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ABSTRACT In this paper, multi-stream transmission in interference networks aided by multiple
amplify-and-forward (AF) relays in the presence of direct links is considered. The objective is
to minimize the sum power of transmitters and relays by beamforming optimization under the
stream signal-to-interference-plus-noise-ratio (SINR) constraints. For transmit beamforming optimization,
the problem is a well-known non-convex quadratically constrained quadratic program (QCQP) that is
NP-hard to solve. After semi-definite relaxation (SDR), the problem can be optimally solved via alternating
directionmethod of multipliers (ADMM) algorithm for distributed implementation. Analytical and extensive
numerical analyses demonstrate that the proposed ADMM solution converges to the optimal centralized
solution. The convergence rate, computational complexity, and message exchange load of the proposed
algorithm outperforms the existing solutions. Furthermore, by SINR approximation at the relay side,
distributed joint transmit and relay beamforming optimization is also proposed that further improves the
total power saving at the cost of increased complexity.

INDEX TERMS Alternating direction method of multipliers (ADMM), distributed multi-stream
beamforming, MIMO multi-relay interference networks with direct links, quality of service assurance.

I. INTRODUCTION
The advent of future wireless networks bearing new
components in large numbers including eNodeBs, cloud
servers, relays, smart grids, massive multiple-input multiple-
output (MIMO), and big data nodes, and the recent advances
both in software and hardware architectures surging the
applicability of parallel and distributed computations [1]
have brought innovative solutions and paradigm shifts in
recent years [2, Ch. 10] [3]–[5]. However, the distributed
solutions based on conventional dual decomposition and
other methods lack the effectiveness on the numerical
stability, fast convergence rates [6], and scalability to high
dimensional problems [7] compared to alternating direc-
tion method of multipliers (ADMM) which combines the
strengths of dual decomposition and augmented Lagrangian
methods [8].

ADMM studies in relay [9]–[11] and point-to-
point [7], [12]–[16] networks are limited. In [9], an improved
version of ADMM is proposed for power minimization
under SINR constraints in multi-cluster relay networks
with single antenna nodes. In [10], max-min SINR opti-
mization is studied for decode-and-forward (DF) relay

networks with single antenna transmitters and receivers
under the constraints of total transmitter power, total relay
power, and total number of relays. In [11], a distributed
transmit power control algorithm via ADMM is proposed
for a single relay aided network. ADMM in point-to-
point networks is slightly more investigated in the liter-
ature. In [7], cloud radio access networks (C-RAN) with
single antenna receivers are optimized for power minimiza-
tion under SINR constraints. In [12], power minimization
with the worst-case SINR constraints due to the channel
state information (CSI) errors in multi-cell coordinated
multiple-input single-output (MISO) networks is solved via
semi-definite relaxation (SDR). In [13], power minimization
problem with rate constraints in wireless sensors networks is
studied. In [14], beamforming design for power minimiza-
tion under SINR constraints is proposed in MISO downlink
systems by solving second order cone problems (SOCP).
In [15], max-min flow rate optimization problem is consid-
ered for software defined radio access networks (SD-RAN)
with single antenna nodes under wired and wireless link
constraints. In [16], a distributed power control algorithm
is proposed for the utility maximization without SINR
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constraints in interference networks with single antenna
nodes.

The three prominent features of future high perfor-
mance wireless networks are multi-stream transmissions,
multi-antenna nodes, and the line-of-sights between trans-
mitters and receivers. The existence of direct links between
transmitters and receivers is an immediate outcome of
deploying a large number of intermediate nodes in
the network to close the distances between transmitters
and receivers. In C-RANs, SD-RANs, and wireless relay
networks, the wireless intermediate nodes are called radio
access units [7], base stations [15], and relays, respectively.
Wireless relay networks can be regarded as the wireless
communications parts of C-RANs and SD-RANs, which
embody wired communications parts in their architectures
as well. Although the three mentioned features are critical
in practical systems, many studies on relay networks are
based on communications settings with lesser features due
to the difficulties that arise from the coexistence of all three
features [17]. Among many objective functions [18, Ch. 8],
the mean square error (MSE) minimization problems are
more tractable in relay networks with the three features.
Nevertheless, the studies on MSE are still limited [19], and
to the best of our knowledge, the MSE problem in a relay
network with all the three features is studied only in [20].

The limited attributes of aforementioned researches on
relay networks can diminish their applications in future
practical systems. In this paper, we consider amplify-and-
forward (AF) multi-relay interference networks with all the
three mentioned attributes. The problem of interest in this
network setting is to minimize the total power consump-
tion of transmitters and relays with guaranteed quality of
service (QoS) by distributed optimization of the transmit
beamforming filters. The QoS metric chosen in this paper
is stream SINR, which is interconnected to the data rate and
bit error rate (BER) expressions. The problem is a member
of non-convex quadratically constrained quadratic program-
ming (QCQP) problems [21], [22], which is not directly
amenable to distributed optimization due to the intricate
stream SINR constraints. In particular, the SINR constraints
are not in a linear form and also are not decoupled over
streams for parallel and distributive implementation. We fit
the problem into the ADMM framework, a potent tool for
distributed optimization.

When designing a solution for the problem, the feasi-
bility of problem, i.e., the SINR constraints (targets) must be
jointly supported, must be assured in the first stage before
solving the main problem in the second stage. There are two
approaches to assure the success of the first stage, namely,
deriving the feasibility conditions [23] and relaxing the initial
conditions, e.g., searching for feasible SINR targets [4], [24]
and reducing the number of users [25]. The derivation of the
feasibility condition is challenging even in simpler networks.
In [26], an approximate condition is derived for a multi-relay
network with a single transmitter and a receiver. The feasi-
bility search, on the other hand, can be as costly as the solving

the main problem in terms of the number of iterations and
computational complexity per iteration.

In this paper, we propose to use random initializations
of beamforming vectors to automatically determine feasible
SINR targets with a high probability. All cases where the
convergence is slow, fluctuant, and infeasible, i.e., the SINR
targets are infeasible, make up less than 2% of the simu-
lations presented in this paper. The elimination of these
mentioned cases is beneficial in two important applications:
(1) Accurate and extensive cross-analyses of crucial network
parameters, and benchmarking with competitive schemes
over these varying parameters can be executed in short
times. (2) By weighting the auto assigned SINR targets
with scalar variables, the feasibility search problem can be
reduced to a simpler linear search problem as demonstrated
in Section VII-F. The cross-analyses are accurate since no
approximations are needed in contrast to the approximately
derived feasibility conditions [26].

Relay beamforming design in the existence of direct links
has been a long standing open problem due to the challenge
in the expression of SINR metric in terms of relay filters as
detailed in Section VI. In this paper, an SINR reformulation
is proposed that gives good approximation when the direct
channels and the effective channels between the transmit-
ters and receivers are independent. The proposed distributed
joint transmit and relay beamforming assures improved total
power saving than that of only the distributed transmit
beamforming optimization. However, since each relay serves
all streams in the network, the complexity substantially
increases.

The main contributions of this paper are summarized as
follows:
• A generic network model with multiple multi-antenna
nodes at all sides, i.e., the transmitter, relay, and receiver
sides, to carry out multi-stream transmissions in the
presence of direct links is transformed into a compact
matrix system model.

• The proposed distributed ADMM algorithm achieves
the optimal centralized solutions in the given generic
network model. In addition, in terms of conver-
gence rate, computational complexity, and message
exchange load performance metrics, the proposed solu-
tion surpasses other optimal distributed algorithms.

• By eliminating the feasibility of problem stage automat-
ically, an extensive evaluation of the effects of crucial
network parameters on the system performance metrics
are attained that reveals new insights in this paper.

• Analytical and numerical results demonstrate the lower
computational complexity and message exchange load,
higher convergence rate, i.e., lesser number of iterations,
and finally the convergence of proposed distributed
algorithm.

• SINR approximation at the relay side is proposed to
implement distributed joint transmit and relay beam-
forming optimization that further improves the total
power saving at the cost of increased complexity.
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FIGURE 1. Multi-stream per user transmission in a K -user MIMO multi-relay interference
network with direct links. Direct links are indicated by the bold lines.

The closest to our contribution in this paper is given
in [11], where ADMM is also applied. The major differ-
ence between [11] and this paper is that a scalar power vari-
able in a single relay network and a beamforming vector
in a multi-relay aided network are optimized, respectively.
Clearly, the extension in this paper is nontrivial. Further
differences between [11] and this paper are discussed in later
sections.

ADMM framework is applicable to many problems
under mild conditions. The methodology is different than
the distributed algorithms that are designed for particular
problems. In [27], a distributed algorithm is proposed for
interference alignment in signal space. To achieve the align-
ment in a distributed manner, each user minimizes the inter-
ference covariance matrix. Such distributed solutions that
are designed for particular areas are in contrary to the
distributed ADMM solutions that have broad application
areas. In fact, ADMM solution for interference alignment is
already exploited in [28].

The rest of the paper is organized as follows. The
multi-stream transmission capable multi-relay interference
network is introduced in Section II. In Section III, the transmit
beamforming design problem for power minimization under
stream SINR constraints is formulated. The distributed
ADMM solution and benchmark distributed solutions are
presented in Section IV. The attributes of distributed solu-
tions including convergence, computational complexity, and
message exchange load are studied in Section V. Distributed
joint transmit and relay beamforming filter optimization
via SINR approximation at the relay side is provided
in Section VI. The numerical results and discussions are

presented in Section VII, and finally, the paper is concluded
with the summary of main results in Section VIII.

II. SYSTEM MODEL
Consider a K -user two-hop MIMO multi-relay interference
network aided by R relays. The ith source (transmitter) and
the ith destination (receiver) each has Mi antennas while the
r th relay has Nr antennas as shown in Fig. 1. Each transmitter
communicates with its corresponding receiver with the aid
of all relays. Without loss of generality, ith transmitter and
receiver pair can be called ith user. We assume that all relay
nodes work in half-duplex mode. Thus the communication
between the users is completed in two time slots and there
are non-negligible direct links between all transmitters and
receivers. In the first time slot, the ith transmitter transmits
the Mi × 1 signal vector xi = Uisi, where Ui ∈ CMi×di and
si ∈ Cdi are the transmit beamforming matrix and symbol
vector with E

(
sisHi

)
= Idi and E

(
sisHj

)
= 0 for j 6= i, respec-

tively. Here, di is the number of streams of the ith user,
i.e., the number of independent data streams to be transmitted
between the ith transmitter and receiver pair. We assume
di ≤ Mi for sufficient degrees of freedom in signal detection.
The transmitted signal from the user has a power constraint

pi = E(||xi||2) = tr
(
UiUH

i
)
≤ pmax

i , (1)

where pmax
i is the maximum power of the ith transmitter. The

received signal at the r th relay and k th receiver in the first time
slot is given by

yr =
K∑
i=1

H′′rixi+nr and yk (1) =
K∑
i=1

Jkixi + nk (1), (2)
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respectively, where H′′ri is the channel from the ith trans-
mitter to the r th relay, and Jki is the channel between
the ith transmitter and the k th receiver. nr and nk (1) are
the complex additive white Gaussian noise (AWGN) at the
r th relay and at the k th receiver in the first time slot with
zero mean, and with the covariances E

(
nrnHr

)
= σ 2

r INr and
E
(
nk (1)nHk (1)

)
= σ 2

k (1)IMk , respectively. In the second time
slot, the received signal yr is precoded at the r th relay
by the Nr × Nr relay filter Fr , xr = Fryr . The r th relay
transmit power is pr = E(||xr ||2) = tr

(
FrRyrF

H
r
)
≤ pmax

r ,
where Ryr = E

(
yryHr

)
and pmax

r is the covariance matrix
of the received signal at and the maximum power of the
r th relay, respectively. The relay transmit power can be explic-
itly written as

pr = tr
( K∑
i=1

UH
i H
′′H
ri FHr FrH

′′
riUi

)
+ σ 2

r tr
(
FrFHr

)
. (3)

The received signal at the k th receiver in the second time slot
is given by

yk (2) =
R∑
r=1

Gkrxr + nk (2) =
R∑
r=1

GkrFrH′′rkxk

+

R∑
r=1

GkrFr
K∑

j=1,j 6=k

H′′rjxj +
R∑
r=1

GkrFrnr + nk (2),

(4)

where Gkr is the channel between the r th relay and the
k th receiver.

Define the effective channel from transmitter i to receiver
k through all relays as

H′k.i ,
R∑
r=1

GkrFrH′′ri. (5)

Then, yk (2) in (4) is rewritten as

yk (2) = H′k.kxk +
K∑

j=1,j 6=k

H′k.jxj +
R∑
r=1

GkrFrnr + nk (2).

To obtain the SINR expression, the received signal at a
receiver is written in terms of the desired signal, interfer-
ence signal, and noise summands. Thus, define the aggregate
channel matrix and noise vector as

Hki ,

[
Jki
H′k.i

]
and nk ,

[
nk (1)∑R

r=1GkrFrnr + nk (2)

]
. (6)

The list of channel notations used in the paper is given
in Table 1 for convenience. Then, the aggregate received
signal at receiver k can be written as

yk ,
[
yk (1)
yk (2)

]
= HkkUksk +

K∑
j=1,j 6=k

HkjUjsj + nk . (7)

For the sake of linear decoding complexity, the intra-
and inter-user stream interferences are treated as noise in

TABLE 1. List of channel notations.

this paper. The receive filter is V̄k ∈ C2Mk×dk since the
receive filters for the time slots 1 and 2, Vk (1) ∈ CMk

and Vk (2) ∈ CMk , respectively, are stacked in this matrix,

i.e., V̄k ,

[
Vk (1)
Vk (2)

]
. After applying the receive filter V̄k

to the received signal yk , the SINR of the l th stream of the
k th user is obtained as

SINRk,l =
ζ̃
k,l
k,l∑

(j,m)6=(k,l) ζ̃
j,m
k,l + σ

2
nk,l

, (8)

where ζ̃ i,nk,l ,
∣∣v̄Hk,lHkiui,n

∣∣2 and v̄k,l , [vTk,l(1) v
T
k,l(2)]

T is
the 2Mk × 1 receive beamforming vector for the l th stream of
the k th user, i.e., l th column of the receiver filter V̄k (similarly
vk,l(i), i = 1, 2 are the l th columns of the receiver filtersVk (i),
i = 1, 2, respectively), σ 2

nk,l = v̄Hk,lRnk v̄k,l is the power of the
aggregate noise after the receive beamforming

Rnk,

(
σ 2
k (1)IMk 0

0
∑R

r=1σ
2
r GkrFrFHr G

H
kr+σ

2
k (2)IMk

)
(9)

is the covariance matrix of the aggregate noise, and the nota-
tion (j,m) 6= (k, l) denotes that j 6= k and/or m 6= l.

III. PROBLEM FORMULATION
In this paper, the total power of transmitters and relays under
SINR per stream constraints is minimized via the distributed
ADMM algorithm [6] by optimizing all stream beamforming
filters uk,l, ∀k, l in parallel at each stream, aka processor,
in the network. From (1) and (3), the total power, i.e., the sum
of transmitter and relay powers, can be rewritten in terms of
stream filters uk,l (l th column of the transmitter filter Uk ) as

K∑
k=1

dk∑
l=1

uHk,lR.kuk,l, (10)

where R.k , IMk + R′.k ,R
′
.k ,

∑R
r=1 Rrk , and

Rrk , H′′Hrk FHr FrH
′′
rk .

Similarly, SINR of a stream can be rewritten as

SINRk,l =
uHk,lR

k
k,luk,l∑

(j,m)6=(k,l) u
H
j,mR

j
k,luj,m + σ

2
nk,l

, (11)

where Ri
k,l , HH

ki v̄k,l v̄
H
k,lHki. The superscript index in Ri

k,l
indicates the ith transmitter, sinceHki is the aggregate channel
between the ith transmitter and k th receiver. The simplifica-
tions of R matrices are listed in Table 2 for convenience.
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TABLE 2. List of some simplifications.

The problem formulation is given as
P1

min
{uk,l }∀k∈K,∀l∈Lk

K∑
k=1

dk∑
l=1

uHk,lR.kuk,l

s.t. SINRk,l ≥ γk,l, ∀k ∈ K, ∀l ∈ Lk (12)

where K , {1, 2, . . . ,K } and Lk , {1, 2, . . . , dk} is the set
of users and set of streams of the k th user, respectively.

IV. MULTI-STREAM BEAMFORMING UNDER STREAM
SINR CONSTRAINTS
P1 is a non-convex quadratically constrained quadratic
programming (QCQP) problem [21], [22]. To obtain the uk,l
filters, P1 can be equivalently rewritten by using the fact
that uHk,lR

i
k,luk,l = tr(Xk,lRi

k,l), where Xk,l , uk,luHk,l , and
by rewriting the SINR constraint as a summation inequality
rather than a division inequality. P1 can be rewritten as

P2

min
{Xk,l }∀k,l

K∑
k=1

dk∑
l=1

tr(Xk,lR.k ) (13a)

s.t.
1
γk,l

tr(Xk,lRk
k,l)−

∑
(j,m)6=(k,l)

tr(Xj,mR
j
k,l)≥σ

2
nk,l ,

∀k ∈ K, ∀l ∈ Lk (13b)

Xk,l ∈ SMk
+ , ∀k ∈ K, ∀l ∈ Lk (13c)

rank(Xk,l) = 1, ∀k ∈ K, ∀l ∈ Lk . (13d)

The transmit beamforming covariancematrix constraint (13c)
imposes the convex constraint that Xk,l matrix belongs to
the cone of symmetric and positive semi-definite matrices of
dimension Mk (denoted by SMk

+ ). Note that, since the covari-
ance matrices in (13b), i.e., Rk

k,l and Rj
k,l , are Hermitian,

tr(Xk,lRi
k,l) ∈ R, which means that the SINR inequality

constraint (13b) is well defined. However, P2 is still
non-convex due to the last constraint (13d), hence SDR can
be applied, i.e., the last constraint can be relaxed [21], [22].
Nonetheless, the resulting SDR of P2 still cannot be solved
distributively. To obtain Xi,n at the stream (i, n) via a parallel
and distributed approach, both the objective function and
constraints in P2 must be separable with respect to each
stream. The objective function of P2 is separable; however,
the reformulated SINR constraints (13b) are coupled. More-
over, since the SINR constraints are not linear, ADMM is not
directly applicable to P2.

A. PROPOSED ADMM ALGORITHM
Before presenting the proposedADMMalgorithm, we briefly
review the main steps of ADMM. ADMM can solve the
following convex problem

P(x, y)

min
x∈Cm,y∈Cn

f (x)+ g(y) (14a)

s.t. Ax+ By = c (14b)

x ∈ S1, y ∈ S2, (14c)

where A ∈ Ck×m, B ∈ Ck×n, c ∈ Ck , the functions f and
g are convex, S1 and S2 are nonempty convex sets. Then the
augmented Lagrangian for P(x, y) is given as

Lρ(x, y, z) = f (x)+ g(y)+ re(zH (Ax+ By− c))

+
ρ

2
‖Ax+ By− c‖22, (15)

where z ∈ Ck is the Lagrange multiplier of the
constraint (14b), re(.) is the real part operator, and ρ is again
the Lagrangian dual update step size. P(x, y) is solved by
ADMM via three steps at each iteration s as follows

xs+1 = argmin
x

Lρ(x, ys, zs) (16a)

ys+1 = argmin
y

Lρ(xs+1, y, zs) (16b)

zs+1 = zs + ρ(Axs+1 + Bys+1 − c). (16c)

In order to transform the reformulated SINR constraints to
a linear form in P2, we initially introduce an auxiliary variable
for each summand in the SINR constraint (13b) as

ζk,l ,
1
γk,l

tr(Xk,lRk
k,l)− σ

2
nk,l and

ζ 8k,l , −
∑

(j,m)6=(k,l)

tr(Xj,mR
j
k,l). (17)

Then, since the SINR constraints are active at the optimal
point, i.e., the SINR constraints (13b) must hold with
equality [29], the resulting SDR of P2 can be equivalently
rewritten as

P3

min
{Xk,l ,ζk,l ,ζ 8k,l }∀k,l

K∑
k=1

dk∑
l=1

tr(Xk,lR.k ) (18a)

s.t. ζk,l + ζ 8k,l = 0, ∀k ∈ K, ∀l ∈ Lk (18b)

ζk,l=
1
γk,l

tr(Xk,lRk
k,l)−σ

2
nk,l , ∀k ∈K, ∀l∈Lk

(18c)

ζ 8k,l=−
∑

(j,m)6=(k,l)

tr(Xj,mR
j
k,l), ∀k ∈K, ∀l∈Lk

(18d)

The constraint (13c).

Now, the SINR constraint (13b) is in a linear form via
the constraints (18b), (18c), and (18d), and the coupling

VOLUME 7, 2019 7539



C. M. Yetis, R. Y. Chang: Distributed Multi-Stream Beamforming in MIMO Multi-Relay Interference Networks

constraint (18b) is a simple linear constraint that is viable for
the ADMM algorithm. The partial augmented Lagrangian for
P3 can be written as

Lρ
(
{Xk,l, ζk,l, ζ

8
k,l, λk,l}∀k,l

)
=

K∑
k=1

dk∑
l=1

(
tr(Xk,lR.k )+ λk,l(ζk,l+ζ 8k,l)+

ρ

2
(ζk,l+ζ 8k,l)

2
)
,

(19)

where λk,l is the Lagrange multiplier of the constraint (18b),
and ρ ∈ R+ is a positive constant parameter for adjusting the
convergence speed, i.e., Lagrangian dual update step size.

P(x, y) and P3 have the following correspondences

x = [x11 . . . xkl . . . xKdK ]
T , y = [ζk,l ζ 8k,l]

T

f (x) =
K∑
k=1

dk∑
l=1

tr(Xk,lR.k ), g(y) = 0

A = 0, B = [1 1]T , c = 0

S1 =

{
x|Xk,l ∈ SM+

}
,

S2 =

{
ζk,l ∈ R|ζk,l =

1
γk,l

tr(Xk,lRk
k,l)− σ

2
nk,l ,∀k, l,

ζ 8k,l ∈ R|ζ 8k,l = −
∑

(j,m)6=(k,l)

tr(Xj,mR
j
k,l),∀k, l

}
,

(20)

where xkl , fx
(
tr(Xk,lR.k )

)
and fx is a mapping function

between xkl and Xk,l .
As mentioned earlier, in [11], total power minimization

under SINR constraints problem is solved via a distributed
power control algorithm in a simpler network. In contrast,
in this work, the problem is solved via beamforming vectors
in a generic network. Hence, the problem in this work
is more challenging and also the results are more effec-
tive than [11], i.e., higher sum-SINRs can be achieved with
lesser power consumptions. Another distinction between [11]
and this paper is the difference between the augmented
Lagrangian functions, where both of the proposed solutions
are fundamentally based on. As seen in [11, P2], the auxil-
iary definitions [11, eqs. (3c), (3d)] are augmented in the
Lagrangian function [11, eq. (4)] to obtain closed-form solu-
tions, whereas in this work, the summation of auxiliary
terms (18b) are augmented as seen in (19). In [11], power
control algorithm is proposed for a simpler relay network
architecture. In other words, transmit power scalar vari-
ables pk,l are optimized in [11] as opposed to the transmit
beamforming filters uk,l in this work. The summation of
auxiliary terms in [11, eq. (3b)] cannot be augmented in the
Lagrangian function. Otherwise, the pk,l variable disappears
in the Lagrangian differentiation process, hence closed-form
solutions cannot be obtained. On the other hand, the auxiliary

definitions (18c) and (18d) cannot be augmented due to the
trace operator in this work. Therefore, in this work, (18b)
is augmented in the Lagrangian function and the covariance
matrix solutions are obtained via CVX. Resorting to CVX
for the solutions of covariance matrices is a common prac-
tice in the literature [9], [12]. After obtaining the transmit
covariance matrices Xk,l , obtaining the transmit vectors uk,l
is a well-known process [21], i.e., if the obtained covariance
matrix is not rank-one, then additional rank-one approxi-
mate solution methods can be applied including the Gaus-
sian randomization method. However, as observed by the
numerical results in Section VII, the optimal Xk,l matrices
are always rank-one. This indicates that the proposed
distributed optimal solution to P3 serves as a global optimal
solution to P1.
Remark 1: P3 is separable with respect to the streams,

thus it requires solving B problems of P
(
Xk,l, ζk,l, ζ

8
k,l

)
,

where B ,
∑K

i=1 di is the total number of streams in the
network. However, in order to apply the two-block ADMM
algorithm which is better understood than x-block ADMM
algorithms in terms convergence [30], where x>2, the vari-
ables

{
Xk,l, ζk,l, ζ

8
k,l

}
∀k∈K,∀l∈Lk

can be divided into two
groups {Xk,l} and

{
ζk,l, ζ

8
k,l

}
. Hence, P3 is separated into two

simpler parts: P(Xk,l) and P
(
ζk,l, ζ

8
k,l

)
. Therefore, ADMM

can distributively solve P3 by solving 2B simpler subprob-
lems in parallel.

THE MAIN STEPS OF ADMM
ADMM consists of sequential updates of primal variables
Xk,l , ζk,l , and ζ 8k,l , and the dual variables λk,l, µk,l,and
µ8
k,l [1] as presented below.

a: UPDATE OF Xk,l
The smaller problem of Xk,l is
P(Xk,l)

min
Xk,l

tr(Xk,lR.k )

s.t. The constraints (13c)′ and (18c)′, (21)

where the superscript ′ denotes the constraints to be consid-
ered without the symbol ∀, e.g., (18c)′ denotes the constraint
only for the stream (k, l), not for all streams ∀k ∈ K, ∀l∈Lk
as seen in (18c). The above linear problem can be solved
locally at each processor (k, l) in parallel.

b: UPDATES OF ζk,l AND ζ 8k,l
The smaller problem of ζk,l and ζ 8k,l is

P(ζk,l, ζ 8k,l)

min
ζk,l ,ζ

8
k,l

λk,l(ζk,l+ζ 8k,l)+
ρ

2
(ζk,l+ζ 8k,l)

2

s.t. The constraints (18c)′ and (18d)′. (22)
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Then according to the Karush-Kuhn-Tucker (KKT) condi-
tion, the updates of auxiliary variables are given as

ζ s+1k,l = −
λsk,l + µ

s
k,l

ρ
− ζ 8sk,l and (23a)

ζ 8s+1k,l = −
λsk,l + µ

8s
k,l

ρ
− ζ s+1k,l , (23b)

where µsk,l and µ
8s
k,l are the Lagrangian multipliers of the

constraints (18c) and (18d), respectively.

c: UPDATES OF λk,l , µk,l ,AND µ8
k,l

The updates of dual variables λk,l, µk,l, and µ8
k,l are given as

λs+1k,l = λ
s
k,l + ρ

(
ζ s+1k,l + ζ

8s+1
k,l

)
, (24a)

µs+1k,l = µ
s
k,l + ρc

(
ζ s+1k,l −

1
γk,l

tr
(
Xs+1
k,l R

k
k,l

)
+ σ 2

nk,l

)
,

(24b)

µ8s+1
k,l = µ

8s
k,l + ρc

ζ 8s+1k,l +
∑

(j,m)6=(k,l)

tr
(
Xs+1
j,m Rj

k,l

),
(24c)

where ρc ∈ R+ is the conventional Lagrangian dual update
step size.

B. PSEUDOCODE
The pseudocode of the proposed ADMM algorithm is given
in Algorithm 1, where Matlab scripting language is used.
As seen in step 7 of the algorithm, when the absolute devi-
ation from the SINR target of each stream is within 1max

k,l
accuracy, the algorithm is terminated with a success flag.

C. FEASIBILITY OF PROBLEM
P3 can be infeasible for the given SINR targets γk,l . There-
fore, the feasibility of P3 must be assured in the first stage
before solving P3 in the second stage. There are basically
two techniques in the literature: 1) the feasibility conditions
are derived [23], and 2) the initial conditions are relaxed,
e.g., the SINR targets are tested and the feasible targets are
searched [4], [24]. Deriving the feasibility condition of P3
is challenging even for a simpler network and a simpler
problem [26]. In [26], power minimization under the worst
stream SINR condition is studied for a multi-antenna relay
network with a single transmitter and a receiver, and the
direct links are neglected. Furthermore, in [26], the feasi-
bility condition is derived based on the signal-to-interference
ratio (SIR) instead of SINR. After assuming the targets
are feasible based on the approximate feasibility condition
derived from the SIR metric, the beamforming vectors are
solved based on SINR. The approximate feasibility condition
is more accurate in the high SNR regime, where noise can
be neglected. On the other hand, testing the SINR targets
and searching for the feasible SINR targets [4], [24] are as
costly as solving problem P3, i.e., both require high iteration

Algorithm 1 Proposed Distributed Multi-Stream
Beamforming Algorithm via ADMM forMIMOMulti-Relay
Interference Networks

1) Randomly initialize Lagrangian variables,
{ζ sk,l, ζ

8s
k,l, λ

s
k,l, µ

s
k,l, µ

8s
k,l}∀k,l . 2) Initialize the stream

powers equally, tr(usk,lu
Hs
k,l) = pmax

k /dk , ∀k,∀l, and
relay powers, pr = pmax

r ,∀r . 3) Compute the stream
SINRs, SINRk,l , by randomly initializing the transmit
and relay beamforming vectors, and assign the SINR
target of a stream of user k to the average SINR of
user k , γk =

(∑dk
l=1 SINRk,l

)
/dk .

1: iflag = 0, % iflag: infeasibility flag
2: s = 0
3: while s ≤ smax

− 1 do
4: Obtain Xs+1

k,l from P(Xk,l),∀k,∀l
5: Obtain (ζ s+1k,l ,ζ 8s+1k,l ), λs+1k,l , µ

s+1
k,l , and µ

8s+1
k,l ,∀k,∀l

from (23), (24a), (24b), and (24c), respectively
6: 1s+1

k,l = |SINR
s+1
k,l − γk |,∀k,∀l

7: if 1s+1
k,l ≤ 1

max
k,l ,∀k,∀l then s = smax, end

8: s = s+ 1
9: end while
10: if pk > pmax

k or pr > pmax
r ,∀k, r then iflag = 1, end

numbers and high computational complexities per iteration,
which severely impedes the cross-analysis due to the long
simulation durations.

In this work, we adopt a new technique. We randomly
initialize the transmit and relay beamforming vectors with
full powers, i.e., pmax

k , ∀k ∈ K and pmax
r , ∀r ∈ R to deter-

mine feasible SINR targets with a high probability. The
infeasible cases that make up a small portion of tests along
with slow and fluctuant converging cases are filtered through
step 10 and the detection window as detailed earlier. Hence,
by testing randomly and automatically generated feasible
SINR targets for any permutation of the network parameters,
the cross-analysis is executed systematically and extensively
within short simulation durations. Since cross-analysis at this
comprehensive level has not been performed in the litera-
ture yet, many new insights are revealed in this paper. For
all simulations, the receive filters are also randomly initial-
ized but normalized to unity since including the receiver
power as another parameter in the already large set of
cross-varying network parameters substantially complicates
the cross-analysis in Section VII.

In fact, the transmit and relay power constraints

pk =
dk∑
l=1

uHk,luk,l=
dk∑
l=1

tr(Xk,l) ≤ pmax
k and

pr =
K∑
k=1

dk∑
l=1

uHk,lRrkuk,l=
K∑
k=1

dk∑
l=1

tr(Xk,lRrk )≤p′max
r , (25)

respectively, where p′max
r , pmax

r − σ 2
r tr(FrF

H
r ), can be

incorporated into P(Xk,l). The Matlab script for CVX solu-
tion is given in Algorithm 2. However, instead of incorpo-
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Algorithm 2Matlab Script for Locally Solving P(Xk,l) With
Incorporated Power Constraints at Each Stream in Parallel via
CVX

cvx_begin sdp
variable Xk,l(M ,M ) hermitian
minimize(trace(Xk,lR.k ));
subject to
trace(Xk,lRk

k,l) == γk,l(ζk,l + σ
2
nk,l );

trace(Xk,l) <= pmax
k −

∑dk
m=1,m 6=l trace(Xk,m);

for r=1:R
trace(Xk,lRrk )<=p′max

r −
∑

(j,m) 6=(k,l)trace(Xj,mRrj);
end

Xk,l >= 0;
cvx_end

rating the power constraints into CVX as shown in Algo-
rithm 2, checking the power constraints at step 10 of Algo-
rithm 1 has the following advantages. Firstly, the CVX algo-
rithm runs faster without the incorporated power constraints,
particularly for networks with high number of relays and
relay antennas. Secondly, if the SINR targets are infea-
sible, the algorithm starts fluctuating, i.e., different SINRs
that do not meet SINR targets are achieved over the iter-
ations while the power constraints are still assured by the
constraints incorporated in Algorithm 2. Therefore, it is
time-consuming to detect whether the fluctuation is due to
infeasibility or it is a rare case where the algorithm still
converges after the fluctuation. These two cases significantly
hinder the simulation durations and executing extensive
cross-analysis in Section VII becomes impractical. As seen in
Section VII, in the worst case, our proposed distributed algo-
rithm requires 35 iterations on average. Therefore, instead
of plugging the power constraints (25) into the CVX opti-
mization, letting the algorithm converge to the SINR targets
and then checking the power constraints by step 10 of
Algorithm 1 can swiftly determine the feasibility of the
targets.

D. BENCHMARK DISTRIBUTED ALGORITHMS
1) ADMM WITH BOUNDED GUARANTEE (ADMM-BG)
The conventional dual decomposition method [31] for a
distributed solution of P3 is not applicable since the dual
of P3 can be unbounded [12]. This can be demonstrated by
considering to solve the dual problem

P(µk,l,Xk,l)

max
µk,l

min
Xk,l

L′ Conv.ρk,l

s.t. The constraint (13c)′, (26)

where

L′ Conv.ρk,l
(Xk,l, η

′
k,l) = tr(Xk,lR.k )− η′k,l

1
γk,l

tr(Xk,lRk
k,l)

instead of solving the subproblem P(Xk,l) in step-a
of our proposed algorithm presented earlier via CVX.

The inner optimization problem of the above dual problem
can be unbounded below given the dual variable µk,l so that
−η′k,l tr(Xk,lRk

k,l) → −∞, i.e., the solution can go to minus
infinity. This problem can be avoided by the extra quadratic
penalty term added in the ADMM scheme

L′ADMM
ρk,l

(Xk,l, η
′
k,l, ζk,l)

= tr(Xk,lR.k )− η′k,l
1
γk,l

tr(Xk,lRk
k,l)

+
ρ

2

(
ζk,l−

1
γk,l

tr(Xk,lRk
k,l)+σ

2
nk,l

)2

. (27)

As seen in [12, eq. (23)], authors enforce the quadratic
penalty term also for the first term tr(Xk,lR.k ) in (27) by
defining an auxiliary variable

pk,l , tr(Xk,lR.k ), ∀k ∈ K, ∀l ∈ Lk , (28)

and then introducing the slack variables tk,l ≥ 0,∀k ∈
K,∀l ∈ Lk [12, eq. (29d)]

pk,l = tk,l . (29)

Note that the first term tr(Xk,lR.k ) in (27) is the objective term
in P3, similar to [12, eq. (17a)]. Hence, the final local partial
augmented Lagrangian function is given as

L′′ADMM
ρk,l

(Xk,l, η
′′
k,l, ζk,l, pk,l, tk,l)

= pk,l − η′′k,lpk,l

+
ρ

2
(tk,l − pk,l)2 − η′k,l

1
γk,l

tr(Xk,lRk
k,l)

+
ρ

2

(
ζk,l −

1
γk,l

tr(Xk,lRk
k,l)+ σ

2
nk,l

)2

. (30)

Following the same principle from [12] as explained above,
the modified local partial augmented Lagrangian function
of (19) is

Lρk,l (η
′′
k,l, ζk,l, ζ

8
k,l, pk,l, tk,l, λk,l)

= pk,l − η′′k,lpk,l

+
ρ

2
(tk,l − pk,l)2

+ λk,l(ζk,l + ζ 8k,l)+
ρ

2
(ζk,l + ζ 8k,l)

2, (31)

where λk,l is the notation used in (19) that corresponds to
η′k,l used in this subsection. Hence step-a of our proposed
distributed algorithm is modified as follows

P(pk,l,Xk,l)

min
pk,l ,Xk,l

pk,l − η′′k,lpk,l +
ρ

2
(tk,l − pk,l)2

s.t. The constraints (13c)′, (18c)′, and (28)′, (32)

which can be again solved via CVX. Accordingly,
the Algorithm 1 needs small modifications. In summary,
in ADMM-BG, P(pk,l,Xk,l) is solved instead of P(Xk,l)
in step-a of our proposed algorithm to guarantee bounded
solutions.
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Due to the added superfluous variables and constraints
in (28) and (29), the modified approach, ADMM-BG algo-
rithm, has a slower convergence rate, i.e., more iterations
are needed, and also has a higher computational complexity
per iteration than the original approach in step-a, i.e., the
proposed algorithm in this paper. As explained in more
detail in Section V, as the problem size increases, i.e., more
constraints in this case, the complexity of problem solution
increases since CVX depends on the number of constraints.
The iteration number also increases as a direct consequence
of a larger problem size. Moreover, it is observed that
ADMM-BG scheme is significantly more unstable, i.e., the
rare frequencies of slow-, fluctuant-, and non-convergent
cases significantly increase. Finally, more constraints directly
necessitates more variables, i.e., more antennas at the trans-
mitter side. Due to the constraint (28), the minimum number
of transmitter antennas is more for ADMM-BG.

2) ACCELERATED DISTRIBUTED AUGMENTED
LAGRANGIANS (ADAL)
In [9], an improved version of ADMM is proposed,
which is coined as ADAL since it converges faster than
the conventional ADMM. ADAL introduces an auxiliary
variable for each interference term inside the summa-
tion [9, eq. (11), 3rd constraint] in contrast to the summa-
tion of interference terms (18d) as proposed in this work.
Hence, instead of two constraints (18c) and (18d) per stream
as proposed in this work, ADAL has 1 (desired signal) +
B− 1 (interference signals)= B constraints per stream.More
constraints increase 1) the iteration number (the problem size
increases, similar to more number of users and antennas),
2) the computational complexity per iteration (the complexity
of CVX is dependent on the number of constraints), and
3) the minimum number of antennas (the transmit covariance
is involved in more constraints, thus more antennas-variables
are needed). Following the approach in [9], the resulting SDR
of P2 at the optimal point can be equivalently rewritten as

P4

min
{Xk,l ,ζ k,l }∀k,l

K∑
k=1

dk∑
l=1

tr(Xk,lR.k ) (33a)

s.t.
K∑
k=1

dk∑
l=1

ζ k,l = 0, (33b)

ζ
k,l
k,l =

1
γk,l

tr(Xk,lRk
k,l)−σ

2
nk,l , ∀k ∈K, ∀l∈Lk

(33c)

ζ
k,l
j,m=−tr(Xk,lRk

j,m), ∀k, j, j 6=k, ∀l,m,m 6= l

(33d)

The constraint (13c),

where ζ k,l , [ζ k,l1,1, . . . , ζi,n, . . . , ζ
k,l
K ,dK ]

T is the B× 1 vector
that stacks all auxiliaries ζ

k,l
i,n , ∀i ∈ K,∀n ∈ Li. The

ADAL-Direct algorithm proposed in [9] is shortly referred
as ADAL in our work.

The partial augmented Lagrangian for P3 can be written as

Lρ
(
{Xk,l, ζ k,l}∀k,l,λ

)
=

K∑
k=1

dk∑
l=1

tr(Xk,lR.k )+ λT
K∑
k=1

dk∑
l=1

ζ k,l

+
ρ

2

∥∥∥∥∥
K∑
k=1

dk∑
l=1

ζ k,l

∥∥∥∥∥
2

2

, (34)

where λ , [λ1,1, . . . , λK ,dK ]
T is the vector of Lagrange

multipliers of the constraint (18b), ρ ∈ R+ is the Lagrangian
dual update step size, and ‖.‖2 is the L2 vector norm oper-
ator. ADAL proposes to distribute the problem over streams
as follows, i.e., the local partial augmented Lagrangian is
given as

Lρk,l
(
Xk,l, ζ k,l, Eζ j,m,λ

)
= tr(Xk,lR.k )+ λT ζ k,l +

ρ

2

∥∥∥∥∥∥ζ k,l +
∑

(j,m) 6=(k,l)

Eζ j,m

∥∥∥∥∥∥
2

2

, (35)

where Eζ j,m is the auxiliary variable transmitted from stream
(j,m),∀j 6= k, ∀m 6= l to all streams (i, n), ∀i ∈ K \ {j},
∀n ∈ Li \ {m}. In other words, the Eζ j,m variable is eval-
uated at stream (j,m) and is transmitted to all streams
(i, n),∀i 6= j, ∀n 6= m, thus it is a constant vector for
stream (k, l).

THE MAIN STEPS OF ADAL
a: UPDATES OF ζ k,l AND Xk,l
The smaller problem of ζ k,l and Xk,l is
P(ζ k,l,Xk,l)

min
ζ k,l ,Xk,l

Lρk,l

s.t. The constraints (13c)′, (33c)′, and (33d)′, (36)

where (33d)′ denotes the constraint (33d) without ∀j,m; that
is, for a particular stream (k, l). For instance, assume K = 3
and d = 2, then for stream (k, l) = (1, 2), the set of ζ vari-
ables is Z = {ζ 1,21,1 , ζ

1,2
1,2 , . . . , ζ

1,2
3,1 , ζ

1,2
3,2 }, where |Z | = B. The

above linear problem can be solved locally at each processor
in parallel via CVX in Matlab.

b: UPDATE OF Eζ k,l
The ζ sk,l output of P(ζ k,l,Xk,l) is further updated as follows

Eζ
s+1
k,l =

Eζ
s
k,l + τ (ζ

s
k,l −

Eζ
s
k,l), (37)

where τ is a step size. Eζ
s+1
k,l is to be transmitted to the other

nodes as mentioned earlier.

c: UPDATE OF λ

As the final step, the dual variables are updated as follows

λs+1 = λs + τρ

K∑
k=1

dk∑
l=1

Eζ
s+1
k,l . (38)
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Note that the above update is also local to a processing node
(k, l) since Eζ

s+1
j,m ,∀(j,m) 6= (k, l) updates are provided from

other nodes than (k, l).
The B−1 constraints in (33d)′ of P(ζ k,l,Xk,l) are over-

whelming as opposed to our proposed ADMM algorithm,
where the summation of these terms is utilized. Hence,
the disadvantages of ADAL follow as mentioned earlier.
Remark 2: ζ k,l and Xk,l variables in P(ζ k,l,Xk,l) are

jointly solved via CVX. the closed-form solution of ζ k,l can
be obtained from the KKT conditions, then only theXk,l vari-
ables are solved via CVX to reduce the overall computational
complexity.

Consider whether the joint solution of ζ k,l and Xk,l vari-
ables via CVX or closed-form solution of ζ k,l and CVX
solution of Xk,l option should be chosen. As mentioned
earlier, there are B equality constraints per stream due to
the (33c)′ and (33d)′ constraints. With ζ

i,n
k,l (joint solu-

tion) each constraint is a bivariate equation of ζ i,nk,l (scalar)
and Xk,l (matrix), whereas without ζ i,nk,l (no joint solution),
each equality is a univariate equation of Xk,l . Thus, in the
univariate case, B is the minimum number of antennas
required at a node, and in the bivariate case, the requirement is
lower thanB by the help of additional variables ζ i,nk,l . As shown
earlier, our proposed method has significantly lower number
of equality constraints, thus both the iteration number (can
be determined from numerical results since the computa-
tion of iteration number is not possible) and computational
complexity (can be approximately computed in terms of
limiting behavior) per iteration are significantly low. There-
fore, we choose joint solution of ζ k,l and Xk,l via CVX
for ADAL so that the iteration number comparison with our
proposed distributed algorithm and the number of antennas in
Section VII is more fair and convenient to compare.

From the above discussion, it can be also concluded
that centralized algorithms can be less restrictive than the
distributed algorithms in terms of minimum number of
antenna requirements in general. The SDR of the QCQP
problem P2 can be solved via CVX [32] in a centralized
manner. Hence, for the centralized algorithm, there are
Kd constraints and KM variables. On the other hand, for
ADAL, there are Kd + 1 ≈ Kd constraints and M variables
per processor. Therefore, the number of variables for the
distributed algorithm is approximately shrunk 1/K times
compared to the centralized solution. However, a centralized
solution is less attractive when the dimension of the problem
is large as mentioned earlier.

Similarly, it can be concluded that the power control
algorithms are also more restrictive than the beamforming
optimization problems. In particular, there is only 1 power
variable pk,l per stream, on the other hand, there are
Mk variables per stream in the transmit beamforming
vector uk,l ∈ CMk . Since the number of variables in the
beamforming vectors that directly determine the SINR targets
is significantly larger than the number of power variables,
automatic generation of feasible SINR targets by random

initializations of beamforming vectors is not possible for
power control algorithms.

E. COMPETITIVE SINR TARGETS
P1, where the objective function isminimizing the total power
and the QoS guarantee is meeting the SINR targets, is one
of the most important optimization problems for resource
allocation in wireless networks [7], [9], [11], [12], [14]. This
problem can be considered as the dual interest of network
utility maximization problems [33], [18, Ch. 8]. Depending
on the system design goals, the trade-off between the
consumed total power and the achieved sum-SINR in the
network can be controlled by the given SINR targets.

The SINR targets can be determined at the phys-
ical or higher layers of the network. One of the approaches
in the physical layer is to search for feasible SINR targets
between the lower and upper bounds set by beamforming
filters. For the lower bound, random filter initializations are
good choices as supported by the numerical results in this
paper. For the upper bound, SINR maximizing (max-SINR)
filter initializations can be good choices as shown in [27].
In Section VII-F, we present the numerical results showing
that by searching for higher feasible SINR targets between
the lower and upper bounds, the system can achieve higher
SINRs at the cost of increased power consumptions. In
Appendix A, closed-form solutions of max-SINR filters for
distributed implementation are provided.

V. ATTRIBUTES OF THE ALGORITHMS
A. CONVERGENCE
The global convergence of two-blockADMM is proven based
on mild conditions in [30]. The optimal Xk,l solution for
each subproblem of P3 is a global optimal solution for the
complete SDR problem in P3 since at each iteration, each
subproblem of P3 is convex, and the iterations are pursued
until convergence. We analytically and numerically show in
this section and in Section VII, respectively, that the proposed
distributed algorithm is convergent.

The convergence of ADMM to the global optimum of
P(x, y) under mild conditions is given by the following
lemma.
Lemma 1 [1, Proposition 4.2]:Assuming that the optimal

solution set of P(x, y) is nonempty, and ATA and BTB
are invertible, the sequence of solutions {xs+1, ys+1, zs+1}
obtained from (16a), (16b), and (16c), respectively,
is bounded and every limit point of {xs+1, ys+1} is an optimal
solution of P(x, y).
Proposition 1: The iterates {Xs+1

k,l , ζ
s+1
k,l , ζ

8 s+1
k,l }∀k,l and

{λs+1k,l , µ
s+1
k,l , µ

8s+1
k,l }∀k,l in Algorithm 1 converge to the

optimal solution of primal and dual problems as s → ∞.
When the algorithm converges, the optimal {Xk,l}∀k,l solu-
tions obtained in step 4 of Algorithm 1 are the global optimal
solutions of P3.

Proof: Since g(y) = 0 and A = 0, the Lagrangian func-
tion (15) is modified correspondingly, and also, the ATA
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condition in Lemma 1 is dropped. Based on Lemma 1 and the
correspondences in (20), the proposition on the convergence
of the proposed distributed algorithm follows. �

B. COMPUTATIONAL COMPLEXITY
The most computationally intensive part of the proposed
ADMM algorithm is step 4 of Algorithm 1, where the
general-rank positive semi-definite matrices {Xk,l} are
obtained explicitly via CVX without closed-form solu-
tions. Obtaining closed-form beamforming solutions is chal-
lenging even in simpler network architectures [9], [12]. After
obtaining the optimal general-rank positive semi-definite
matrices {Xk,l} via the proposed ADMM algorithm, rank-one
solutions uk,l , where uk,luHk,l = Xk,l , can be efficiently
derived [21]. Although there are no closed-form solutions,
semi-definite programming (SDP) has still many real-time
applications [22], [34].
Remark 3: Similar to the subproblem of proposed

distributed algorithm P(Xk,l) in (21), note that the SDP
solutions, e.g., via CVX, are also needed for the subproblems
of benchmark schemes ADMM-BG P(pk,l,Xk,l) in (32) and
ADAL P(ζ k,l,Xk,l) in (36).
The complexity of SDP solution for a generic SDR of a

QCQP problem [21, eq. (5)] is given asO(max{M , c}4M1/2

log(1/ε)), where M is the antenna number, c is the number
of constraints, and ε > 0 is the solution accuracy. Note that
c = 1, 2, and B for the proposed algorithm, ADMM-BG, and
ADAL, respectively. Hence, for the former two algorithms,
M ≥ c, while for the last algorithm,M ≥ c orM < c. For the
sake of simplicity, we evaluate the complexity of algorithms
based on O(Mc); that is, the limiting behavior of simple
multiplication of the number of variables and constraints. The
complexity benchmark of algorithms based on this simplified
formula alsomatches with CPU time based simulation bench-
marks as shown in the end of next section.

For the proposed distributed algorithm, P(Xk,l) has M
variables and 1 constraint, P(ζk,l, ζ 8k,l) has 2 variables that
have closed-form solutions (23), and finally 3 more variables
in (24), thus the complexity of proposed distributed algorithm
isO(M + 5) per processor. For ADMM-BG, P(pk,l,Xk,l) has
M (fromXk,l)+ 1 (from pk,l) variables and 2 constraints. Due
to the similar steps to our proposed algorithm, ADMM-BG
also has 2+ 3 = 5 variables, and additional 1 variable tk,l .
Hence, the complexity of ADMM-BG is O(2(M + 1)+ 6).
Finally, for ADAL, P(ζ k,l,Xk,l) has M + B variables and B
constraints, and B variables in each of (37) and (38). Thus,
the complexity of ADAL isO(B(M + B)+ 2B). In summary,
the proposed algorithm has the lowest complexity, followed
by ADMM-BG, and then ADAL. The numerical CPU bench-
marks of the proposed and existing algorithms are presented
in Section VII-D.

C. MESSAGE EXCHANGE LOAD
For the update of (24c) at each processor, a single value is
needed, i.e., the summation term, which can be delivered by
a collector node. This means that each processor needs to

send out B−1 scalar values, one for each other processor,
to the collector node. In total, B(B−1) and B numbers of
scalar values need to be exchanged from the processors to the
collector node and from the collector node to the processors,
respectively. As a result, in total, B2 scalar values need to
be exchanged in the network. Since the update (24c) is
also needed for ADMM-BG, the message exchange loads
of ADMM-BG and the proposed algorithm are same. For
ADAL, the updates (38) are achieved by sending out (37)
from each stream to the collector node. Therefore, for both
message exchange directions between the collector node and
processors, exchange of B2 scalar values is needed, making
a sum of 2B2 exchange of scalar values in the network.
In summary, ADAL has the highest message exchange load,
followed by ADMM-BG and the proposed algorithm.

Note that a deployed central node or any node among the
existing nodes of relay network can serve as a collector node.
Moreover, parallel updates of the variables in the ADMM
algorithm are robust to delays and errors [6], [28].

VI. DISTRIBUTED JOINT TRANSMIT AND RELAY
BEAMFORMING FILTER OPTIMIZATION
Relay filter design has been a long standing open problem
when the direct links exist. To pinpoint the hurdle that direct
links cause in relay filter design, SINR (8) is reformulated as
an explicit function of relay filters next.

A. SINR REFORMULATION
Consider the signal power from stream n of transmitter i to
stream l of receiver k

pklin = uHi,n
[
JHki H

′H
k.i

] [ vk,l(1)
vk,l(2)

] [
vHk,l(1)v

H
k,l(2)

] [ Jki
H′k.i

]
ui,n

= uHi,nJ
H
kivk,l(1)v

H
k,l(1)Jkiui,n

+uHi,nH
′H
k.ivk,l(2)v

H
k,l(2)H

′
k.iui,n

+uHi,n(A
H
+ A)ui,n, (39)

where

A , JHkivk,l(1)v
H
k,l(2)H

′
k.i,

vk,l(1) and vk,l(2) is theMk × 1 receive beamforming vector
for the l th stream of the k th user in the first and second time
slot, respectively.

The first and second summand in the last equality of (39)
is independent of relay filters and can be rewritten in terms
of Hermitian matrices. AH

+ A in the third summand is a
Hermitian matrix, thus the third summand can be rewritten
as re(2uHi,nAui,n), where

uHi,nAui,n= uHi,nJ
H
kivk,l(1)v

H
k,l(2)

R∑
r=1

GkrFrH′′riui,n. (40)

Hence, the signal power from stream n of transmitter i to
stream l of receiver k via relay r is given as

pklrin = 2re (tr(QklrinFr )), (41)
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where

Qklrin , H′′riui,nu
H
i,nJ

H
kivk,l(1)v

H
k,l(2)Gkr

is a non-Hermitian matrix. Due to the asymmetry that the
direct links bring through the third summands of signal
powers in (39), relay filter design in the existence of direct
link is a non-trivial problem. The third summand is partic-
ularly not negligible when the direct channels Jki and the
effective channels H′k.i are correlated. However, when these
channels are independent, the affect of this term is less promi-
nent. By omitting this term, the approximate SINR of the
l th stream of the k th user is obtained as

ŜINRk,l(ui,n)=
ζ
k,l
k,l (1)+ζ

k,l
k,l (2)∑

(j,m)6=(k,l)(ζ
j,m
k,l (1)+ζ

j,m
k,l (2))+σ

2
nk,l

,

(42)

where

ζ
i,n
k,l (1) ,

∣∣vHk,l(1)Jkiui,n∣∣2,
ζ
i,n
k,l (2) ,

∣∣vHk,l(2)H′k.iui,n∣∣2, and

σ 2
nk,l is the sum of noises in the first and second time slots that

can be obtained from (9).
Next, (42) can be rewritten as an explicit function of relay

filter

ŜINRk,l(fr ) =
f̄Hr C̃klrkl f̄r
f̄Hr C̃klrjm f̄r

=
tr(Yr C̃klrkl)

tr(Yr C̃klrjm)
, (43)

where fr , vec(Fr ), f̄r ,
[
fr
t

]
, |t|2 = 1, and Yr , f̄r f̄Hr .

Further derivation details of (43) and the definition of C̃klrin
are given in Appendix B.

B. TOTAL POWER REFORMULATION
Thus far, the exact SINR (11) is approximated by (42), and
the approximate SINR is rewritten as a function of relay filter
in homogenous quadratic form (43). Next, the total power is
rewritten as a function of relay filters.

Noting the relay power (3) and using the equality
tr(ABAH ) = vec(A)H (B ⊗ I)vec(A), the total power is
obtained as

R∑
r=1

fHr Dr .fr , (44)

where

Dr . ,

( K∑
k=1

dk∑
l=1

Drkl + σ
2
r INr

)T
⊗ IN =

K∑
k=1

dk∑
l=1

D′rkl,

Drkl , H′′rkuk,lu
H
k,lH

′′H
rk , and

D′rkl ,
(
Drkl +

σ 2
r INr
B

)T
⊗ INr .

Furthermore, (44) can be rewritten as
R∑
r=1

K∑
k=1

dk∑
l=1

tr(Yr D̄′rkl), (45)

where

D̄′rkl ,
[
D′rkl + (ρ2/2)IN 2

r
0N 2−1×1

01×N 2−1 0

]
N 2+1×N 2+1

.

C. PROBLEM FORMULATION
Using (43) and (45), the relay beamforming filter design
problem is given as

P5

min
{Yr }∀r

R∑
r=1

K∑
k=1

dk∑
l=1

tr(Yr D̄′rkl) (46a)

s.t. ζ̇ k,lr + ζ̇
k,l 8
r = 0, ∀k ∈K, ∀l∈Lk , ∀r ∈R (46b)

ζ̇ k,lr =
1
γk,l

tr(Yr C̃klrkl), ∀k ∈K, ∀l∈Lk , ∀r ∈R

(46c)

ζ̇ k,l 8r =−tr(Yr C̃klrjm), ∀k ∈K, ∀l∈Lk , ∀r ∈R
(46d)

tr(Yr

K∑
k=1

dk∑
l=1

D̄′rkl) ≤ p
max
r , ∀r ∈R. (46e)

tr(Yr ) = 1, ∀r∈R (46f)

Yr ∈SN+, ∀r ∈R. (46g)

The partial augmented Lagrangian is given as

Lρ̇
(
{Yr , ζ̇

k,l
r , ζ̇ k,l 8r , λ̇k,lr }∀k,l,r

)
=

K∑
k=1

dk∑
l=1

R∑
r=1

(
tr(Yr D̄′rkl)+ λ̇

k,l
r (ζ̇ k,lr + ζ̇

k,l 8
r )

+
ρ̇

2
(ζ̇ k,lr + ζ̇

k,l 8
r )2

)
, (47)

where λ̇k,lr ∈ R is the Lagrange multiplier of the
constraint (46b), and ρ̇ ∈ R+ is the Lagrangian dual update
step size. From hereafter, the distributed solution follows the
similar steps of the distributed transmit beamforming filter
design proposed in Section IV-A.

D. PSEUDOCODE
The algorithm for the distributed joint solution is obtained by
adding two more steps after step 5 of Algorithm 1. Similar to
the transmitter side optimization, the first step after step 5 of
Algorithm 1 is obtaining {Yr }. The second step is obtaining
the auxiliary variables {ζ̇ k,lr , ζ̇ k,l 8r }, and the Lagrangianmulti-
pliers {µ̇k,l} and {µ̇

k,l 8
k,l } for the constraints (46c) and (46d),

respectively.
The discussions of distributed transmit beamforming

filter design hold for the distributed relay beamforming
filter design as well. For instance, CVX optimization
and closed-form solutions are utilized for {Yr } and
{ζ̇ k,lr , ζ̇ k,l 8r , µ̇k,l, µ̇

k,l 8
k,l }, respectively, and the optimal Yr

matrices are observed to be always rank-one. However,
in contrast to the transmit side optimization as discussed at
the end of Section IV-C, the relay power constraint (46e)
is better to be incorporated into the CVX optimization, and
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the transmit power constraint (25) at the transmitter side
as well, since the distributed joint algorithm is significantly
more costly in computations due to the distributed relay filter
optimization as shown in Section VII-G.

VII. NUMERICAL RESULTS
In this section, the performance of the proposed scheme is
compared with the centralized, ADMM-BG, andADAL solu-
tions by cross-varying the network parameters. All distributed
algorithms in this section are optimal, thus they achieve
the same SINR targets and also have the same total power
consumptions that are achieved by the centralized solution.
The network parameters to be cross-varied are the number
of transmit (M ) and relay (N ) antennas, the number of
relays (R), and the transmit (SNRT) and relay (SNRR) SNRs.

A. SIMULATION SETTINGS
In our simulations, the distances between transmitter and
relay sides, and relay and receiver sides are same and fixed to
1 km. The shadowing coefficient follows log-normal distri-
bution with zero mean and standard deviation equal to 8. The
power of receive filter v̄k,l is normalized to 1 by equal power
allocation over the receive filters vk,l(i), i = 1, 2, i.e., the
receive filter power for each time slot is normalized to

√
0.5.

The transmitters and relays have the same transmit power
constraints among themselves, i.e., pmax

k = pmax
T , ∀k ∈ K and

pmax
r = pmax

R , ∀r ∈ R, where R , {1, 2, . . . ,R} is the set of
relays, but pmax

T and pmax
R are not necessarily equal. Hence,

the SNR at the transmitter and relay side can be defined as

SNRT =
pmax
T

σ 2 and SNRR =
pmax
R

σ 2 , (48)

respectively, and σ 2
k = σ

2, ∀k ∈ K is assumed for simplicity.
Without loss of generality, the streams of a user are assumed
to have the same SINR target, which is equal to the average
SINR of the user, i.e., the average of user’s stream SINRs. For
both the proposed algorithm and ADMM-BG, the step sizes
ρ and ρc are empirically tuned to 1.2 and 0.5, respectively.
For ADAL, the step sizes ρ, ρc, and τ are tuned to 9, 0.5,
and 0.3, respectively. The step sizes are kept constant for the
simulations. If |SINRk,l−γk,l | ≤ 1max

k,l = 10−4 is met by the
stream, the stream is regarded as achieving the SINR target.

Finally, for the benchmarks of the proposed algorithm and
centralized solution, 100 Monte Carlo channels are tested.
Due to the slow convergence rates of ADMM-BG andADAL,
20Monte Carlo channels are tested for their benchmarks with
the proposed algorithm.

B. SOME NOTES
For all simulations, random initializations of filters and chan-
nels are pre-saved in files to feed the same inputs to the
algorithms. Thus, reliable conclusions with less number of
channel tests can be reached. Especially for large network
sizes, this approach significantly reduces the simulation dura-
tions. Therefore, the networks with many varying parameters

are tested in reasonable time durations by the use of pre-saved
inputs.

The numerical results in this section are presented for
K=3 networks since cross-varying K as well significantly
increases the data sets to be analyzed. In all tests, each user
is assumed to have dk = 2 streams. Thus, a total of B = 6
streams are transmitted in all network configurations. Inline
with the objective function of P1, the total power curves are
plotted in this section. On the other hand, althoughQoS assur-
ance of P1 imposes an SINR target for each of the streams,
a single curve, sum-SINR, is plotted instead of plotting 6
individual stream SINR curves for the sake of clarity of the
figures.

For all simulations of the proposed distributed algo-
rithm presented in this section excluding the Section VII-F,
the percentage of all cases including slow-, fluctuant-, and
non-convergent, i.e., infeasible SINR targets, makes up in
total 1.93%. We note that in Section VI-F, we propose the
linear search method to determine higher feasible SINR
targets than those are set by random filter initializations.
The next iteration of linear search method is proceeded
depending on whether the result of the previous iteration is
feasible or infeasible.

The conclusions drawn in this section by cross-varying
these parameters are not straightforward, e.g., increasing
R can assist in achieving the SINR targets while also
increasing the power consumption. Moreover, as discussed
later, the ratios of these parameters also significantly affect
the outputs, e.g., the ratios of SNRT and SNRR have different
effects on the outputs.

C. PROPOSED ADMM VS. CENTRALIZED
SOLUTION (Figs. 2 – 6)
1) PERFORMANCES OVER NETWORK
SIZES AND SNRS (Fig. 2)
In Figs. 2(a), 2(b), and 2(c), the numerical results of average
total power, sum-SINR, and iteration number vs.M and R are
plotted, respectively.

As seen in Fig. 2(a), the proposed algorithm achieves the
optimal centralized algorithm solutions, i.e., they have the
same power consumptions. As mentioned earlier, all algo-
rithms achieve the given SINR targets as seen in Fig. 2(b), and
the optimality of an algorithm is determinedwhether it has the
same power consumption with the centralized solution or not.
In all cases, the numerical sum-SINR results in Section VII
equal to the sum of the given feasible SINR targets of each
stream, which are determined by random initializations of
beamforming vectors.

As seen in Figs. 2(a) and 2(b), the network K3-M4-N8-R9
has a higher sum-SINR and a lower total power consump-
tion than K3-M3-N8-R10, respectively. Since the opti-
mization problem, power minimization while achieving the
SINR targets, is solved at the transmitter side, providing
more resources, i.e., more antennas, to the transmitters
returns better results, i.e., higher SINRs are achieved
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FIGURE 2. Average total power consumptions, sum-SINRs, and total
number of iterations vs. network sizes and SNRs. (a) Average total power
consumption vs. network sizes and SNRs. (b) Average sum-SINR vs.
network sizes and SNRs. (c) Average total number of iterations of the
proposed distributed algorithm.

with lower power consumptions. As expected, the sum-
SINRs of the networks K3-M10-N8-R3, K3-M10-N8-R4,
and K3-M15-N8-R10 gradually increase as the total numbers
of relays in the networks increase. However, their total
power consumptions remain similar because although R
is increased, M is chosen sufficiently large for these
networks.

As seen in Fig. 2(c), the iteration number increases when
the SNR increases. When the transmitter and relay SNRs are
12 (SNRT= SNRR=12), the iteration numbers are similar
around 20±1. Thus we focus on the SNRT= SNRR=21
results. In our problem setting, where only transmit
beamforming vectors are optimized, increasing M and
decreasing R, decreases the iteration number. Lower R
yields lower SINR, in other words, the range of numbers
in consideration is lower, thus the iteration number is
lower. Although higher M increases SINR, the iteration
number decreases because, again, providing more resources,
i.e., more antennas, to the transmitters returns better results,

i.e., less number of iterations. The algorithm converges faster
because the degree of freedom is richer due tomore resources,
variables, available for the optimization of transmit beam-
forming vectors.

2) PERFORMANCES OVER A WIDER RANGE OF SNRS
FOR A PARTICULAR NETWORK SIZE (Fig. 3)
In Figs. 3(a), 3(b), and 3(c), the numerical results of
average total power, sum-SINR and iteration number vs.
transmit and relay SNRs for the K3-M10-N8-R3 network
are presented, respectively. Again, the proposed algorithm
achieves the optimal centralized solutions as seen in Fig. 3(a).
In general, increasing SNR increases the power consumption

FIGURE 3. Average total power consumption, sum-SINR, and total
number of iterations vs. SNRs in the K3-M10-N8-R3 network
configuration. Green lines with arrows indicate the trends. (a) Average
total power consumption vs. SNRs. (b) Average sum-SINR vs. SNRs.
(c) Average total number of iterations vs. SNRs of the proposed
distributed algorithm.
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and also sum-SINR. However, consider the blue trend
lines in Figs. 3(a) and 3(b). When SNRT is sufficiently large,
e.g., SNRT = 42, increasing SNRR can have a small
effect on sum-SINR as seen in the 42-12, 42-21, and
42-42 dB results of Fig. 3(b). Next, consider the green trend
lines in Figs. 3(a) and 3(b). When SNRR is sufficiently large,
increasing SNRT is advantageous as seen in 12-42, 21-42,
and 42-42 dB results of Figs. 3(a) and 3(b). SNRR =

42 is sufficiently large to assist in achieving higher SINR
targets, and providing more resources to the transmitter side
returns better results, i.e., higher SINRs are achieved with
lower power consumptions. On the other hand, SNRR =

12 and 21 values are not sufficiently large. Thus, both the
total power consumption and sum-SINR are increased by
the increasing SNRT, e.g., consider the 12-21, 21-21, and
42-21 dB results.

In Figs. 3(a) and 3(b), the numerical results for another
benchmark that assumes the direct links between transmitters
and receivers do not exist are presented. When SNRT is high,
more power is consumed while less sum-SINR is achieved as
seen in the 42-12 and 42-21 dB results. However, when SNRR
is high, the effect of nonexisting direct links vanishes as seen
in the 21-42 and 42-42 dB results.

As seen in Fig. 3(c), in general, the iteration number
increases as SNR increases, by increasing both SNRT and
SNRR, e.g., 12-12, 21-21, and 42-42 dB, and by only
increasing SNRT, e.g., 12-12, 21-12, and 42-12 dB. However,
when only SNRR is increased and reaches up to 42 dB,
the iteration number decreases, i.e., compare 12-12 and 12-21
with 12-42, and compare 21-12 and 21-21 with 21-42 dB
results. As seen in Fig. 3(a), there are notable peaks in
power consumptions at the 12-42 and 21-42 dB points. The
disproportionately high SNRR value with respect to SNRT
helps in rapidly achieving the SINR targets, which cannot
be controlled by the transmitter side, before the transmit
beamforming optimization can further reduce the total power
consumption. When the marginal SNRT = 42 results are
compared, as explained earlier, similar sum-SINR results are
achieved for these dB points while total power consumptions
are reduced from left to right as displayed in Fig. 3(a).
As mentioned earlier, smaller range of numbers of interest,
i.e., smaller power consumption values, decreases the itera-
tion number. Thus the iteration number decreases gradually
in the last three dB points of Fig. 3(c).

The total power savings can be obtained from the
figures, i.e., total power saving (dB)= (Kpmax

T + Rpmax
R )

(dB)−(y-axis value) (dB). As seen in the results,
e.g., Figs. 2(a) and 3(a), the power savings are large as
explained next. Due to the random initializations of beam-
forming vectors, the initial power budgets are likely to be
highly redundant to achieve the SINR targets determined by
these beamforming vectors. On the other hand, if max-SINR
filters are used for the initializations instead of random
initializations to determine the SINR targets, the SINR targets
are likely to be infeasible.

3) SUPPORTING RESULTS FOR DISPROPORTIONATE
SNRS OVER NETWORK SIZES (Fig. 4)
In Fig. 4, the early convergence of the algorithm when
SNRR is disproportionately high is shown again over different
network sizes. Since the algorithm achieves the SINR targets
rapidly due to the high SNRR, the transmitter side lacks the
opportunity to further reduce the power consumption similar
to the case observed in Fig. 3.

FIGURE 4. Average total number of iterations vs. network sizes and SNRs
of the proposed distributed algorithm.

4) SCRUTINIZED PERFORMANCES OVER MULTIPLE AND
SINGLE CHANNEL REALIZATIONS (Figs. 5 and 6)
In Fig. 5, total power consumptions vs. channel realiza-
tions are presented to demonstrate that the proposed algo-
rithm achieves the optimal centralized solutions at each
channel realization. In Figs. 6(a) and 6(b), the total power
consumptions and total absolute target SINR deviations,
|1| , |

∑K ,dk
k,l 1k,l | vs. iteration numbers are presented for a

randomly selected channel realization.

FIGURE 5. Total power consumption vs. channel realizations of the
centralized and proposed distributed algorithms in the K3-M10-N8-R3
network configuration at SNRT = 42 and SNRR = 12 dB.

D. PROPOSED ADMM VS. EXISTING DISTRIBUTED
ALGORITHMS (Table 3, Figs. 7 and 8)
The average CPU times for the aforementioned distributed
algorithms in the K3-M6-N8-R14 network at SNRT =

SNRR = 21 dB are shown in Table 3, based on a
desktop computer with 64-bit operating system, Intel i7, CPU
3.40 GHz, and 16 GB RAM. A similar comparative trend is
exhibited for other network configurations in our extensive
experiments. The numerical results in Table 3 match with the
analytical results obtained in Section V-B.
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FIGURE 6. Total power consumption and absolute target SINR deviation
vs. iteration and SNRs in the K3-M15-N8-R10 network configuration.
(a) Total power consumption vs. iteration number. (b) Total absolute
target SINR deviation vs. iteration number.

TABLE 3. Average CPU times of the proposed and distributed algorithms
for the K3-M6-N8-R14 network.

FIGURE 7. Average total number of iterations vs. network sizes.

As seen in Fig. 7, the iteration number of the proposed
algorithm is significantly lower than ADMM-BG. The iter-
ation numbers of the two algorithms are more distinct when
disproportionate resources are allocated at the transmitter
side, i.e., higher M and SNRT. As expected, both algorithms
achieve the SINR targets and the optimal centralized solu-
tions, which are not plotted to avoid duplicate results.

In Fig. 8, the iteration numbers of the proposed and ADAL
algorithms are compared, respectively. Each network config-
uration is tested at three different SNRs, particularly, from left
to right at 12-12, 21-21, and 42-42 dBs. For the simplicity
of figures, SNRs are not noted. As seen in Fig. 8, due to
the significantly higher number of constraints in ADAL than
the proposed algorithm, the iteration number of our proposed
algorithm is always significantly lower than ADAL.

FIGURE 8. Average total number of iterations vs. network sizes and
SNRs. Each network configuration is tested three times at three different
SNRs.

E. BER PERFORMANCE OF PROPOSED ADMM (Fig. 9)
The important application areas of the SINR appa-
ratus are deriving the closed-form BER and outage
expressions [35], [36]. Therefore, as mentioned earlier,
stream SINR is interconnectedwith the BERmetric. Contrary
to the rate results, the BER results cannot be obtained from the
numerical SINR results presented in this section. In general,
BER and outage performances improve as SINR improves,
e.g., SINR outage is the probability of SINR descending
below a preset SINR target. To illustrate this general trend,
the sum-SINR and the corresponding BER improvement
percentages of the system are demonstrated in Fig. 9. For
instance, at SNRR = 21 dB, BER is improved, i.e., decreased,
by 1.59% by increasing the SNRT from 6 to 12 dB, respec-
tively. At SNRR = 12 dB, 0.37% BER improvement is
observed by increasing the SNRT from 3 to 6 dB.

FIGURE 9. Average sum-SINR and the percentage of BER improvement vs.
SNRT of the proposed distributed algorithm in the K3-M10-N8-R3
network configuration.

The results in Fig. 9 are obtained over 300 Monte Carlo
channels and uncoded QPSK modulation is used. For the
earlier numerical results, the extraction of beamforming
vectors uk,l from Xk,l is not needed. However, for BER
simulations, uk,l needs to and can be extracted by rank-one
decomposition [21] since the ranks of Xk,l matrices are
observed to be always one [37], [38]. Based on this obser-
vation, the proposed SDR solution is also the global optimal
solution to P1.

Contrarily, the maximum transmit powers SNRT and
SNRR can be fixed and higher SINRs can still be achieved
by searching for competitive SINR targets as demonstrated
in the next section.
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F. SEARCHING FOR COMPETITIVE SINR TARGETS (Fig. 10)
In this section, random filter and max-SINR filter initial-
izations are considered to determine the lower and upper
bounds of SINR targets, respectively. In Fig. 10, the left-
most bars indicate the results of the proposed distributed
algorithm with random filter initializations, which is applied
in all simulations of earlier sections. The rightmost bars
present the results of distributed max-SINR algorithm. The
bars on the left and right sides of the middle indicate the
results of the proposed distributed algorithm with 1 itera-
tion and 2 iterations of linear SINR target search, respec-
tively. As the iteration number is increased, results closer to
the SINRs achieved by the distributed max-SINR algorithm
can be obtained. In summary, by fixing the transmit power
constraints, but by searching for higher feasible SINR targets,
higher SINRs can be achieved at the cost of increased power
consumptions. This is an important design trade-off in wire-
less networks. The results in Fig. 10 are obtained over 20
Monte Carlo channels.

FIGURE 10. Average total power consumptions and sum-SINRs in the
K3-M8-N8-R3 network configuration at 12-12 dB.

G. DISTRIBUTED JOINT TRANSMIT AND RELAY
BEAMFORMING FILTER DESIGN (Table 4)
Distributed joint transmit and relay beamforming filter
design improves the total power saving to achieve the
same sum-SINR at the cost of increased complexity. Along
the similar lines of the complexity analysis for transmitter
side in Section V-B, the additional complexity due to the
added distributed relay beamforming design is obtained as
O
(
B(2N + 5)

)
per relay, aka processor. Hence, as seen in

Table 4 for the K3-M10-N10-R3 network, the additional
total complexity for all relays per iteration is given by
O
(
RB(2N + 5)

)
or O

(
3·6·(2·10+5)=450

)
, where B = 6

since each user transmits 2 streams as noted in the beginning
of the section. On the other hand, as obtained in Section V-B,
the total complexity of distributed transmitter optimization
for all streams per iteration isO(B(M+5)=6·(10+5)=90).

TABLE 4. Performances of distributed transmit vs. distributed joint
transmit and relay beamforming filter designs for the
K3-M10-N10-R3 network at 21-21 dB.

Each relay serves all streams to achieve the SINR targets.
Thus, the distributed optimization at the relay side has higher
number of constraints that substantially increases the total
complexity. For the special case M=N�5, the ratio of
the total complexities of the relay and transmitter sides is
obtained as

O
(
RB(2N + 5)
B(M + 5)

)
≈ O(2R). (49)

Due to the joint optimization, the average iteration number
also increases as seen in Table 4. Therefore, the average total
complexities of the distributed transmit and the distributed
joint transmit and relay beamforming design algorithms
are given as O(16 · 90 = 1440) and O(23 · 540 = 12420),
respectively. The first three rows of results in Table 4 are
obtained via numerical results averaged over 20 Monte Carlo
channels. The total power saving increases as more resources
are allocated to the relay side, i.e., R > K , N > M , and
SNRR > SNRT.

The conclusions drawn from the numerical results of
distributed transmit beamforming optimization are also valid
for distributed joint transmit and relay beamforming opti-
mization. For instance, recall the total power and sum-SINR
results of increasing SNRT 12-42, 21-42, 42-42 dB and
increasing SNRR 12-12, 12-21, 12-42 dB points in Fig. 3.
For the former case, higher sum-SINRs are achieved with
lower power consumptions. On the other hand, for the
latter case, increasing SNRR simply increases both the
total power consumption and the sum-SINR. Clearly, for
distributed transmit beamforming optimization, providing
more resources to the transmitter side returns better results.
On the other hand, for distributed joint transmit and relay
beamforming optimization, providing more resources to the
dominant side returns better results. For instance, when the
relay side is dominant R� K , clearly, increasing SNRR
returns better results than increasing SNRT.

VIII. CONCLUSION
A distributed ADMM algorithm is proposed to design
transmit beamforming matrices for a generic wireless relay
network that has been hardly studied in the literature due
to the challenges raised by the coexistence of multi-stream
transmissions, multiple multi-antenna nodes, and the pres-
ence of direct links. The traits of the proposed algo-
rithm are low complexity, iteration number, and message
exchange loads. Due to the challenge that the direct links
bring, an approximate SINR formulation at the relay side is
proposed to design distributed joint transmit and relay beam-
forming filters that further improve the total power saving at
the cost of increased complexity.

APPENDIX A
CLOSED-FORM
SOLUTIONS OF MAX-SINR FILTERS
Both downlink and uplink iterations of the distributed
max-SINR algorithm are based on the covariance matrix of
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interference signals plus noise, which is second-order statis-
tics information. The covariancematrix of downlink direction
is similar to the one given for interference channels, i.e., there
are no relay nodes, in [27]. In downlink direction, based on
the covariance matrix at stream (k, l)

Qk,l =

K∑
j=1,j 6=k

HkjUjUH
j H

H
kj +

dk∑
m=1,m6=l

Hkkuk,muHk,mH
H
kk

+Rnk /dk , (50)

the receive filter is obtained as

vk,l =
Q−1k,lHkkuk,l
||Qk,l ||

. (51)

For the uplink iteration, we initially need to obtain the
reciprocal channel

←−
H ′k.i of H

′
k.i in (5). The effective channel

in the uplink direction from transmitter i to receiver k through
all relays is given as

←−
H ′k.i =

R∑
r=1

←−
H ′′kr
←−
F r
←−
G ri, (52)

where
←−
G ri , GH

ir and
←−
H ′′kr , HH

rk are the Nr ×Mi and
Mk × Nr channel matrices between transmitter i and relay r ,
and relay r and receiver k , respectively. The covariance
matrix of uplink direction can be obtained by interpreting the
time domain, i.e., the two time slots due to the relay network
communication, as the space domain. Thus, the covariance
matrix at stream (k, l) is given as

←−
Q k,l =

K∑
j=1,j 6=k

(
←−
J kj
←−
U j(1)

←−
U H
j (1)
←−
J H
kj

+
←−
H ′k.j
←−
U j(2)

←−
U H
j (2)
←−
H ′Hk.j

)
+

dk∑
m=1,m 6=l

(
←−
J kk
←−u k,m(1)

←−u H
k,m(1)

←−
J H
kk

+
←−
H ′k.k
←−u k,m(2)

←−u H
k,m(2)

←−
H ′Hk.k

)
+
←−
R nk /dk , (53)

where
←−
J kj , JHjk is theMk×Mj channel matrix for the direct

link between transmitter j and receiver k , and

←−
R nk ,

(
σ 2
k (1)+ σ

2
k (2)

)
IMk+σ

2
r

R∑
r=1

←−
H ′′kr
←−
Fr
←−
F H
r
←−
H ′′Hkr

(54)

is the noise covariance matrix. Then,

←−v ′k,l =

←−
Q−1k,l

(
←−
J kk
←−u k,l(1)+

←−
H ′k.k
←−u k,l(2)

)
||
←−
Q k,l ||

(55)

and finally, the receive filter is obtained as

←−v k,l =
√
pk/dk

←−v ′k,l
||
←−v ′k,l ||

. (56)

As detailed in [27], after obtaining the receive filter (51)
in the downlink direction, the uplink direction is iterated by
setting the transmit filter as←−u k,l = vk,l . After obtaining the
receive filter (56) in the uplink direction, the downlink direc-
tion is re-iterated by setting the transmit filter as uk,l =

←−v k,l .
The uplink and downlink iterations are continued until the
convergence.

APPENDIX B
DERIVATION DETAILS OF SINR APPROXIMATION (43)
The term ζ

i,n
k,l (2) in (42) can be rewritten as

vHk,l(2)H
′
k.iui,n = vHk,l(2)

R∑
r=1

GkrFrH′′riui,n

=

R∑
r=1

aHklrFrbrin = fTr cklrin + rklsin, (57)

where

aklr , GH
krvk,l(2), brin , H′′riui,n,

rklsin ,
R∑

s=1,s 6=r

aHklsFsbsin,

cklrin , brin ⊗ a∗klr , and fr , vec(Fr ).

⊗ and vec(.) denotes the Kronecker product and denotes
staking the columns of a matrix in a column vector, respec-
tively. Therefore,∣∣vHk,l(2)H′k.iui,n∣∣2
= (fTr cklrin + rklsin)(f

T
r cklrin+rklsin)

∗

= fTr cklrinf
H
r c
∗
klrin+f

T
r r
∗
klsincklrin+f

H
r rklsinc

∗
klrin+|rklsin|

2

= fHr c
∗
klrinc

T
klrinfr+f

H
r rklsinc

∗
klrin+r

∗
klsinc

T
klrinfr+|rklsin|

2

= fHr Cklrinfr+fHr dklrin+d
H
klrinfr+|rklsin|

2, (58)

where

Cklrin , c∗klrinc
T
klrin and dklrin , rklsinc∗klrin.

Now consider the following term in (9)

vHk,l(2)
R∑
r=1

GkrFr =
R∑
r=1

aHklrFr

= [fTr oklr1 f
T
r oklr2 . . . f

T
r oklrN ]+ tHkls, (59)

where

oklrn , en ⊗ a∗klr , tkls ,
R∑

s=1 s 6=r

FHs akls, and

en is an N × 1 zero vector except 1 at the nth row. Therefore,

∣∣vHk,l(2) R∑
r=1

GkrFr
∣∣2 = N∑

n=1

∣∣fTr oklrn∣∣2 + tkls
= fHr

( N∑
n=1

o∗klrno
T
klrn

)
fr + tkls, (60)
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where tkls , tHklstkls. Hence, the noise power in the second
time slot is

σ 2
nk,l (2) = σ

2
r

∣∣vHk,l(2) R∑
r=1

GkrFr
∣∣2 + σ 2

k (2)v
H
k,l(2)vk,l(2)

= fHr Oklr fr + σ 2
klr , (61)

where

Oklr , σ
2
r

N∑
n=1

o∗klrno
T
klrn and

σ 2
klr , σ

2
r tkls + σ

2
k (2)v

H
k,l(2)vk,l(2).

Hence, the approximate SINR as a function of relay filter fr
is given as

ŜINRk,l(fr ) =
x∑

(j,m)6=(k,l)
(
y
)
+ σ̃ 2

nk,l

, (62)

where

x , ζ k,lk,l (1)+f
H
r Cklrklfr+fHr dklrkl+d

H
klrklfr+|rklskl |

2,

y, ζ j,mk,l (1)+f
H
r Cklrjmfr+fHr dklrjm+d

H
klrjmfr+|rklsjm|

2,

σ̃ 2
nk,l, σ

2
k (1)v

H
k,l(1)vk,l(1)+ fHr Oklr fr + σ 2

klr .

Furthermore,

ŜINRk,l(fr )=
fHr Cklrklfr+fHr dklrkl+d

H
klrklfr+r1,klrkl

fHr C̄klrjmfr+fHr d̄klrjm+d̄
H
klrjmfr+r2,klrjm

,

(63)

where

r1,klrkl , ζ
k,l
k,l (1)+ |rklskl |

2,

C̄klrjm ,
∑

(j,m)6=(k,l)

Cklrjm +Oklr ,

d̄klrjm ,
∑

(j,m)6=(k,l)

dklrjm and

r2,klrjm ,
∑

(j,m)6=(k,l)

(
ζ
j,m
k,l (1)+ |rklsjm|

2)
+ σ 2

k (1)v
H
k,l(1)vk,l(1)+ σ

2
klr .

Note that ŜINRk,l(fr ) is in an inhomogeneous quadratic form.
To rewrite it in homogeneous quadratic form, let

C̃klrkl ,

[
Cklrkl dklrkl
dHklrkl r1,klrkl

]
and

C̃klrjm ,

[
C̄klrjm d̄klrjm
d̄Hklrjm r2,klrjm

]
. (64)

Thus, (43) is obtained.
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