity value of positive network subtracts
the modularity value of negative network, and then the final
value of the modularity is used as the modularity value of the
entire network.

Therefore, we propose a function of signed modularity that
takes into account the sign property of signed networks. It can
be expressed as follows:

SO =Y {leff — @ = e — (a7 )1}, )
ieC

where C is the division result of the communities in the net-
work; e;.' and e;; represent the proportion of the total number
(or weights) of positive edges and negative edges within the
community i to the total number (or weights) of edges of the
whole network, respectively; af ora; denotes the ratio of the
total number (or weights) of positive or negative edges that
connected to the internal nodes of the community i to double
the total number (or weights) of edges of the whole network.

C. SIGNED LOCAL MODULARITY

The existing modularity function and signed modularity func-
tion mentioned above are all based on the global information
for community detection, but the cost of obtaining global
information is enormous when the number of nodes reach one
million or more, while the number of edges in the network
will also be larger. Therefore, we propose a signed local
modularity function for evaluating the quality of the local
community using local information, which can be expressed
as follows:

+ —

. i,in i,in
LO() = —— 0 ©6)
mi,in + mi,out mi,in + mi,out
where m;rin or m; , represents the number (or weights) of

positive or negative edges within the local community i;
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+ — . .
m; . or m; . denotes the number (or weights) of posi-

tive or negative edges outside the local community i.

D. METHOD

Using local information to detect the global community is
actually a process of dynamic expansion because the local
community or node cannot get any information related to the
whole system or network in the whole detection process, and
it can only get information about nodes or local communities
that are in direct contact with it. For a local community,
it evaluates the energy of all the nodes that it can reach, then
adds the node with the maximum energy to its own interior;
for a node, it chooses to join the local community with the
greatest increase in energy.

In the network G(V, E), let C(v;, t) represents the local
community which contains v; at time ¢, B(C(v;, t)) denotes
the boundary of the local community, Nbrg(v;, t) indicates the
neighbor of the node v;. For each local community, we define
a Hamiltonian function to represent the energy of local com-
munity based on the singed local modularity function:

+
HACEL D) = — WC(”'”’?
Wewii.in T Wewnn.ou
B Wew..in L)
C(vi,z),in+ C(vj,t),out
where Wg(v;,t),in or WE(V[_J)J” represents the posi-

tive or negative energies inside the local community C(v;, t),
Wg(vl-, t.out OF WE(WJ)’M indicates the positive or negative
energies outside the local community C(v;, t).

Meanwhile, for each node v; € Nbrg(B(C(v;, 1)), there
will definitely be an equation Wy, = Wy, pccw.n) +

Wi, Nbrg(v,n—B(C(vi,r))- When trying to add node v; to the
local community where v; is located, the energy of the local

community will change as follows:

+ +
WC(V,',I+1),in = WC(vi,t),in + W"st(C(V:‘J))’ (3)

+ +
WC(Vi,l+l),0Lll = WC(vi,t),out - W"ij(C(Vi»f))
+ Wo, Nbrg(v,0)—B(Cvi,1))» )

For a community detection algorithm, its goal is to opti-
mize the Hamiltonian function using the global information
to detect communities that hidden in the network. Thus the
detection result has the largest energy and corresponds to the
best division of communities. In the same way, in the case
of using local information, for each local community, it is
necessary to ensure that its energy reaches a maximum at
time ¢, that is, the following equation is required:

HUC i, D)) = maxyep o (HAC (i, 1)) (10)

Therefore, the essence of using local information to expand
the community is that as the size of the network grows,
the modularity value of the local community will continue
to grow as much as possible. In other words, in the process of
detecting the communities, it is necessary to ensure that the
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energy of the local community meets the Equation (10) since
it can guarantee the detection result has the highest energy.

So far, it is known that the proposed algorithm depends
on how much energy the nodes to be added can provide to
the local community. This raises the question of whether
the robustness can be guaranteed or not when the nodes are
removed, similar to the one in [50], and the answer is No. First
of all, the removal of nodes will have an impact on the energy
of the network. Specifically, assuming that the removal of
node is the bridge node, the network will be divided into two
sub-networks after removal, and then resulting in a reduction
in the energy value of the network. Secondly, for the core node
(or hub node) of a community, when it is removed, it will
produce a large number of small communities, which will
greatly reduce the energy value of the network.

IV. NEW ALGORITHM

The new algorithm attempts to use local information to detect
the global community, i.e., the information that can be utilized
is localization. Therefore, in each selection process, it is
necessary to find the best local community to be expanded,
and then absorbs its neighbors into the local community in
order to maximize the energy value of the local community.
One of the biggest features of the present algorithm is that no
additional control parameters are needed, and even the initial
community nodes are not needed because the algorithm can
randomly select a node as the initial node.

The algorithm can be divided into four parts as follows:

1) In the first stage, we randomly select one of all nodes
as the initial node after initializing the network (the
initial node can also be given by parameter), and then
the community label of the initial node is set up, in addi-
tion, the core part of the local community is updated,
the boundary part of the local community is updated,
and the energy value of the local community is updated.

2) In the second phase, the neighbors of the local com-
munity are moved into the local community if they can
increase the energy of the local community, then the
core part of the local community is updated, the bound-
ary part of the local community is updated, and the
energy value of the local community is updated. At this
phase, an individual can only see the local community
around it and choose to join the local community that
is most beneficial to it.

3) Inthe third period, there may be cases where there is no
node that can be moved after the second phase. At this
time, a new local community needs to be generated,
the core of the new local community is updated, the bor-
der part of the new local community is updated, and the
energy value of the new local community is updated.
Note that, it is possible that a single-node community
will appear in the final detection result since this period
will generate a new community, which depends on the
network is dynamic or static on the one hand, and on
the other hand relies on the topology of network.
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4) After completing the third period, the algorithm ends
and the result of the division is output when all the
nodes in the network have assigned the community
label; otherwise, the second phase is repeated.

So, the specific steps of the algorithm are described as
Algorithm 1.

Here, we will analyze the time complexity of Algorithm 1.
In the line 1, it takes O(m) time to read the edge set of the
network to construct an undirected network; line 2 to line 6
requires O(|C|k) time to initialize the core, boundary, and
energy of the local community; line 9 to line 15 requires
o(|C |k2) time to find all neighbor nodes for all boundary
nodes, which have no community label; line 21 to line 30 need
to spend O(k) time to find out the new energy value of the
community after moving nodes into the local community;
the worst-case complexity of line 32 to line 40 is O(k),
If accept the operation of the move that you will need O(k)
time to update the core, boundary, and energy of the local
community, otherwise if you do not accept the operation of
the move that only O(1) time is required to record the node
that needs to generate a new community label; line 18 to
line 41 have a time complexity of O(kNyc), Nyc denotes the
number of neighbors — without the community label — of
the local community’s boundary nodes, and Nyc < |Clk;
the time complexity of line 43 to line 46 is O(k), which
requires generate a new local community, and update the core,
boundary, and energy of the new local community; the worst
time complexity of the line 8 to line 47 is O(|C |k2+kNUC +k).
Here, k is the average degree.

During the execution process of the algorithm, the core,
boundary, and energy of the community need to be preserved,
and thus the worst space complexity is O(n). In addition, each
while loop generates the worst O(n) space to save candidate
nodes, in which 7 is the number of nodes.

As a result of the above analysis, if the number of times
executed for the while operation is L times, the time com-
plexity of the algorithm is O(m + Yy (IC! [k* + KN}, +
k)) or the upper limit O(m + n?); the space complexity is
O((L + 1)n), in fact, it can reduces the space complexity to
O(n) by using shared space principles in the while loop.

V. EXPERIMENTS

In order to verify the validity and accuracy of the proposed
algorithm, we extensively test it on several random networks
and actual networks, and then compare them with the detec-
tion results given by the existing community detection algo-
rithms on the same measure index. Meanwhile, the results of
each experiment will be analyzed and discussed in detail.

A. RANDOM NETWORKS

In the unsigned undirected network, the computer generated
network LFR(n, k, kinax, Cmins Cmaxs M, L, t2, on, om) is a net-
work with scale-free and community generated by the com-
puter program proposed by Lancichinetti et al. [51], in which
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Algorithm 1 Local Information to Detect Global Community
(LIDGC)
Input: undirected signed network G(V, E)
Output: detected communities indicated by C

1: read network G(V, E) by list of edge
2C=B=W=90
3: randomly select starting node vy and C,,,
4: C = CU{(vo, Cyy)}
5: B=BU{wy}
6:
7:
8
9

calculate W(C,,)) and add to W

while there exists node without community label do
candiNbrg = ()
for all v; € B do

10: for all v; € Nbrg(v;) do

11: if {(vj, C\;)} ¢ C then

12: candiNbrg[C,,] = candiNbrg[C,,] U {v;}
13: end if

14: end for

15:  end for

16: C' =0

17:  set moved to false
18:  for all candiNbrg[C,,] € candiNbrg do

19: best,; = ]

20: for all v; € candiNbrg[C,,] do

21 W/(Cy)) = WICy,)

22: for all v, € Nbrg(v;) do

23: if ), equal to C,, then

24: W'(C,,, in) = W'(Cy,, in) + Ej, vk, w)
25: W'(Cy,, out) = W'(Cy;, out) — E(vj, v, w)
26: else

27: W'(C,,, out) = W'(Cy,, out) + E(vj, vk, w)
28: end if

29: end for

30: record bestvj

31: end for

32: if best,; increases the energy of C(v;) then

33: set moved to true

34: W(Cy,) = W'(Cy,)

35: B =BU {v}

36: remove the core of C,, from B

37: C=CU{(v,C)}

38: else

39: C'=C'U{y}

40: end if

41:  end for
42:  if moved is false and C’ is non-empty then

43: randomly select node v; from C’
44 C=CU{(v;, C}

45: B=BU{v;}

46: calculate W(C,,) and add to W;
47:  end if

48: end while
49: return C
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n is the number of nodes, k is the average degree of the
nodes, k4, 1S the maximum degree of the nodes, ¢y, is the
minimum number of members in the community, ¢,y is the
maximum number of members in the community, p is mixing
parameter that control the fuzziness of the community, #; is
minus exponent for the degree sequence, t> is minus exponent
for the community size distribution, on is the number of
overlapping nodes, and om is the number of memberships
of the overlapping nodes. By setting the same parameters
as in [52], four small networks and two large networks are
generated as follows:
e LFR SI: n = 100, k = 20, kpgr = 20, cpin = 10,
Cmax =20, u =03, 11 =2, =1,o0n =0,0m = 0.
e LFR_S2:n =100,k = 5, kax = 15, cimin = 10, cax =
50, u =01,y =2, =1,o0n=0,0om = 0.
e LFR _S3: n = 1000, k = 15, kpax = 50, cpin = 10,
Cmax =20, u =04, 11 =2, =1,on =0, om = 0.
e LFR_S4: n = 1000, k = 7, kypax = 25, cmin = 10,
Cmax =300, 0 =0.1,1; =2, = 1,0on =0, 0om = 0.
e LFR BIl: n = 10000, k = 7, kypar = 20, cpin = 10,
Cmax = 100, u =0.1,t; =2, = 1,0on =0, 0m = 0.
e LFR _B2: n = 20000, k = 15, kjpax = 50, cpin = 10,
Cmax =50, u =04, 11 =2, =1,on =0, 0om = 0.
Meanwhile, the specific measure indexes — recall,
precision, and fscore — are used to evaluate the quality of
the local community, which can be written as:

| CFound N CTrue |

recall = ) (1)
|CTme|
precision _ |CFound N CTmel (12)
|CFound | '
2 x precision * recall
fscore = ) (13)

precision + recall

where Crgyung represents the local community that given by
the algorithm, Cry,,, indicates the actual community.

From the above equations, we can see that recall expresses
the ratio of nodes that are detected and belonging to the
actual local community, precision denotes the proportion of
the correct nodes that are detected, fscore is a combination of
recall and precision since recall and precision are mutually
influential, in which the recall is high, the precision is low,
and vice versa.

So far, we have followed up to the local community
detection algorithms that include DMF_M1, DMF_M2, and
DMF_M proposed in [52], and the M algorithm proposed
in [21]. To compare the performance of these algorithms,
experiments are carried out by using the aforementioned
generated networks, and the comparison of the experimental
results given by each algorithm are shown in Table 1. Mean-
while, we also compare the NMI index given by the global
community detection algorithms that include Louvain [15],
SA [53], EO [54], LPA [27], EM [55], CDFR-U [30] (it is
necessary to set a delta threshold to enlarge the gap between
the central node of the community and the non-central node),
and LIDGC. We can see that our algorithm guarantees good
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FIGURE 2. Comparison of NMI given by algorithms — Louvain, SA, EO,
LPA, EM, CDFR-U (the delta threshold is set to 0.40 in the CDFR-U-1 and
the delta threshold is set to 0.15 in the CDFR-U-2), and LIDGC on LFR
datasets.

performance in most cases, especially in the first two net-
works, the performance of the algorithm reaches the high-
est value. Although our algorithm uses local information to
detect the communities, we can discover communities hidden
in the network by gradually increasing the number of com-
munities and the number of community members through
dynamic expansion. More importantly, the algorithm can be
suitable to the dynamic network by modifying the conditions
of the while loop since it is based on local information and
dynamic expansion.

B. ACTUAL NETWORKS
1) THE ZACHARY KARATE CLUB NETWORK
The Zachary Karate Club network was established by
Zachary [56] after investigating the social relationships of a
Karate Club at an American university. The network is an
unsigned undirected network and often used as a benchmark
for testing the performance of community detection algo-
rithm, which exist 34 nodes and 78 edges. The club split up
into two sub clubs because of differences in fees and charges.
In Fig.3, we show the detection result of our algorithm
in which the network is successfully divided into four com-
munities, but not in accordance with the actual number of
communities since our algorithm can reach the maximum
value of the modularity. Although there are many classical
algorithms for optimizing the modularity that can divide the
network into four communities by using global information.
However, the proposed algorithm only uses local information
to detect the global communities, which gradually expands
the number of communities and the number of community
members through an initial node with a community label.
First of all, one of the nodes is selected arbitrarily, and marks
the selected node as the initial node with the community label.
Therefore, a local community containing only one node will
appear in the network. Next, we detect neighboring nodes
of local communities, where these neighboring nodes do
not have community label, and then add the neighboring
nodes with maximum energy increment to local communities,
so that it will be to achieve the goal that the gradual expansion
of the number of community members through the initial
nodes. In addition, it is naturally that the maximum energy
increment may also be negative, which means that adding the
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TABLE 1. Comparison of results given by algorithms — M, DMF_M1, DMF_M2, DMF_M, and LIDGC on LFR datasets .

Dataset Index M DMF_M1 DMF_M2 DMF_M LIDGC
recall 0.7605+0.4064 | 0.9814+0.1307 | 0.8164+0.3608 | 0.981440.1307 | 1.0000+-0.0000
LFR_S1 | precision | 0.75004+0.4017 | 0.9814+0.1312 | 0.7679+0.3645 | 0.9813+0.1316 | 1.0000+0.0000
fscore 0.7549+0.4039 | 0.9814+0.1310 | 0.7859+0.3588 | 0.9813+0.1312 | 1.0000-+0.0000
recall 0.2044+0.2278 | 0.8453+0.3228 | 0.2055+0.2285 | 0.8453+0.3228 | 1.0000-+0.0000
LFR_S2 | precision | 0.8270+0.2312 | 0.9333+0.1887 | 0.8272+0.2313 | 0.8595+0.2845 | 1.0000+0.0000
fscore 0.2894+0.2273 | 0.8595+0.2844 | 0.2906+0.2285 | 0.8595+0.2845 | 1.0000--0.0000
recall 0.4706+0.4719 | 0.9980+0.0438 | 0.4744+0.4700 | 0.9980+0.0438 | 0.9981:10.0035
LFR_S3 | precision | 0.5010+0.4254 | 0.9943+0.0459 | 0.5046+0.4224 | 0.9941+0.0464 | 0.9983+0.0031
fscore 0.4722+0.4560 | 0.9961+0.0444 | 0.4757+0.4535 | 0.9960+0.0446 | 0.9982+0.0032
recall 0.1459+0.2750 | 0.6920+0.4318 | 0.1470+0.2754 | 0.6925+0.4311 | 0.7770+0.2386
LFR_S4 | precision | 0.7949+0.2548 | 0.8271+0.3100 | 0.7940+0.2550 | 0.8275+0.3082 | 0.9101+0.0985
fscore 0.1859+0.2718 | 0.7084+0.4125 | 0.1872+0.2725 | 0.7089+0.4116 | 0.7950+0.1405
recall 0.5533+0.4456 | 0.9643+0.1734 | 0.5561+0.4450 | 0.9644+0.1731 | 0.9650+0.0577
LFR_B1 | precision | 0.8345+0.2879 | 0.9845+0.1094 | 0.8350+0.2862 | 0.9845+0.1091 | 0.9951+0.0092
fscore 0.5880+0.4117 | 0.9672+0.1595 | 0.5901+0.4106 | 0.9673+0.1592 | 0.9743+0.0416
recall 0.71124+0.4395 | 0.9992+0.0254 | 0.7220+0.4338 | 0.999240.0254 | 0.9994+0.0012
LFR_B2 | precision | 0.7078+0.4331 1.0000+0.0000 | 0.7108+0.4285 | 1.0000+0.0000 | 0.9988-+0.0024
fscore 0.7073+0.4378 | 0.9993+0.0211 | 0.7123+0.4320 | 0.9993+0.0211 | 0.9991+0.0018

FIGURE 3. Detection results of the Zachary Karate Club network: the
different detection communities are indicated by the different color,

it can also distinguish the detected communities through different circles;
the different actual communities are denoted by the different shapes,
and the node set formed by the two circles in top constitutes an actual
community, with the exception of node 10, because it forms another
actual community with the node set formed by the two circles in bottom.

node into the local community will not increase the energy
value of the whole network, but it will decrease. However,
our goal is to maximize the energy of the network, so we will
adopt different strategies to generate new local communities
at this time. In the next paragraph, we will be discussing two
strategies: the maximum degree and the minimum degree.
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FIGURE 4. Comparison results of expansion methods: Qg4 represents
the modularity value of actual results; Qmax denotes the modularity
value of detection results by the maximum degree method;

Qpnin describes the modularity value of detection results by the minimum
degree method; k indicates the degree of node; the horizontal axis “ID”
means that the label of the initial node.

According to the strategy used, we select a node as the
new local community in the neighboring nodes of the local
community. Hence, this step realizes the gradual expansion
of the number of communities through the initial nodes.
Since our algorithm is based on dynamic expansion
method, there will be some problems for us to generate a new
local community and add nodes into the local community.
Furthermore, the different generating sequence and adding
sequence will affect the result of the following detection
results. We chose two different ways of community expansion
to study their impact on the performance of the algorithm:
the maximum degree, the minimum degree. The experimental
results are shown in the Fig.4. It can be found that, in any
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TABLE 2. Execution processes of LIDGC on the Zachary Karate Club Network (The starting node is the 28th node) .

t ({Node}, Community ID) (Node, Incremental Energy) Operation

1 ({28},0) (34,0.050),(24,0.125),(3,0.077),(25,0.167) C,, U{25}

2 ({28,25},0) (26,0.083),(32,0.015),(34,-0.076),(24,0.033),(3,-0.033) Cy, U {26}

3 ({28,25,26},0) (32,0.083),(24,0.114),(34,-0.125),(3,-0.074) Cy, U{24}

4 ({28,25,26,24},0) (33,-0.136),(34,-0.133),(30,-0.006),(32,0.036),(3,-0.114) Cy,, U{32}

5 ({28,25,26,24,32},0) (33,-0.080),(34,-0.090),(30,-0.011),(3,-0.108),(1,-0.167),(29,0.012) Cy, U{29}

6 ({28,25,26,24,32,29},0) (33,-0.078),(34,-0.045),(30,-0.012),(3,-0.052),(1,-0.162) generating ({34},1)
({28,25,26,24,32,29},0) (33,-0.078),(30,-0.012),(3,-0.052),(1,-0.162) -

7 (34).1) (33,0.036),(23,0.056),(14,0.048),(15,0.056),(16,0.056),(27,0.056), Cy,; U{23,15,16,

(19,0.056),(9,0.048),(30,0.050),(20,0.053),(31,0.050),(10,0.056),(21,0.056) 27,19,10, 21}

8 ({28,25,26,24,32,29},0) (33,-0.078),(30,-0.012),(3,-0.052),(1,-0.162) -

({34,23,15,16,27,19,10,21},1) (33,0.142),(14,-0.006),(9,-0.006),(30,0.054),(20,0.016),(31,0.005),(3,-0.049) C.,, U {33}
9 ({28,25,26,24,32,29},0) (30,-0.012),(3,-0.052),(1,-0.162) -
({34,23,15,16,27,19,10,21,33},1) (3,-0.039),(9,0.021),(30,0.083),(31,0.035),(14,-0.021),(20,0.004) C.,, U {30}
10 ({28,25,26,24,32,29},0) (3,-0.052),(1,-0.162) -
({34,23,15,16,27,19,10,21,33,30},1) (3,-0.055),(9,0.013),(31,0.029),(14,-0.030),(20,-0.001) C,, U {31}
" ({28,25,26,24,32,29},0) (3,-0.052),(1,-0.162) -
({34,23,15,16,27,19,10,21,33,30,31},1) (3,-0.058),(9,0.055),(14,-0.032),(20,-0.003),(2,-0.082) Cy, U {9}
12 ({28,25,26,24,32,29},0) (3,-0.052),(1,-0.162) -
({34,23,15,16,27,19,10,21,33,30,31,9},1) (3,-0.029),(14,-0.036),(20,-0.005),(1,-0.160),(2,-0.088) generating ({1}, 2)
({28,25,26,24,32,29},0) (3,-0.052) -
13 ({34,23,15,16,27,19,10,21,33,30,31,9},1) (3,-0.029),(14,-0.036),(20,-0.005),(2,-0.088) -
(12 (11,0.056),(22,0.059),(12,0.063),(13,0.059),(14,0.050),(18,0.059),(2,0.042), Co U {12}
(3,0.040),(4,0.048),(5,0.056),(6,0.053),(7,0.053),(8,0.053),(20,0.056) i
({28,25,26,24,32,29},0) (3,-0.052) -
14 | (34,23,15,16,27,19,10,21,33,30,31,9}1) (3,-0.029),(14,-0.036),(20,-0.005),(2,-0.088) -
((142).2) (11,0.049),(22,0.055),(13,0.055),(14,0.038),(18,0.055),(2,0.021), Co U 22,13, 18)
(3,0.018),(4,0.033),(5,0.049),(6,0.043),(7,0.043),(8,0.043),(20,0.049) i
({28,25,26,24,32,29},0) (3,-0.052) -
15 | (134,23,15,16,27,19,10,21,33,30,31,9}1) (3,-0.029),(14,-0.036),(20,-0.005),(2,-0.088) -
(1.12.22.13.18).2) (2,0.069),(4,0.050),(11,0.028),(14,0.007),(3,-0.032),(5,0.028),(6,0.017), Co U2}
(7,0.017),(8,0.017),(20,0.028) i
({28,25,26,24,32,29},0) (3,-0.052) -
16 ({34,23,15,16,27,19,10,21,33,30,31,9},1) (3,-0.029),(14,-0.036),(20,-0.005) -
((112.22.1318.2).2) (4,0.077),(11,0.016),(14,0.041),(3,-0.007),(5,0.016),(6,0.006),(7,0.006), Co U4}
(8,0.053),(20,0.066) ’
({28,25,26,24,32,29},0) (3,-0.052) -

47 | (134,23,15,16,27,19,10,21,33,30,31,9}1) (3,-0.029),(14,-0.036),(20,-0.005) -

((112.22.13.18.2.4).2) (11,0.010),(14,0.076),(3,0.014),(5,0.010),(6,-0.002),(7,-0.002),(8,0.091), Co. U {8)
(20,0.057) i
({28,25,26,24,32,29},0) (3,-0.052) -

18 | ({34,23,15,16,27,19,10,21,33,30,31,9},1) (3,-0.029),(14,-0.036),(20,-0.005) -
({1,12,22,13,18,2,4,8},2) (11,0.003),(14,0.068),(3,0.037),(5,0.003),(6,-0.011),(7,-0.011),(20,0.052) C,, U{14}
({28,25,26,24,32,29},0) (3,-0.052) -

19 | ({34,23,15,16,27,19,10,21,33,30,31,9},1) (3,-0.029),(20,-0.005) -

({1,12,22,13,18,2,4,8,14},2) (3,0.067),(11,-0.001),(5,-0.001),(6,-0.016),(7,-0.016),(20,0.046) C.,, U {3}

20 ({34,23,15,16,27,19,10,21,33,30,31,9},1) (20,-0.005) -

({1,12,22,13,18,2,4,8,14,3},2) (11,-0.004),(5,-0.004),(6,-0.019),(7,-0.019),(20,0.038) Cy,; U {20}

21 ({1,12,22,13,18,2,4,8,14,3,20},2) (11,-0.006),(5,-0.006),(6,-0.022),(7,-0.022) generating ({6}, 3)

2 ({1,12,22,13,18,2,4,8,14,3,20},2) (11,-0.006),(5,-0.006),(7,-0.022) -

({6}.3) (11,0.167),(17,0.200),(7,0.143) Cy, U{17}

23 ({1,12,22,13,18,2,4,8,14,3,20},2) (11,-0.008),(5,-0.006),(7,-0.022) -

{6,17},3) (7,0.229),(11,0.086) Cy, U{T7}

o4 ({1,12,22,13,18,2,4,8,14,3,20},2) (11,-0.006),(5,-0.006) -

({6,17,7},3) (11,0.016),(5,0.016) Cy, U{11,5}
25 ({6,17,7,11,5},3) - -
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case, modularity value of the partitioning scheme given by
our algorithm is higher than the modularity value of the actual
scheme. As we can see that in [57] the maximum value of
modularity of this network is 0.4197, the modularity value
is around 0.4 in [9], the modularity value is 0.416 in [16],
while the peak value of modularity given by our method is
0.4197 and the detail of the expanding processes is shown
in Table 2. In addition, the influence of the two community
expansion methods on the experimental results is negligible
because only two nodes are different. This demonstrates that
our algorithm is not sensitive on the choice of nodes in this
network, and it can give a reasonable solution, no matter
which node it starts from.

One of the complete procedures of detection is shown
in Table 2. The first column indicates the number of times
of the while loop is executed; the second column represents
the local community that has been detected, where the thick-
ening indicates that the community has been completed, and
lists the numbers of the community members and the label
of community, respectively; the third column describes the
neighboring nodes of the local communities and the energy
increment obtained by adding nodes to the local community,
and the bold value explains the maximum energy increment;
the fourth column shows the operations performed by each
local community.

2) THE DOLPHIN SOCIAL NETWORK

The Dolphin social network was established by Lusseau
and Newman [58] after observing the frequency of contact
between dolphins. The network is an unsigned undirected
network in which consists of 62 nodes and 159 edges, and
there are four different dolphin families.

The partition result of our algorithm is shown in Fig.5.
Four different communities are successfully detected and
only one node is partitioned incorrectly, which is remarked
in yellow. Although our algorithm divides the network into
four communities, it can be found that there are still many
connected edges between different communities. In fact,
the network can be divided into two communities which have
shown in [9], so that the number of connecting edges between
communities are reduced. However, at this time, the energy
value or modularity value of the entire network cannot reach
a higher value, that is, dividing the network into four com-
munities can obtain the higher value in energy or modularity.

3) THE SLOVENE PARLIAMENTARY PARTIES NETWORK
The Slovene Parliamentary Parties Network depicts the rela-
tionship between 10 alliances. [59] The weight range of edges
is from —3 to 3 means that the network is a signed undirected
network, which in turn describes very dissimilar, relatively
dissimilar, dissimilar, neither dissimilar nor similar, similar,
relatively similar, and very similar.

The division result of our algorithm is shown in Fig.6,
which the network is divided into two different communities,
and the scheme is consistent with the actual communities.

VOLUME 7, 2019

FIGURE 5. Detection results of the Dolphin social network: the node 2 is
divided into the wrong community in the top left, and is marked with
yellow; the different detection communities are indicated by the different
color, it can also distinguish the detected communities through different
circles; the different actual communities are denoted by the different
shapes, that is, each circle represents an actual community, and the

node 2 should belong to the community in the lower right.

FIGURE 6. Detection results of the Slovene Parliamentary Parties
network: the solid line represents a positive edge; the dashed line
indicates a negative edge; the different color and shapes of node are
used to distinguish different communities.

As expected, the edges inside the community are mostly
linked by positive weights, while the edges between the com-
munities are mainly linked by negative weights.

4) THE GAHUKU-GAMA SUBTRIBES NETWORK
The Gahuku-Gama Subtribes Network describes the rela-
tionship between tribes in the Eastern Central Highlands of
New Guinea, which was created based on Read’s investiga-
tion. [60] There are 16 nodes and 58 edges in the network,
including 28 positive edges and 28 negative edges, which
shows that the network is a signed undirected network.

As shown in the Fig.7, the network is divided into three
different communities, and the result is also consistent with
the actual result. Comparing the results of experiment given
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FIGURE 7. Detection results of the Gahuku-Gama Subtribes network: the
solid line represents a positive edge; the dashed line indicates a negative
edge; the different color and shapes of node are used to distinguish
different communities.

TABLE 3. Detection results of the LIDGC algorithm on large-scale
networks .

Network N E Creal Ctina Q

Amazon | 0.33M | 0.92M | 75,149 | 32,077 | 0.707
DBLP 0.32M | 1.05M | 13,477 | 28,310 | 0.587

Youtube | 1.13M | 2.99M 8,385 15,961 | 0.631

Count

Count

2 3 4 2 3 4
Size ofL'o)mm\\lecs Size ofCo&mnumncs
(© (d

FIGURE 8. (a) The distribution of detection community sizes in the DBLP
network. (b) The distribution of actual community sizes in the DBLP
network. (c) The distribution of detection community sizes in the Amazon
network. (d) The distribution of real community sizes in the Amazon
network. The x-axis is the size of communities, and the y-axis is the count
of the size.

by other algorithms, we found an interesting partition scheme
in [36] in which the network will be divided into four com-
munities in order to achieve balanced network topology, that
is, {NAGAM, SEUVE} will be independent and become a
new community.

5) THE LARGE-SCALE NETWORKS

To illustrate the performance of the proposed algorithm in
large-scale networks, the Amazon network, the DBLP net-
work and the Youtube network is selected and used to detect
communities, which these networks are unsigned undirected
network obtained in [61], meanwhile, the properties and the
detection results of these networks are shown in Table 3.
In Table 3, the N is the number of nodes, the E represents
the number of edges, the C,.q describes the number of
the actual communities in the network, Cnq indicates the
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number of the detection communities given by the LIDGC
algorithm, and the Q is the modularity value of the detection
result.

In addition, an important phenomenon is presented in Fig.8
where the count distribution of community sizes is in line with
the scale-free distribution. As aforementioned, the number of
community members is gradually expanded, which explains
that a new local community will be generated when the cur-
rent local community reaches a “‘saturation state’ (the local
communities cannot absorb nodes to increase energy). All
of these explain that the real world contains a large number
of small-scale communities, and these small communities
make them similar to its neighboring communities as a whole
in areas such as local community mining and recommenda-
tion [62], etc.

VI. CONCLUSION

In summary, we have proposed a novel community detection
algorithm by using local information, meanwhile a more
generalized signed modularity function and the signed local
modularity function is proposed to evaluate the quality of the
local community by using the local information based on the
existing modularity function. Using the proposed modular-
ity function, a dynamic expansion algorithm based on local
information for global community detection is proposed. The
algorithm gradually detects the community structure hidden
inside the network by dynamically expanding the community
size and adding nodes through an initial node that with com-
munity label. The results given by the proposed algorithm in
different networks show that it can give a reasonable result in
both unsigned and signed networks. The current results are
also conductive for us to perform the personalized recommen-
dation in electronic business website.
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