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ABSTRACT Recently, the Infrastructure as a Service Cloud (IaaS) (e.g., Amazon EC2) has been widely
used by many organizations. However, some IaaS security issues create serious threats to its users. A typical
issue is the timing channel. This kind of channel can be a cross-VM information channel, as proven by many
researchers. Owing to the fact that it is covert and traceless, the traditional identification methods cannot
build an accurate analysis model and obtain a compromised result. We investigated the underlying behavior
of the timing channel from the perspective of the memory activity records and summarized the signature
of the timing channel in the underlying memory activities. An identification method based on the long-
term behavior signatures was proposed. We proposed a complete set of forensics steps including evidence
extraction, identification, record reserve, and evidence reports. We studied four typical timing channels, and
the experiments showed that these channels can be detected and investigated, even with the disturbances
from normal processes.

INDEX TERMS Digital investigation, IaaS security, timing channel.

I. INTRODUCTION
Recently, there has been significant attention drawn to the
security of the Infrastructure as a Service (IaaS) Cloud, with a
particular focus on the timing channel [1], [2]. Reference [3]
first proposed cross-VM timing channels in the cloud envi-
ronment. They stated that any physical machine resources
multiplexed between the attacker and the target might form
a potential leakage channel between the virtual machines.
Recent studies show that this kind of attack can successfully
steal from co-resident VM instances some private informa-
tion, including private keys, which are set up by key manage-
ment schemes [4]–[6].

To prevent the timing channel, some protection mecha-
nisms have been proposed. sHype [7] is a mandatory access
control (MAC)-based security extension to the Xen hyper-
visor that allows the application of various security policies
on VMs. Reference [8] presented a hybrid approach, giving
security tools the ability to actively monitor while benefitting
from the increased security of an isolated virtual machine.
They all focus on providing an integrity measurement to the
hypervisor by introducing a software component.

However, these protection mechanisms may fail because
the timing channel is created by sharing resources. These
mechanisms observe behaviors of a VMbymonitoring hyper-
calls in a hypervisor and look for the regularity in the system
operation records. A hypercall is a software trap from a
domain to the hypervisor, just as a system call is a soft-
ware trap from an application to the kernel. Domains will
use hypercalls to request privileged operations like updating
page tables. However, the system operations records obtained
by these protection mechanisms are abstracted behaviors of
the system layer, and the information they contain is not
complete. Timing channels use time information from shared
resources, which are not reflected by the general system
operation records. In this paper, we propose a behavior obser-
vation mode on memory access activity. The lower memory
activity records, which provide crucial evidence for forensics
and a good basis for further analysis, can also provide com-
plete information to understand the behavior of the timing
channel process.

The presence of a timing channel is difficult to iden-
tify. It can run continuously without leaving a trace or an
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alarm. All behaviors on the timing channel are legal and
normal. This creates challenges to their identification and
forensics. After careful investigation, we found that, although
single behavior is normal, the timing channel shows regu-
lar patterns in long-term behaviors. These signatures pro-
vide a good basis for our automatic detection and forensic
feature.

In this paper, only cross-VM timing channels new to IaaS
are considered. Four typical scenarios (e.g. CPU load based,
Cache based, shared memory based channels, IP timing
channel) are demonstrated, and their features are studied
in-depth. We present an identification method in IaaS and
introduce an investigation on the timing channel. Our method
includes three steps. First, to record the behavior of the timing
channel, a page-level memory record and packet record are
designed. Second, an automatic identification algorithm is
proposed based on the timing channel’s long-term behavior.
Finally, a memory dumpwill be obtained, and the binary code
of suspicious processes will be analyzed for the forensics
scheme.

A prototype system was implemented on Xen. The effec-
tiveness of identifying the four typical timing channels was
investigated. Meanwhile, we attempted to identify a cache-
based side-channel attack and simulate a flush-reload [9]
attack to extract the private encryption keys from GnuPG.
The flush-reload attack is based on shared memory with
three stages. In Flush stage, monitored memory blocks are
removed from cache. Then, in Trigger stage, attackers are
waiting for target objects to access shared memory. Finally,
monitored memory blocks are reloaded in Reload stage.
As whether a memory block is in cache affects its reload-
ing time, researchers can determine memory blocks that
are accessed by the target objects, according to the loading
time. In addition, the experiment results show that our sys-
tem can identify these channels, even with the disturbances
from normal processes, and the introduced overhead is up to
42% in the worst case, which is lower compared to current
methods.

This paper makes the following contributions:
• We introduce memory activity records, which provide a
good basis for the timing channel and can extract mean-
ingful information. The time information of the memory
record reflects the behavior of the timing channel.

• We summarize the behavior signature of the timing
channel based on the investigation of long-term behavior
activities on the memory activity. We build a precise
analysis model and design an automatic identification
algorithm.

• We implemented a complete set of forensic tools. Based
on the recognition function, we add the evidence acquisi-
tion reservation and analysis, which achieves the foren-
sic schema for the timing channel in the cloud.

• We built our prototype system on the Xen platform
and tested it with four typical time channels. Addition-
ally, we compared identification algorithms from similar
works in our experiments and introduced an analysis

method for memory activity records from packet records
on the network timing channel.

The rest of this paper is organized as follows: Section II
discusses the related work. Section III describes the timing
channel threat in the cloud. Section IV describes the long-
term identification. In Section V, an overview of the prototype
system is given. Section VI describes the experiment and
evaluation. Our paper concludes in Section VII.

II. RELATED WORK
Recently, several efforts have been made to detect timing
channels in the cloud environment, and to offer protections
to IaaS. A typical proposal is a hardware-based solution [10].
However, these solutions have high costs and latency. Con-
sidering this, HomeAlone was designed to proactively detect
the co-residence of unfriendly VMs to offer immediately
deployable protections to the IaaS [2]. It detected the pres-
ence of a malicious VM by acting as a timing channel
receiver and observing the cache timing anomalies caused
by another receiver’s activities. Different from HomeAlone,
XenPump [11] placed hooks into the Xen hypervisor mon-
itored hypercalls and added latencies to mitigate the threat
from the timing channels.

Currently, the main detectionmethod focuses on the timing
channel behavior. For instance, C2Hunter [12] presented a
two-phase synthesis detection algorithm using Markov and
Bayesian models based on error-corrected four-state automa-
tion, which modeled the timing channel scenario in cloud
computing. Reference [13] used a directed information flow
graph, taking advantage of the source code analysis to detect
the timing channel.

Cabuk et al. [14] illustrated the threat from IP covert
timing channels and developed two methods for detect-
ing IP covert timing channels by identifying the regular-
ity of the inter-transmission times. These methods worked
well for noiseless channels but failed with a high level of
noise.

Compared to HomeAlone, our method not only detects
the existence of malicious behavior but also collects related
evidence of these timing channels. Several papers [15], [16]
have studied related security issues. In addition, differ-
ent from XenPump, our method does not insert additional
modules into the hypervisor. We use the EPT (Extended
Page Table) modification interface [17] supplied by Xen in
dom0 to monitor the memory activity and place a hook on
the NIC to retrieve packet information. Compared with the
C2Hunter [12] and [13], our method focuses on the under-
lying view of single process memory activities, which have
more specific and useful information. This not only allows
our method to have a higher detection rate but also signifi-
cantly reduces the false positive rate.

Our work concentrates on investigating (including evi-
dence collection and analysis) timing channels in IaaS.
Research on how to investigate them after identification is
necessary. We have not found any other work on this issue.
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III. BACKGROUND AND MOTIVATION
A. TIMING CHANNEL IN IAAS
IaaS refers to online services that abstract the user from
the details of the infrastructure such as physical comput-
ing resources, location, data partitioning, scaling, security,
backup, etc. Although virtualization technology provides
strong isolation for the cloud, the service provider is a shared
infrastructure. One of the problems introduced by a shared
environment to IaaS is the timing channel. The main idea
of the timing channel is that every logical operation in a
computer takes time to execute, and the time can differ based
on the shared environment in the IaaS. With precise measure-
ments of the time for each operation, an attacker can work
backward to the shared environment [2]. Themost convenient
resources are a CPU, cache, memory, and a network, which
makes the timing channel more effective.

In this paper, only the cache-based, load-based, and shared
memory belonging to cross-VM channels are considered. We
classified them into local channel categories.

1) LOCAL CHANNEL
Malicious processes Pi and Pj are located on the same hard-
ware platform. Pi leaks confidential information to the Pj
using the timing channel through shared local resources (e.g.,
cache, shared memory, CPU load.). They encode messages
into the time information of the shared source such as cache
access latency, memory access latency, etc. [1], [18], [19].

2) NETWORK CHANNEL
Malicious processes Pk and Px communicate with each other
through the network resource. The confidential information
is encoded into the different packet time intervals. They are
located on different domains or in different hardware plat-
forms, which makes it easier to implement and create more
significant threats (e.g., IP timing channel) [14].

B. THREAT SCENARIOS OF TIMING CHANNEL
1) CPU LOAD-BASED CHANNELS
[19] These can be approximated using the amount of time
taken for certain computations. The confidential information
is pre-encoded into a binary sequence. A sender and a receiver
transfer information by changing and observing the CPU load
according to a certain communication protocol. The sender
runs on one virtual machine, and the receiver runs on another
virtual machine on the same hypervisor. For example, a long
waiting time to complete a task transmits bit 1, otherwise, bit
0 is transmitted.

2) CACHE-BASED CHANNELS
[1], [20] The cache-based channel considers the different
cache access latencies as different bits. The sender uses
the idle cache access as transmitting bit 0 and the frequent
accesses to a memory block as transmitting bit 1. The receiver
accesses a memory block and observes the access latencies.
High latency indicates the sender is removing the receiver’s

data from the cache, and bit 1 is transmitted; otherwise, bit
0 is transmitted.

3) SHARED MEMORY-BASED CHANNELS
[18] The shared memory-based channel considers different
memory access intervals as different bits. The sender sends
covert messages by controlling the data sending time, and the
receiver receives the message by observing the data arrival
time. The confidential information is encoded into the differ-
ent intervals. For example, bit 1 and bit 0 denote longer and
shorter intervals.

4) IP TIMING CHANNEL
[14] The receiver and sender agree on a time interval and the
starting protocol. During each time interval, the sender either
transmits a single packet or maintains silence. The receiver
and sender also agree on a different time interval. The sender
transmits a single packet with a different time interval. The
receiver monitors the interval between adjacent packets to
decode the message.

C. CHALLENGES
In recent studies, the timing channel has been modeled using
transitional behavior analysis methods, such as system oper-
ation analysis and tainted analysis. However, it is difficult to
construct an accurate analysis model because of its misinter-
pretation of the behavior semantics, which reduces the recog-
nition rate and increases the false alarm rate. Meanwhile,
the isolation mechanism of the cloud makes forensics more
difficult and exposes the existence of monitoring procedures,
leading to an anti-forensic response. It means that attempts
are made to negatively affect the existence, amount or quality
of evidence from a crime scene, or make the analysis and
examination of evidence difficult or impossible to conduct.
To identify and investigate the timing channel in the cloud,
we need solve the following challenges:

• How to extract meaningful information. The timing
channel is concerned with the timing information. All
of its behaviors are ordinary user behavior, such as
reading files, loading programs, etc., which makes it dif-
ficult for the traditional behavior log records to correctly
express their real purpose. To obtain valuable informa-
tion, we must find another way to express the timing
channel behavior information. This paper presents a
method based on memory activity records analysis to
express the processes of the timing channel.

• There is still no accurate analysis model for the local
channel. In the existing research, the local channel is
analyzed using the system behavior or the information
flow. Due to the concealment of the time informa-
tion, the analysis model constructed from the traditional
behavior analysis makes accurate identification difficult
and leads to a high false alarm rate. To solve this,
we summarize the long-term behavior signature of the
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FIGURE 1. Transmission procedure of Timing channel.

timing channel based on the memory activity records
and build an accurate model with a high recognition rate.

• How to investigate in the cloud environment under
isolated conditions without being discovered by the
customer. The isolation of the cloud environment makes
it necessary to modify the client or modify the kernel
when monitoring the client. This leaves traces, making
it easy for malicious programs to discover and create an
anti-forensic response. Therefore, the main body of the
monitor is placed in a virtual machine manager, and only
the existing system interface is called to implement the
monitoring of the memory record.

IV. LONG-TERM BEHAVIOR SIGNATURE BASED
IDENTIFICATION METHOD
A. TIMING CHANNEL CHARACTERS
As shown in Fig. 1, during a typical transmission cycle of the
timing channel, the confidential information is transmitted
from the sender to the receiver located on different virtual
machines. The sender of the timing channel encodes the
information into binary bits and changes the properties of the
shared resources according to the bits. The receiver observes
the changes and decodes the confidential information from
these changes. The sender and receiver predetermine the
parameters and repeat the cycle until all the confidential
information has been transmitted.

Summarizing the above describes the long-term behavior
signature of the timing channel:Repetitive access to a single
shared resource over a period of time.

There are two ways for the timing channel to encode
information: Storage timing channel (STC): in the same
time interval, the sender’s selection is active or silent. Activity
represents one and silence is zero. Distinct timing chan-
nel (DTC): different time intervals for encoding information.
For example, a long interval is one, and a short interval is
zero, which can be seen on the network channel.

During behavioral analysis, we use the network packet
communication situation on the network channel to reflect the
timing channel behavior. For the local channel, we acquire
system operations from domU by adding a module into the
hypervisor to intercept hypercalls, but additional changes to
the hypervisor are required. Additionally, the system opera-
tion information, such as the time information, is not com-
plete and cannot be accessed directly. To get complete infor-
mation about the local channels, we investigate the memory
access activity.

The CPU accesses the memory to obtain data when
it executes instructions or extracts data. There are three

permissions for accessing memory. The execution permission
is used for the instruction area of the processed memory area.
For the data area, read and write permission are granted. After
careful investigation, the transmission cycle of the timing
channel is repeatedly executed to complete the data trans-
mission. Every transmission cycle accesses the same area
of instruction and data. Therefore, we observed the lower
behavior to determine the regularity of the timing channel.
Additionally, the probability of repeatedly executing the same
instruction area is higher than the data area, so we focused on
the memory data read operation to investigate timing channel
characteristics.

In conclusion, we identified the following signatures of the
local channel in IaaS:

1) During the running of the timing channel, it is always
fixed to the same process.

2) During the running of the local channel, the process
will repeatedly access the fixed memory page at inter-
vals. For the network channel, the packet will repeat-
edly be sent at intervals or received from a fixed IP and
port to a fixed IP and port.

3) The DTC behavior logs show the level of two different
fixed intervals.

4) The STC behavior logs show a variety of time intervals,
and the maximum interval time should be an integer
multiple of the minimum interval time.

B. DETECTION METHOD
We designed an identification method based on the long-term
behavior signature, despite the different records of three types
of local channels. The input for our method is the interval
time of the adjacent activity. Therefore, we pre-computed the
interval time of the memory activity records. As shown in
Algorithm 1, our method has the following phases:

1. Found repeat operation. For the memory activity
records, we first locate the memory page that was
repeatedly accessed. In addition to the process of
accessing, the repeated page should also be fixed. For
packet records, the same IP and the same port that
repeatedly sends out or receives incoming packets is
targeted, and the destination IP and packets port should
be fixed. As shown in lines 3 to 8, based on signatures
1) and 2), we perform initial filtering to remove the
meaningless records. Access_records() represents the
number of the access records of the memory page x.
Pid() represents the process of accessing the mem-
ory page x. RepeatThreshold represents the minimum
number of accesses to the memory to determine the
suspicious process. The default is set to 100. After the
initial filter, the list of suspicious processes is added for
the next analysis.

2. Computed intervals. We extracted and sorted the
records of the previous suspicious process, then com-
puted the interval time of the adjacent operations,
as shown in lines 9 to 10.
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Algorithm 1 Identify Timing Channel
1: Input: the memory activity records and

network packet records
2: Output: the suspicious process
3: if access_records(x) >= RepeatThreshold
4: for i = 1 to access_records(x)
5: if pid[0](page(x)) != pid[i](x)
6: break
7: end for
8: if i == access_records(x)
9: suspicious.add(x)
10: end if
11: end if
12: for i = 1 to access_records(x)
13: interval.add(time[i](x) – time[i−1](x))
14: end for
15: SORT(interval)
16: for i = 1 to access_records(x)
17: if (| interval[i] - interval[i−1]| / interval[i−1])

<= K1
18: group.add(interval[i])
19: else
20: group.addGroup()
21: group.add(interval[i])
22: end if
23: end for
24: for i = 1 to length(group)
25: b = line_program(group[i])
26: if b >= K2
27: suspicious.remove(x)
28: break
29: end for
30: if length(group) == 2
31: type = DTC
32: else if length(group)> 2 and average(group[n])%

average(group[1]) == 0
33: type = STC
34: end if

3. Sorted IA (inter-arrival) times list.We sort the inter-
val time of the adjacent operations, as shown in line 11.

4. Smoothness calculation. From the sorted list, we set
the time thresholds, and we separate the similar IA
times into each threshold. Then, we compute the rela-
tive difference in each threshold. We use line program-
ming to compute the smoothness. For the timing chan-
nel, the regression coefficient should be close to zero in
each threshold. For the timing channels, the majority of
the pairwise differences in the sorted list of IA times
will be very small. It is only large for jumps in the
step function, as shown in lines 12 to 22. We calculate
the difference between adjacent thresholds. When the
adjacent value difference is greater than K1, a new
threshold is created. If the adjacent value difference is
less than K1, the value is added. Finally, to calculate the

regression coefficient b for each group, when b is less
than K2, the data group is smooth and effective. K1 and
K2 are set to 0.1 and 0.01 by default.

5. Pattern match.As shown in lines 23 to 26, we identify
several thresholds, based on signatures 3) and 4). The
DTC will show two smoothness thresholds. The STC
will show more than two smoothness thresholds, and
the maximum threshold should be an integer multiple
of the minimum threshold.

V. IMPLEMENTATION
The introduction of the memory activity records solves the
challenge of finding meaningful information that can record
the timing channel. Adding the recognition algorithm pro-
posed above, we obtain the evidence acquisition and recog-
nition function in the forensic process. Therefore, we add
the evidence reservation and analysis module, which forms
a complete set of forensics tools to achieve the forensics for
the timing channel in the cloud environment.

We implemented our prototype system on a desktop com-
puter with an Intel R©CoreTMi5-3330 3.00 GHz CPU, 8 GB
RAM, and 256 KB L2 cache. The version of Xen hypervisor
was 4.4.3.

Our system included a monitor, detector, evidence collec-
tor, and verifier module. The monitor collected the system
operation records. The detector identified the suspicious pro-
cesses on the timing channel from the records. The evidence
controller collected the relevant evidence and stored it in
the database. The verifier obtained the binary code of the
suspicious process and analyzed the communication protocol
to reconstruct the crime scene.

A. MONITOR AND DETECTOR
We placed the monitor modules into dom0, which was trans-
parent to domU. The monitor module was responsible for
recording the memory activity.

For the memory activity recording, we used Intel VT EPT
[17] techniques to monitor the guest VM’s memory region.
The monitoring information was delivered to dom0 using
event channels provided by Xen. No modifications of the
guest VMs were needed in the procedure. The monitor
was first initialized using the vmi_init function. Then, the
vmi_register_event function registered the memory events
on the guest VM’s memory region to monitor the VM’s
memory in real-time. To trigger the event, the access control
mechanism in EPT was adopted to set the read permission on
the target memory region. When a guest process wanted to
access the memory page, a violation event was triggered and
trapped in the hypervisor. Meanwhile, the access control was
canceled to let the guest process continue executing. The vio-
lation event was passed through the event channel in the Xen
hypervisor, then the mem_monitor_cb function was called to
handle it. Function mem_monitor_cb recorded crucial details
such as PID, cr3, process name, access time, page, etc. After
handling the violation event, the vmi_register_event function
was invoked again to register the memory event to reset
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FIGURE 2. The architecture of the monitor.

the access permission on that page and to wait for the next
memory access request.

Packet recordings were performed as follows. When the
process sent a packet, the guest operating system wrote it
to a virtual network interface card. We obtained the packet
information using the libpcap tool. The structure pcap_pkthdr
provided by the libpcap tool obtained accurate time infor-
mation. When the libpacap received a packet and passed the
packet to the monitor, the monitor recorded the packet infor-
mation, including the source IP, source port, time, destination
IP, destination port, etc.

We placed the detector module in the dom0 which
obtained records from the database to analyze. The outputs
of the detector were the suspicious processes.When detecting
the presence of the timing channel, the detector notified the
evidence collector, while the next detection cycle continued
probing the timing channel data and combining the data
belonging to the same timing channel.

B. EVIDENCE COLLECTOR AND VERIFIER
When the evidence collector received the timing channel sig-
nal from the detector, it used the VMM introspection mecha-
nism to obtain the guest memory dump through the command
dump-core. The memory dump contained the evidence of the
timing channel’s suspicious processes.

The verifier was implemented as a volatility [21] plugin,
which is a memory extraction utility framework. If the sys-
tem detected the network channel, we extracted the network
connection through the linux_netstat plugin, then identified
the suspicious process using the corresponding suspicious
port. After that, we began our memory analysis. We identi-
fied the suspicious processes’ memory address through the
linux_proc_maps plugin. The linux_dump_map copied the
data of the suspicious process.

After obtaining the binary code from the suspicious pro-
cess, the code was disassembled using the objdump tool.
Then, we performed the static analysis based on the timing

channel code signature. This step further confirmed the pres-
ence of the timing channel to reduce the false positives and
obtain the communication protocol from the analysis of the
communication code.

In our prototype system, we stored the record in each step
and traced the source of the evidence during the subsequent
investigation. The entire system contained three databases
to store the evidence: the monitor database, the detector
database and the memory evidence database. The monitor
database kept all of the records during monitoring. The detec-
tor database stored the data filtered by the identification
and joined the suspicious process information in the original
records. The memory evidence database held each suspicious
process memory dump and the results of the binary code anal-
ysis. The records from the three databases were connected to
form a complete chain of evidence to ensure the validity and
integrity.

VI. EVALUATION
We tested the four typical local timing channels in our system.
We ran Ubuntu14.04 in dom0 and two guest VMs, each of
which was allocated 1024 MB of virtual memory.

A. CASE STUDY FOR THE LOCAL CHANNEL
Considering the cache-based timing channel, we used the
flush-reload code to simulate an attack, which used the cache-
based channels to extract the private encryption keys from a
victim program running GnuPG. We ran the flush-reload spy
program on domA and ran the GnuPG encryption program
on domB. DomA had the GnuPG encryption table address in
domB and mapped to their memory address space.
Step 1: As shown in Fig. 3(a), we checked the monitoring

records in domA. Then, we found the page 0x195a0000,
which had repeatedly been accessed over a period of time.
We marked it and checked the access. After comparison,
we found that the process of accessing the page was always
the PID for 2767 belonging to spy.exe.
Step 2:As shown in Fig. 3(b), we filtered out the accessing

memory pages records 0x195a0000 and calculated the time
interval between the two adjacent access records.
Step 3: As shown in Fig. 3(c), with the sorted IA list of

the memory page 0x195a0000 access time, we filtered the
meaningless thresholds, which had a count less than 5% of a
total. In this case, we identified five thresholds.
Step 4: Smoothness calculation. A meaningful threshold

for the timing channel is smoothness. With the linear pro-
gramming technique, the regression coefficient should be
close to zero.We calculated the five thresholds. All the results
were close to zero.
Step 5: Pattern match. By comparing the regularity of

the records with the known patterns, we found its behav-
ior pattern matched the STC pattern. That was the multiple
integer relationship between the maximum threshold and the
minimum threshold. In our records, the minimum interval
was 200000 ns.
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FIGURE 3. Experiment on the local channel. (a) Memory activity records. (b) The IA records of memory page 0x195a0000. (c) The sorted IA.

Step 6: After the timing channel was found, the evidence
collector stored the memory dump of domA and domB.

The additional information was used to determine the type
of timing channel. We identified the suspicious process spy,
and we also found the process of the GnuPG encryption
program. The page activities were cross-performed, and the
domA and domB shared a physical cache. Thus, it was deter-
mined that the currently running timing channel was a cache-
based channel attack and its target was the GnuPG encryption
process in domA.

In conclusion, there was a timing channel attack in the
domB, and we conducted a binary code analysis to confirm
its existence with more evidence.

When the suspicious process was detected, the system
automatically extracted the current memory dump after the
suspicious process was confirmed. We located the memory
address of the process based on the PID record and then
extracted data from the target memory for further evidence
analysis.

B. CASE STUDY FOR THE NETWORK CHANNEL
In this experiment, we simulated a simple IP timing channel.
We set the different interval times (0.3 sec and 0.5 sec) for the

entire communication. We ran the sender process on domA
and the receiver on domB. An empty content UDP packet was
transported between them.
Step 1: As shown in Fig. 4(a), we reviewed the packet

records and found packets repeatedly sending on port
48628 in domA. Then we determined whether its destination
IP and port were fixed. We found all the packets sent to the
IP belonged to domB on port 6789.
Step 2: As shown in Fig. 4(b), we filtered out the sending

packets records by port 48628 and calculated the time interval
between two adjacent packet records.
Step 3: As shown in Fig. 4(c), by comparing the regular

packet sending interval, we sorted the packet records IA and
identified two meaningful thresholds.
Step 4: Smoothness calculation. We calculated the two

thresholds using the line program. All the regression coef-
ficients were close to zero.
Step 5: Pattern match. We identified two different interval

thresholds; the high was 0.5 sec, and the lowwas 0.3 sec. This
is a typical DTC pattern.
Step 6: We located the suspicious process iptming.exe on

port 48628, then marked it and copied its process data. We
disassembled the iptiming.exe binary code using the objdump
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FIGURE 4. Experiment on the network channel. (a) Sending packets records. (b) The packet interval pattern on port 48628. (c) The sorted IA.

tool and located the communication code. We found that its
communication protocol was the DTC protocol. The time
intervals were 0.3 seconds and 0.5 seconds. We defined the
maximum interval to send 1 and the log interval to send 0.
The IP timing channel communication protocol was restored,
and the monitored records were consistent with the case.

C. EFFECTIVENESS
We introduced a similar approach to the study to evaluate
the efficiency and performance of the proposed method. The
similar methods in the current field use the two-phase synthe-
sis detection algorithm presented by C2Hunter [12]. We also
introduced the packet records detection method from network
timing channel research, such as examining patterns in the
variance and ε-similarity [14], which also uses the memory
activity records for the input.
The two-phase synthesis detection algorithm is syn-

thesized using the Markov detection algorithm and the
Bayesian detection algorithm. If the change pattern of the
shared resource properties is closer to the Markov model,
the sequence of the operations is transferring confidential
information through a timing channel. The normal opera-
tion sequences are modeled into the Bayesian model. If an

operation sequence deviates from the Bayesian model, a tim-
ing channel occurs. Markov and Bayesian models in the two-
phase synthesis algorithm are complementary. The Markov
detector detects the timing channels, and the Bayesian detec-
tor distinguishes the timing channels from the normal opera-
tion sequences.
Examining patterns in the variance examines whether the

variance in the IA remains constant. The traffic is separated
into non-overlapping windows. For each window, the stan-
dard deviation of the IA times is computed. To compute
the heuristic measure of regularity, the pairwise differences
between the windows for each pair is calculated. Finally,
to obtain a summary statistic, the standard deviation of the
pairwise differences is computed.
ε -Similarity is derived from the sorted IA times. From

this sorted list, the relative difference between each pair of
consecutive points is computed. Then, a measure of similarity
is computed, ε-Similarity, by computing the percentage of
relative differences that are less than ε.

This process resulted in a good detection rate but had
more false positives. To test the effectiveness of our method,
we set up datasets with different conditions, which were clas-
sified into two groups, normal condition, and noise condition.
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TABLE 1. Detection results of the local channel.

TABLE 2. Performance on memory detector and hypercall detector.

The noise condition included many extra normal processes
running beside the timing channel. Each dataset was tested at
least 1000 times in our experiments.

As shown in Table 1, under normal conditions, except
the variance, the others had a high success rate and low FP
(false positive). However, on the noise condition, the two-
phase, variance and ε-similarity had significant differences
in the success rate and FP. Thus, the noise from the normal
processes was still a key factor in the impact of false positives.
From the experimental results, our method maintained a high
success rate, more than 98%, even under noise conditions,
which means our method is more stable and the timing chan-
nel behavioral characteristics were accurately summarized.

D. PERFORMANCE
Currently, placing a hook on the kernel to obtain the hyper-
calls log is the main input of the timing channel detection
methods. Our method first proposed the memory activities
records as the basic input. Thus, our main concern was the
different performance impacts between them.

To ensure the accuracy of the detection, we reduced the
impact on the timing channel to ensure its normal operation
and to avoid timing channel antidetection. We conducted

three controlled experiments to observe the impact of the
detector on the performance of the timing channel. Except for
the two-phase, which was the hypercalls detector, the others
used the memory detector, including the method introduced
from the network channel detection. For the network pack-
ets monitoring, the existing research was used to intercept
the network card was implemented in the same way as our
method, so it was not compared.

Our prototype system runs on the operating system, which
means if the system is busier, it will cause a certain over-
load using real-time monitoring. As shown in Table 1, the
load-based and share memory timing channel has more CPU
consumption, and the overload is higher than the cache-
based channel. The average increase was 10%. The overload
difference was lower between the hypercall detector and the
memory detector. The memory detector was only lower than
the hypercall detector by approximately 3%, which is accept-
able for users and does not affect the stability of the guest
VM.

VII. CONCLUSION AND FUTURE WORK
In the paper, we investigated timing channels in IaaS, summa-
rized the behavior signatures of these timing channels, and
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then proposed a method to identify and investigate timing
channels based on the signature. We designed a complete
set of forensics steps and implemented our prototype system
on Xen. The experimental result showed that the prototype
successfully identifies these timing channels, even under the
disturbances from normal processes.

We tested four typical cross-VM timing channels in IaaS
and obtained a satisfactory result. However, the upgraded ver-
sions of these channels were not tested, nor were other types
of timing channels such as memory bus-based, hard drive,
etc. Therefore, more long-term signatures of these timing
channels must be summarized to improve the identification
algorithm.

The memory activities records and packet records are a
good basis for further research. More research on network
timing channel detection is recommended. Some of the anal-
ysis methods used for the network packets can also be used
for the memory activity. In this paper, the variance and ε-
similarity method from the network channel both had a good
result.

The basic idea of our method applies to many kinds of
virtual machine systems. Next, complete and stable systems
can be implemented on other virtualization platforms such as
VMware VBOX, etc.
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