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ABSTRACT Disparity upsampling techniques aim to restore high-resolution disparity maps from
low-resolution disparity inputs. These inputs must be of high quality and are often obtained via complicated
passive or active 3-D reconstruction methods. Each pixel in the input disparity maps guides the disparity
assignment in the upsampling process. The quality of the upsampled results will decreases if the initial
disparity inputs are noisy, as the upsampled results are closely related to the initial inputs. We herein propose
a hierarchical confidence-based upsampling framework that can be used to obtain relatively high quality
upsampled results even under the noisy inputs. Specifically designed confidence measuring schemes are
employed in our upsampling process, allowing the disparity assignment of only high-confidence pixels. For
an effective depth quality evaluation, we present a novel classification of the confidence according to depth-
and texture-related information and develop a confidence examination method with improved precision
by combining multiple depth confidence evaluation methods. Our hierarchical pipeline contains three
steps: confidence-based upsampling, confidence-based fine-tuning, and confidence-based optimization.
The upsampling combines multichannel information. Fine-tuning is carried out using the stereo texture
information. Optimization is conducted utilizing the Markov random field method. All these proposed
methods work together to suppress the low-confidence pixels and propagate the high-confidence pixels in
the upsampling process. The cumulative error distribution is further analyzed, revealing the effectiveness
of our confidence evaluation. Extensive comparison experiments are also performed using both the ground
truth and stereo matching disparity maps as inputs to demonstrate the advantage of our framework over
state-of-the-art upsampling methods.

INDEX TERMS Disparity upsampling, confidence evaluation, noise, hierarchical structure, multichannel
upsampling.

I. INTRODUCTION
Real-time high-resolution and high-quality 3D reconstruc-
tion has been one of the most significant issues in the
field of computer vision. It is widely applied in 3D dis-
play technology [1], [2], augmented reality (AR) [3]–[5] and
simultaneous localization and mapping (SLAM) [6].

The existing 3D reconstruction techniques are generally
classified into passive and active methods. For the pas-
sive methods, depth is estimated via correspondence from
different images. The stereo matching method, one of the
most common passive methods, retrieves depth information

from two rectified camera images [7], [8]. It can be fur-
ther divided into local and global methods. Local meth-
ods are faster but usually produce relatively low-quality
results. These low-quality results usually occur for poorly
textured (textureless, repeatedly textured or occluded) areas
or regions that do not satisfy the fronto-parallel assumption
in the matching window (such as a depth edge). In contrast,
global methods carry out the matching process by solving
a global energy function. Their results are better than the
local ones but at the cost of additional computation time. For
active methods such as the structured light scanner [9] and
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time-of-flight (TOF) [10], the depth information can be
directly acquired using the active information. In the for-
mer, surface information is retrieved via the deformation of
preknown projected image patterns, while in the latter, one
obtains depth information via TOF-based range estimation.
Unlike the passive 3D reconstruction techniques, these meth-
ods are intrinsically robust against the poorly textured areas
of a reconstructed object and can produce accurate depth
maps. Apart from the noise, however, the limited resolution
yielded by these passive techniques is the major disadvantage
preventing their utilization in areas where high-resolution
depth maps are required.

The trade-off between high resolution and high quality
to obtain depth maps in real time has led to the develop-
ment of various depth upsampling strategies [11]–[13]. One
prevailing strategy is based on the Markov random field
(MRF) [14], [15]. This strategy uses the MRF framework
and solves the upsampling problem either via a graph cut or
gradient descent. Jang and Ho [16] combined stereo texture
information with depth information obtained via TOF for
upsampling. Li et al. [17] applied a hierarchical structure
to gradually upsample the depth to the target scale. Their
method yields better upsampled results and has been proven
to be robust with respect to noise. Furthermore, the hierarchi-
cal structure is efficient because of its pyramid arrangement.
However, according to our experimental results, these state-
of-the-art methods fail to perform well when the inputs are of
low quality. In Fig. 1, the left part illustrates the direct upsam-
pling process, where the noise from the initial disparity maps
induces more disparity-biased points in the high-resolution
maps during the direct upsampling process. The right part
shows that the noise information is suppressed in the pro-
cess of upsampling, while the correct information seems to
be propagated effectively. The above comparison illustrates
that effective confidence evaluation and low-quality points
restoration are essential to achieve depth denoising in the
upsampling process.

FIGURE 1. Framework comparison between traditional upsampling
method and our proposed method. The left picture shows the traditional
depth upsampling procedure without confidence evaluation, while the
right one is based on our proposed framework. CBU, CBFT and CBOPT are
the main modules used in our framework, representing confidence-based
upsampling, confidence-based fine-tuning and confidence-based
optimization, respectively. Red pixels represent low-quality pixels, and
the circled ‘‘x‘‘ indicates the discontinuation of these low-quality pixels.

In this work, a confidence-based hierarchical upsampling
framework that can reduce noise originating from the inputs

via a carefully designed pipeline is proposed. First, a confi-
dence evaluation is designed as the core module. Many state-
of-the-art confidence evaluation strategies [18] and [19] are
based on the stereo matching cost. However, none of these
confidence evaluation strategies are effective for poorly tex-
tured areas. Therefore, coarse-to-fine confidence evaluation
is proposed to solve this issue, where confidence is classified
into two classes: well-describable confidence (WDC) mea-
suring the well textured disparity points and non-describable
confidence (NDC) measuring the poorly textured dispar-
ity points. Then, confidence is applied to guide the entire
pipeline of our hierarchical structure to propagate those
points with high confidence while restoring those points
with low confidence. Second, based on the computational
efficiency and complementarity in processing various texture
conditions (WDC and NDC), multiple upsampling methods
are proposed and combined according to the confidence guid-
ance. Third, as described above, the depth/disparity1 of pas-
sive reconstruction approaches such as the stereo matching
methods is usually noisy compared with that of the active
approaches. Therefore, disparity fine-tuning is proposed in an
attempt to correct those points with low confidence. Finally,
a confidence-based MRF strategy is applied to refine the
restored data.

In summary, our contributions in this article include the
following:

1) We propose a novel confidence-based hierarchical
disparity upsampling and enhancement framework,
in which confidence plays a vital role. The experimen-
tal results verify the high robustness and accuracy of
our system under noisy inputs.

2) We design a coarse-to-fine confidence evaluation
method, which includes a more precise confidence
classification and evaluation compared with other
methods.

3) We design a confidence-based upsampling method
using multichannel information. Fine-tuning is applied
to restore low-confidence pixels. The noisy information
is greatly suppressed and corrected after carrying out
these processes.

4) We realize all the key algorithms in our framework
using a GPU and achieve near-real-time disparity
upsampling.

II. RELATED WORKS
The state-of-the-art disparity upsampling methods and
confidence-based multiscale strategy are presented in the
following parts.

A. CURRENT UPSAMPLING METHODS
According to the core algorithm, upsampling methods can be
categorized into one of the following four classes.

1In general, disparity being inversely proportional to depth is defined as
the difference along the horizontal coordinate between the corresponding
points in the rectified stereo maps.
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1) INTERPOLATION-BASED METHODS
Early simple upsampling methods, such as bicubic inter-
polation (BCI) [20], use curve fitting for upsampling and
purely rely on depth maps. Fukushima et al. [21] provided
better upsampled results when they further used informa-
tion related to patchwise similarities within the input image
itself. Moreover, they combined local texture information
with local depth information via linear interpolation for depth
upsampling. He et al. [22] used the distribution of texture
images as guidance to generate better upsampled results via
interpolation.

2) WEIGHTED-FILTER-BASED METHODS
Among those upsampling methods that use information
related to depth and the corresponding texture image,
joint bilateral upsampling (JBU) [23] leverages both space
distance and color distance during depth assignment.
Yang et al. [24] proposed 3D-JBU, using cost volume to opti-
mize and restore detailed depth information. The noise-aware
filter for depth upsampling (NAFDU) [25] extended JBU by
using both high-scale and low-scale texture information to
preserve the beneficial properties of bilateral upsampling in
those areas where standard bilateral upsampling performed
well and to prevent artifacts in those areas where standard
bilateral upsampling was likely to cause the texture copy
problem. Xiao et al. [26] applied JBU to the upsampling
image pyramid with ameliorated kernel shapes. Compara-
tively, joint geodesic upsampling (JGU) [27] replaces the
Euclidean distance with the geodesic distance as the guide
for upsampling, demonstrating better results in depth discon-
tinuity regions with similar colors. Weighted mode filtering
(WMF) [28] adopts the weighted voting method instead of
theweighted averagemethod to obtain the final result, achiev-
ing excellent performance in terms of edge preservation.

3) MRF-BASED METHODS
Based on the common MRF-based methods, Liu et al. [14]
developed the iterative MRF-based upsampling (MBU)
method and added the self-generated depth cues from pre-
vious calculations to the depth propagation weights, which
has been proven to be more robust against depth disconti-
nuities. Jung and Ho [15] took the difference between the
depth from BCI and color-guided upsampling to evaluate the
depth quality and optimized the MRF-based objective func-
tion by a graph cut. Li et al. [17] proposed a fast MRF-based
upsampling (FGI) with a hierarchical structure. At each level,
the fusion of two-channel information and a simple depth
quantity evaluation such as [15] is applied to address the
noisy source and provide a precise result.

4) LEARNING-BASED METHODS
With the rapid development of learning-based methods
[29]–[31], machine-learning-based upsampling has attracted
more and more attention from researchers. Zhang and
Cham [32] proposed a learning-based framework in the

discrete cosine transform domain for face image upsampling.
Themethods proposed byYang et al.Yang, Timofte et al. [34]
and Kwon et al. [35] adopt sparse representation or dictionar-
ies trained from existing data to perform depth upsampling
and restoration. Dong et al. [36] proposed an end-to-end
convolutional neural network (CNN) for image restoration.
Hui et al. [37] introduced a CNN-like framework to address
the problem of depth upsampling using a multiscale guided
convolutional neural network (MSG-Net) associated with
image information.

B. CONFIDENCE-BASED MULTISCALE STRATEGY
As mentioned above, FGI also uses the hierarchical structure
strategy for fast upsampling. However, noise information will
not be suppressed effectively, since the confidence informa-
tion on the quality of the disparity is not used as the guidance
of whole procedure and the method on confidence measure-
ment is proved to be of low precision [38] and no fine-tune
strategy is proposed to process the detail information of the
disparity map.

Furthermore, the confidence-based multiscale strategy has
also been used in reconstruction tasks involving stereomatch-
ing methods [19], [39]–[41], with excellent results being
achieved according to these contributions. However, large
differences in the tasks, processing method and inputs exist
between the mentioned works and the proposed upsampling
method: those works reconstruct 3D information using tex-
ture images through optimizing the cost volume [19], while
upsampling aims at obtaining higher-resolution disparity
maps by processing the existing lower-resolution ones.

As described above, a majority of the upsampling meth-
ods use a texture image to guide the depth denosing pro-
cess, except for [15], [17], where the confidence is calculated
independently from single-view information and used for
denoising. Different from the mentioned upsampling meth-
ods, the matching information from stereo geometry and
multiple confidence evaluation strategies are used to obtain
the effective confidence evaluation result in this work. Fur-
thermore, unlike the work of Bastian et al. [17], our hierar-
chical structure with the effective confidence evaluation can
not only carry out denosing using single-view information
but also correct low-quality points by fine-tuning via stereo
matching.

III. PROPOSED METHOD
As shown in Fig. 1, traditional upsampling methods directly
obtain a high-resolution disparity map, which is possibly
of low quality because of the existing noise in the input
low-resolution map. Thus, we propose a confidence-based
hierarchical framework for disparity upsampling. It is based
on both the hierarchical upsampling structure and a quality
evaluation of disparity information. In the following subsec-
tions, we introduce our proposed system in detail.

Readers should note that the variables in a function have
values corresponding to the same level of the proposed frame-
work, unless otherwise noted.
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FIGURE 2. The overview of our system. Our system adopts the coarse-to-fine pyramid structure. Each level follows the
same procedure, which consists of three modules: upsampling, fine-tuning and optimization, all of which are guided by
the evaluated confidence. First, disparity maps from the previous level are upsampled using the confidence-based
upsampling module, which fuses multichannel information from different upsampling methods. Then,
the low-confidence points in the upsampled maps are updated via the confidence-based fine-tuning module. Finally,
confidence-based optimization is executed to carry out disparity denoising and smoothing.

A. SYSTEM OVERVIEW
An overview of our proposed system is shown in Fig. 2.
An iterative hierarchical strategy is adopted in the proposed
framework. Each layer of the framework follows the same
procedure, which consists of 3 modules: confidence-based
upsampling (CBU), confidence-based fine-tuning (CBFT)
and confidence-based optimization (CBOPT). These are
guided by the disparity confidence obtained from the confi-
dence evaluation. Next, we briefly introduce our system.

At each level, the initial sources from the last level, includ-
ing stereo disparity maps with their confidence and texture
maps, are considered as the inputs of the CBUmodule, which
performs confidence-based disparity upsampling based on
different upsampling methods. Next, low-confidence pixels
in the upsampled disparity maps are updated by the CBFT
module via a simple stereo matching method. Finally, the dis-
parity maps are refined using the CBOPT module.

The advantages of our proposed pipeline are summarized
from two aspects: first, high-quality disparity information is
maintained at a high level via the iterative hierarchical strat-
egy; second, low-quality disparity information is suppressed
and corrected during the propagation process.

B. CONFIDENCE EVALUATION
High precision is essential to achieve properly designed con-
fidence evaluation, as it takes the core position in this frame-
work according to the aforementioned description. Multiple
confidence measures based on the cost volume (CV) of stereo
matching [18] are combined to achieve a satisfactory result
with high precision. The effectiveness of this strategy was
proven by Sun et al. [19]. However, a serious reduction in
the precision of these CV-based methods will occur because
of the poorly textured areas in depth maps and the limita-
tions of the upsampling task, as discussed in the following
sections. Coarse-to-fine confidence evaluation is proposed to

overcome these issues:

Cfinal = Ccorr (λCndc + (1− λ)Cwdc), (1)

where confidence is classified into two classes: well-
describable confidence(WDC) defined in Section III-B3 and
non-describable confidence (NDC) defined in Section III-B2.
Ccorr represents the confidence obtained from the simple
confidence evaluation discussed in Section III-B1, Cndc is the
confidence generated by the NDC points classification and
evaluation discussed in Section III-B2, Cwdc is the improved
confidence at WDC points from the WDC points evaluation
discussed in Section III-B3, and λ is a binary classification
selector between NDC and WDC. As shown in (1) and
Fig. 3 (a), Ccorr is used for the initial coarse examination,
which utilizes the correspondence information to measure the
disparity rapidly. Then, the disparity is classified by λ into
WDC andNDC. Finally,Cndc orCwdc is performed to achieve
fine measurement. After this process, the uncertain confi-
dence of NDC points is isolated, and the fine measurement
of WDC points is obtained; thus, confidence-based precise
upsampling is achieved. The experimental results illustrate
that this strategy improves the final result. Next, the confi-
dence evaluation is presented in detail.

1) SIMPLE CONFIDENCE EVALUATION
This module, which carries out the coarse evaluation, aims to
isolate the obvious low-quality points from the disparity map.
The correspondences between the left and right maps in terms
of the disparity (LRDC) and intensity of the color (LRCC) are
used to evaluate the confidence of a disparity directly:

Ccorr =


1, (Clrdc > τlrdc)

∧(Clrcc > τlrcc),
τCmin , otherwise

(2)

Clrdc,x = −
∣∣DL,x − DR,x̃ ∣∣ (3)
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FIGURE 3. Overview of the confidence evaluation. (a) shows the flowchart
of our confidence evaluation. In our measures, disparity pixels are divided
into either well-describable-confidence or non-describable-confidence.
(b) shows one example of a confidence map (right) and its disparity
map (left) under our measures. Blue pixels in the confidence map
represent disparity pixels whose confidence can be described. Brighter
means that the disparity pixel presents more confidence. Red and green
pixels, which are generally located at disparity edges and in textureless
areas, respectively, belong to non-describable-confidence points.

Clrcc,x = 1−
1

ZImax

∥∥IL,x − IR,x̃∥∥1 , (4)

where ZImax is the normalization term, DL ,DR and IL , IR are
the left and right disparity or color map, respectively, and x̃ is
the point corresponding to x via disparity Dx . τlrcc and τlrdc
are thresholds for the confidence, with τCmin being a low con-
fidence, as shown in Fig. 4. Obvious bad disparity points can
be detected effectively, according to [18], [38]. This method
is utilized at the very start in view of the complexity and
precision of the framework, as it is simple and effective for
detecting bad disparities without increasing the cost volume.
After this simple evaluation, disparities with low confidence
no longer need to be evaluated.

2) NDC POINTS CLASSIFICATION AND EVALUATION
Cost curves representing different texture conditions accord-
ing to [42] are presented in Fig. 5. According to [18], the
CV-based method is based on the hypothesis that the dis-
parity to be evaluated has the minimal cost on the curve,
such as point Pa in Fig. 5(a). As shown in Fig. 5(b)-(d),
the poor texture characterized by the stereo matching cost
will result in several ambiguous cost curves presenting either
many minimal values (Fig. 5(b), (d)) or incorrect minimal
values (Fig. 5(c)). Therefore, CV-based confidence evalua-
tion methods will yield false judgments and low precision.
In our proposed method, points in poorly textured areas are

FIGURE 4. The ideal mapping between the proposed confidence and the
real disparity quality. The blue line represents the confidence of WDC. The
green line represents the confidence of NDC. The left vertical dashed line
represents the threshold of the simple confidence evaluation; the right
one represents the threshold of the combined confidence evaluation.

FIGURE 5. The cost curves for points in areas under different texture
conditions, including a well-conditioned area (a), textureless area (b),
disparity edge area (c) and repeatedly textured area (d). The horizontal
axis represents the disparity of a point; the vertical axis represents the
matching cost. The true disparity of a point in the images on the right is
indicated by a green point on the curves.

classified as NDC type and isolated from the confidence
map.

The points in the repeatedly textured areas shown
in Fig. 5(d) are not classified into NDC points, as the curve
also locally has only one minimum. Fortunately, these points
can be measured precisely using the simple confidence eval-
uation module. Therefore, textureless points (Fig. 5(b)), dis-
parity edge points (Fig. 5(c)), including occluded edge points
and non-occluded edge points, are detected as NDC points.
More details on detecting NDC points are given below.

a: Textureless Points
Textureless points exist in areas with a low color gradient.
The Sobel operator is used to calculate the gradient of gray
images; points with gradients less than 6/255 are shown
in Fig. 3(b) (the green points).
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b: Occluded Edge Points
Occlusion is caused by a change in perspective and often
occurs at an image border or depth edge, as shown in Fig. 3
(the red points on the right edge and the margin of the right
part). Image border occlusion is detected using forward or
backward warps. Occluded edge points are detected using the
method presented in [43].

c: Non-Occluded Edge Points
As shown in Fig. 3(b), the red points at the left edge represent
non-occluded edge points. First, the Canny edge detector [44]
is applied to find the edge of a disparity. Then, isolated noise
points are filtered out. Finally, the edges are expanded by a
margin, the width of which is the same as the window size
defined in (6).

Finally, the confidence of NDC points, Cndc, is defined as:τCndc , if xc ∈ NDC (5a)
1
2
(τCmin + τCwdc ), if xc ∈WDC (5b)

where xc is the target point and x is the neighbor of xc.
τCndc , τCwdc and τCmin are the thresholds shown in Fig. 4. This
strategy is proposed to prevent introducing noise to WDC
points from NDC points for Cndc < τCwdc (5b) and to safely
filter out the noise at the NDC points for Cndc > τCwdc (5a).

3) WDC POINTS EVALUATION
The WDC points are further evaluated using the CV-based
methodwhen they have passed the examination of themodule
described in Section III-B1, as a simple confidence evaluation
cannot provide finer evaluation for the relatively good WDC
points. Zero-mean normalized cross-correlation (ZNCC) is
adopted to estimate the cost; it is defined as:

c̃d,xc =
N · SIJ − SI · SJ√

(N · SII − S2I )(N · SJJ − S
2
J )
,

cd,xc = 1− T (c̃d,xc )c̃d,xc , (6)

where T (p) is set to 1 if p > 0 and set to 0 otherwise. N is
the number of pixels in the window centered at xc, and SI =∑

x∈Nxc
IL,x , SJ =

∑
x∈Nxc

IR,x−d , SII =
∑

x∈Nxc
I2L,x , SJJ =∑

x∈Nxc
I2R,x−d , and SIJ =

∑
x∈Nxc

IL,xIR,x−d .
However, the above process is not sufficient for the

upsampling task to support the hypothesis mentioned in
Section III-B2. The specific disparity obtained via the upsam-
pling process will not always take theminimal cost, according
to the point P̃a shown in Fig. 5(a), and doubtless unstable
evaluation results will be yielded. Thus, additional strategies
are proposed, the details regarding which are as follows.

a: Matching Score Measure (MSM)
Thematching cost, as the simplest measure [18], is not depen-
dent on the hypothesis of minimal cost. The confidence is
defined as:

c̃msm = max(τmsm − cd , 0), (7)

where τmsm represents the truncated value of the maximum
MSM.

b: Curvature (CUR)
CUR, defined in [18], is equivalent to the sum of the absolute
values of the left and right cost gradients at the point with
minimal cost. However, the evaluation result will be incorrect
when the cost of the current disparity deviates the minimal
one slightly. For example, the confidence of P̃a in Fig. 5(a)
will be very small or negative. Therefore, the improvement
defined in (8) is proposed to fit this task:

c̃cur = max(ccur , 2min(|cd−1 − cd |, |cd+1 − cd |)),

c̃cur = min(c̃cur , τcur ), (8)

where ccur is the original CUR, defined as cd−1+cd+1−2cd ,
and τcur represents the truncated value of the maximumCUR.

c: Naive Peak Ratio (PKRN)
The PKRN, defined in [18], is used to evaluate the mar-
gin between points with the first and second minimal cost.
Similarly, failure of the hypothesis will lead to the wrong
confidence. Thus, the improved PKRN is defined as shown
in (9):

c̃pkrn = min(f (cd−1/cd ), f (cd+1/cd ), τpkrn), (9)

where f (p) = T (p− 1)p+ (1−T (p− 1))/p, cpkrn = c2/cd is
the original PKRN, and c2 is the second minimal cost. τpkrn
represents the truncated value of the maximum PKRN.

d: Left-Right Difference (LRD)
The LRD is the best measure for carrying out the disparity
evaluation [18]. For the same reason mentioned regarding
both the CUR and PKRN, the LRD also needs to be improved:

c̃lrd = min(
min(|cd−1 − cd |, |cd+1 − cd |)

|cd − c̃d̃,x̃ |
, τlrd ), (10)

where c̃d̃,x̃ is the cost of correspondence pixel x̃ in the target
image at the current target disparity. τlrd represents the trun-
cated value of the maximum LRD.

Then, all the evaluations are combined (see (11)), with the
minimal value being set to the final calculated result to limit
the confidence to within a reasonable range.

Cwdc =
c̃msm + c̃cur

c̃msm + c̃cur + τmsm + τcur

·
c̃pkrn ∗ τpkrn
c̃pkrn ∗ τpkrn

·
c̃lrd ∗ τlrd
c̃lrd ∗ τlrd

Cwdc = max(C̃wdc, τCwdc ), (11)

where τCwdc , shown in Fig. 4, is the minimum WDC, which
is greater than τCmin , as the points have passed the evaluation
of Section III-B1.
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FIGURE 6. The upsampled results of our modules in the framework from one layer in the structure. This experiment uses disparity maps with
Gaussian noise as the original inputs. The first set of images represents the results of the disparity maps. The second set of images presents the error
maps, where the blue and red points are correct and incorrect disparity points, respectively, with a threshold of 4 pixels at the highest resolution.

C. CONFIDENCE-BASED UPSAMPLING
To achieve robust and highly accurate results, three com-
plementary schemes are combined in this module: bicu-
bic interpolation upsampling (BIU), confidence-based joint
cubic upsampling (CJCU) and weighted voting upsampling
(WVU). This weighted combination strategy is inspired by
the work proposed by Zhang at el. [45], which compos-
ites multiple images with different exposure according to
the quality assessment. BIU uses interpolation to retain the
original distribution of the disparity information. CJCU is
performed under the assumption that the noise of the disparity
obeys a Gaussian distribution. It takes advantage of the tex-
ture, space and disparity information and uses the confidence
as a guide to suppress the noise. WVU does not take the
assumption of CJCU and instead uses the weighted voting
result as a guide to suppress the noise. Thus, the original
information is preserved by BIU, and the noise is suppressed
by CJCU and WVU. More details are given below.

1) BICUBIC INTERPOLATION UPSAMPLING
BIU is applied to directly obtain the upsampling disparity
from the low-level disparity maps. The original information
from the lower level is well preserved, as it is based only on
the interpolation.

2) CONFIDENCE-BASED JOINT CUBIC UPSAMPLING
The original JBU method [23] adopts both spatial and color
distances as weights in the upsampling process. Since JBU
is relatively sensitive to noise, we further add the disparity
distance and disparity confidence as the weighting terms to
suppress the influence from inappropriate disparities on the
object point. The overall weighting term is given in (12):

Di+1cjcu =
1

Zcjcu

∑
xi+1∈N

xi+1c

widw
i+1
c wi+1s Dixi , (12)

where Zcjcu is the normalized factor. The superscript i rep-
resents the ith layer in the framework. In addition, x i =
x i+1/S, where S represents the upsampling scale between
two layers in the framework. Additionally, the color-related
weight wc = exp

(
‖Ix − Ixc‖/3σ

2
c
)
, the space-related weight

ws = exp
(
‖x − xc‖/σ 2

s
)
, and both the confidence and the

disparity-related weight wd = Cx exp
(
Cxc‖Dx − Dxc‖/σ

2
d

)
are utilized to perform CJCU. The terms ws, wc and wd in the
following parts have the same formulas as those presented
above.

3) WEIGHTED VOTING UPSAMPLING
This voting post-processing method is inspired by [46] and
proposed to produce ‘‘confidence’’ for denoising, as the pro-
posed confidence cannot be used to evaluate the NDC points.
The guided weight information from the texture images is
applied to build the histogram of the disparity and computed
using (13):

hdi =
∑
x∈Nxc

T (|Dx − di| < lbin)wcws (13)

lbin = max((dmax − dmin)/τhmaxnum + 1, τlbin ), (14)

where di is the center disparity of the ith bin, the width of
which is defined as lbin according to (14). dmax and dmin
are the maximal and minimal disparities in Nxc , respec-
tively. τhmaxnum represents the maximal number of bins in the
histogram. τlbin is the minimal width of each bin. Finally,
the disparity is updated using (15), similar to (12), to perform
denoising and smoothing in the WVU process:

Di+1wvu =
1

Zwvu

∑
xi+1∈N

xi+1c

T idw
i+1
c wi+1s Dixi , (15)

where Zwvu is the normalized factor, Td = T (|Dx − D̃xc | <
lbin) represents the disparity guidance, and D̃xc is the dis-
parity with the highest weight in the histogram, defined as
argmaxdi∈[dmin,dmax ] hdi .

4) COMBINED UPSAMPLING
After the initial upsampling, we obtain 3 upsampled maps:
Dh,biu, Dh,cjcu and Dh,wvu. Then, confidence evaluation is
conducted to obtain their corresponding confidence maps.
Considering the efficiency of the algorithm, the NDC points
will not be detected for Dh,biu and Dh,cjcu. The final disparity
result can be obtained using (16):

Di+1x =

{
Di+1wvu, if x ∈ NDC
Di+1confMax , otherwise,

(16)

where DconfMax is the disparity with the highest confidence
among the 3 initial upsampled results. The disparity of an
NDC point is assigned by WVU, since the weighted voting
strategy can be regarded as the confidence for denoising,
as discussed in Section III-C3. The winner-take-all strat-
egy is applied to calculate the final disparity for the WDC
points. Actually, the confidence-based weighted combination
method is also tested; however, relatively worse results are
obtained.
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As shown in Fig. 6, most of the low-quality disparities
are corrected using the CBU module. The remaining noise
is removed by the other two modules.

D. CONFIDENCE-BASED FINE-TUNING
Thismodule is introduced to effectively suppress the disparity
error caused by CBU or existing in the original inputs. The
NDC points do not undergo this process, as we cannot pre-
cisely evaluate their quality. Since the main purpose of our
framework is to upsample and enhance the disparity rather
than reconstruction, CBFT performs fine-tuning only around
the initial disparity under the condition that no extra noise is
added to the target maps.

1) MASK GENERATION FOR CBFT
The WDC points with confidence lower than τcbft are pro-
cessed by the CBFT module. Considering the speed and
quality, we set τcbft as τCwdc at high levels (low resolution)
and τCmin at low levels (high resolution) in our framework.

2) FINE-TUNING
This lightweight fine-tuning offers a high possibility to obtain
the correct disparity using our strategy. Furthermore, it is
computationally efficient, as only low-confidence points are
processed by this module. First, based on the existing stereo
disparity maps, the center of the disparity tuning range for
every marked point is determined by disparities of all the
other confident points. As defined in (17), a neighboring
window is set for those points whose tuning range [d̃xc −
τrange, d̃xc + τrange] is determined by a weight consisting of
the color distance, point distance and confidence.

d̃xc =
1
Zd

∑
x∈Nxc

wcwsT (Cx − τcbft )Dx (17)

For those points whose neighboring windows lack a sufficient
number of high-confidence points, we set d̃xc = (dxc +
max{dx |x ∈ Nxc})/2. All the estimated tuning ranges are
checked to ensure that they are reasonable for each level.
Then, ZNCC, defined in (6), is used to compute the cost
within the determined tuning ranges d ∈ [d̃xc − τrange, d̃xc +
τrange]. Finally, the best disparity with the minimal cost is
selected as the final result.

3) CONFIDENCE-GUIDED ROLL-BACK
After applying the CBFT module, the stereo confidence and
disparity maps are updated again only for the marked points.
As the fine-tuning method is simple, some points under the
bad texture condition may not be corrected, and additional
noise will be introduced. Thus, the disparity and confidence
values prior to CBFT will be reassigned if the confidence of
the point decreases (we call this the ‘‘roll-back’’ operation).

As shown in Fig. 6, most of the noise points (inWDCareas)
are removed via the CBFT module. The final optimization
module described next performs further filtering.

E. CONFIDENCE-BASED OPTIMIZATION
Finally, optimization is executed based on the initial disparity
data obtained after performing CBU and CBFT. This module
aims at removing the noise induced by the CBFT module
and refining the initial disparity. We combine the confidence
with another state-of-the-art MBU method to propagate the
disparity based on the confidence. The energy function is
presented as:

E =
∑
xc∈�

C0
xc (Dxc − D

0
xc )

2
+ λ

∑
xc∈�

∑
x∈Nxc

Cxwx,xcψC , (18)

where � represents the entire map area, Dx and Cx repre-
sent the disparity and confidence of point x, respectively,
the superscript represents the data in the nth iteration, ψC is

defined as 2σd 2
Cxc+εψ

(
1 − exp

(
−

Cxc‖Dxc−Dx‖
2
2

2σd 2
))
, and wx,xc is

defined aswcws. We obtain the final solution to (18) using the
iterative model, referring to [14], as shown in (19):

Dn+1xc =
1
ZD

C0
xcD

0
xc + λ

∑
x∈Nxc

w̃x,xcD
n
x

, (19)

where w̃x,xc is defined as wdwcws, which is similar to (12).
ZD is the normalized value, and λ is the parameter used to
balance the relative weight between the initial information
and optimization information.

As shown in Fig. 6, most of the points with NSP-like noise
are removed using the CBOPT module.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, the proposed framework is evaluated on
datasets from Middlebury online [47]–[49]. Five different
sources were used as input disparity maps: data with no
noise (GT), data with salt and pepper noise (NSP), data
with Gaussian noise (NGS), data obtained via the AdCensus
stereo matching method [46] (AdC) and data obtained via
the MeshStereo stereo matching method [50] (MS). We com-
pared our proposed framework with other upsampling meth-
ods, the source codes of which are available online. The
experiments were performed on a PC with an Intel Xeon
CPU (2.60 GHz) and an NVIDIA GeForce GTX TITAN
X GPU. Our framework was implemented in a MATLAB,
C++, and CUDA hybrid programming language. The error
ratio, whichwasmeasured at the highest scale/resolution, was
applied to evaluate all the experimental results. Considering
the error ratio of the initial disparity maps and without loss of
generality (all the methods were measured against the same
standard), the 4-disparity bias was used as the threshold of
the error ratio. Moreover, the initial disparity maps in all the
experiments were upsampled to their highest resolution at all
upsampling rates. Downsampling was executed to obtain the
lower disparity and color maps for the GT dataset.

A. PARAMETER SETTINGS
The following parameters correspond to a 16× upsampling
with a 5-layer framework. The parameters for 8× and 4× can
be inferred accordingly.
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FIGURE 7. Comparison of the ROCs in terms of the error rate (a) and precision (b) under different confidence evaluation strategies. Art, Teddy,
Cones and Dolls, which are listed in the columns, are used as the test disparity maps. AdC, MS, NSP and NGS, which are listed in the rows, are used
as the test disparity sources. The ROCs, which are from our proposed method, our method without NDC detection, the method proposed by
Sun et al. [19] and our method only in the NDC area, are plotted in different colors. Each point on the lines in (b) represents the precision under the
condition that disparity with confidence higher than the threshold (horizontal axis) is determined to be high-confidence disparity.

1) CONFIDENCE PARAMETERS
As discussed in Section III-B, we set τCmin = 0.001, τCwdc =
0.01 and τCndc = 0.1. In the simple confidence evaluation,
we set τlrcc = 15

255 and τlrdc = [1, 2, 4, 8, 10]. Additionally,
we set τmsm = 0.7, τcur = 0.5, τpkrn = 3, and τlrd = 7.
The window sizes of the NDC-TS and NDC-ND calcula-
tions were the same as those for the ZNCC cost calculation:
[1, 2, 3, 4, 5].

2) OTHER PARAMETERS
We set τhmaxnum = 15 and τlbin = [1, 2, 4, 8], with a trade-off
being made between speed and accuracy. Since the scales of
disparity were different in different layers of our framework,
we set τrange = [1, 2, 4, 6, 8] in the CBFTmodule. Regarding
the guided parameters, σc was set as 9

255 for all modules, σd
was set as 70

255 for the CBU module and 10
255 for the CBOPT

module, and σs was set according to the window size. α in the
CBOPT module was set to 0.9.

B. CONFIDENCE ANALYSIS
In this experiment, the accuracy and precision of our confi-
dence evaluation method were analyzed. The cost value in
the confidence evaluation was computed based on the ZNCC
defined in (6). The comparison in terms of the NSP map
between the method of Sun et al. and our method is shown
in Fig. 8. First, our proposed method performed better in
detecting the NDC points according to Fig. 8(b), (d), as there
was more noise in the NDC areas corresponding to the results
of Sun et al. and it was proved that setting the confidence of
NDC points with low value was an effecitve strategy. Then,
our method achieved a more accurate result in the confidence
evaluation of WDC points according to Fig. 8(c), as our
results in WDC areas were smoother than those of Sun et al..
Furthermore, we analyzed our method in terms of accuracy
and precision in more detail. The NSP, NGS, MS and AdC
sources were used to provide target disparity maps with error
points.
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FIGURE 8. Comparison between the confidence maps of the method of
Sun et al. and our method. The maps in (a) represent the input disparity
map and its color map. The maps in (b)-(d) represent the confidence jet
color maps evaluated using the method of Sun et al. (bottom) and our
method (top). They include the occlusion area, well-conditioned area and
textureless area. The black points in the upper maps represent the NDC
points.

1) CUMULATIVE ERROR DISTRIBUTION ANALYSIS
Receiver operating characteristic (ROC) curves of the error
rate were examined to analyze the error distribution in the
confidence evaluation [18], [51], [52]. Each point P(C,R) on
the ROC curve represents the error rate (R, the vertical axes)
of the region in the target disparity map, with the confidences
of points in this region being higher than C (the horizontal
axes). The area under the ROC curve (AUC) measures the
ability of the confidence to predict correct matches. Accord-
ing to [18], the smaller the AUC, the better the method.

As shown in Fig. 7(a), our proposed method outperformed
that of Sun et al., as the ROC curve of our method was
at the bottom and had a smaller AUC. More conclusions
are listed below. First, our modifications yielded obvious
improvements according to the red and brown curves. Sec-
ond, the confidence in the NDC area had the worst perfor-
mance according to the green curves. In contrast, the blue
curves, which correspond to the confidence evaluated using
our proposed method in WDC areas, indicate the best per-
formance. The final error ratios of the blue curves were
considerably lower than those of the green curves. Thus, it is
necessary to separate NDC points from WDC areas and take
them as low-confidence points, as discussed in Section III-B.

2) PRECISION ANALYSIS
High precision2 is necessary for confidence to play a guiding
role, as the error will be propagated during upsampling if
the error points are evaluated as high confidence. As shown
in Fig. 7(b), our proposed method presented the highest pre-
cision. Since it did not utilize sufficient stereo information,
the method proposed by Sun et al. performed worse under
some particular conditions. Furthermore, the precision pre-
sented a positive correlation with our proposed confidence in
most cases. This illustrates the efficient guidance our confi-
dence offers in most cases.

2Precision is defined as the ratio of the number of correct disparity points
with high confidence to the number of all high confidence points.

FIGURE 9. Comparison (in terms of the mean error ratio) between our
proposed hierarchical structure and the direct structure at an 8×

upsampling rate. Horizontal axis represents the layer number; vertical
axis represents the error ratio. (a)-(d) use the datasets from NSP, NGS,
AdC and MS, respectively. The hierarchical structure is plotted by the blue
line. The direct structure is plotted by the red line.

C. FRAMEWORK ANALYSIS
In this section, our framework is analyzed in detail. The
analysis considers both the role of modules and the impact of
the hierarchical structure. In the following tables, the results
in bold, underline and italic formats represent the best results,
the second-best results and the worst results, respectively.

1) HIERARCHICAL STRUCTURE ANALYSIS
The direct upsamplingmethod (no hierarchical structure) was
compared with our hierarchical structure. As shown in Fig. 9,
the hierarchical strategy outperformed the direct strategy on
all datasets. Furthermore, the error ratio of the disparity
decreased layer by layer in the hierarchical structure, as our
proposed modules in each layer were combined to perform
denoising under the condition of lossless original accuracy.

2) UPSAMPLING MODULE ANALYSIS
To evaluate the upsampling module, we designed the experi-
ments by adjusting the upsampling module in our framework
via the method mentioned in Section III-C. The disparity
upsampled results obtained at the 8× upsampling rate for
different source inputs are shown with the mean error ratio
in Table 3. In this table, UpBIU used only the strategy
described in Section III-C1, UpCJCU used only the strategy
described in Section III-C2, and UpWVU used only the strat-
egy described in Section III-C3. The last row represents our
complete upsampling module. From this table, we can draw
the following conclusions. First, the BIU strategy performed
well on the GT datasets and maintained the original noise
distribution. Second, our proposed CJCU strategy success-
fully addressed the upsampling task with a complex uncertain

4076 VOLUME 7, 2019



X.-B. Meng et al.: Efficient Confidence-Based Hierarchical Stereo Disparity Upsampling for Noisy Inputs

TABLE 1. Quantitative upsampled results of our proposed and other strategies with the GT inputs at three upsampling rates.

TABLE 2. Quantitative upsampled results of our proposed and other strategies for inputs with different noises at three upsampling rates.

noise distribution. Third, our proposed WVU strategy was
good at addressing the upsampling task with a certain noise
distribution. Finally, our complete CBU strategy yielded the
best results on datasets with different noise distributions,
as the confidence guidance was used to combine the advan-
tages of the strategies listed above effectively.

3) OTHER MODULE ANALYSIS
To analyze the modules and the hierarchical structure used
in our framework, experiments in which the module to be
analyzed was removed from the whole framework were
designed. The resulting upsampled disparity maps at the 8×
upsampling rate for different input sources are shown in terms
of the mean error ratio in Table 4. In this table, NoConf
represents the upsampling strategy without confidence guid-
ance3; NoCBFT represents the upsampling strategy without
the CBFT process; and NoCBOPT represents the upsampling
strategy without the CBOPT process. Now, the following
conclusions can be drawn based on Table 4. First, the confi-
dence held the most vital position in the proposed framework,
as the worst performance was achieved without this guidance.
Second, the CBFT module was essential for the datasets with
complex noise distributions. Furthermore, no extra noise was
added by CBFT to the results of GT. Third, the CBOPT mod-
ule had the effect of refining the results from the CBU and
CBFT modules under any inputs. Finally, when the strategies
were combined, our framework was robust against datasets

3Note that the CBFT was also invalid since the confidences of all points
were set to 1.

TABLE 3. Quantitative upsampled results (in terms of mean error ratio)
of our proposed strategy with different upsampling modules.

TABLE 4. Quantitative upsampled results (in terms of mean error ratio)
of our proposed strategy without a specific module.

with all the types of noise distributions mentioned in the
experiments.

D. COMPARISONS OF THE DISPARITY RESULTS
The classical and state-of-the-art upsampling methods
were compared with our proposed method. Among
these methods, BIU [20], GIF [22], JGU [27], WMF [28],
NAFDU [25], MSG-Net [37] and FGI [17] were executed
using source codes found online, while JBU [23] and
MBU [14] were implemented by us using CUDA. And
MSG-Net was learning-based method. BIU and GIF were
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FIGURE 10. The upsampled results obtained on the GT datasets. The first column represents the input sources; other columns
contain the upsampled results of different methods.

interpolation-based methods. JBU, JGU, WMF and NAFDU
were weighted-filter-based methods. FGI and MBU were
MRF-based methods. Ten Middlebury datasets with different
environments were used for the comparison. Five different
input sources with different noise distributions were applied
to measure the abilities of the upsampling methods. The
comparisons of the methods are detailed in Tables 1 and 2
and Fig. 10, 11 and 12, where the gray and red-blue images
represent the disparity maps and error maps,4 respectively.
The results of the proposedmethod, together with the top four
results of the comparison methods, are listed in the figures.

1) COMPARISON ON GT DATASETS
The input source without noise was applied to measure the
ability of the methods to maintain the original accuracy in
the upsampling process. The results of different methods for
the GT input source are listed in Table 1. As shown, the error
ratios of some of the maps (Motorcycle, Recycle, Cones and
Reindeer) are listed; the mean results listed in the last column
are the mean error ratios of all maps.5 According to the
table, our proposed method and the learning-based MSG-Net
method performed the best. Moreover, our method was more
robust, as MSG-Net achieved poor results on the Motorcycle
and Recycle maps.

As shown in Fig. 10, our proposed method performed as
well as the MSG-Net method [37]

and outperformed all the other methods. Furthermore, our
method presented better results than those of the other three
methods (WMF, FGI and NAFDU), especially at the edges.

4Red points denote the error points.
5The maps are Motorcycle, Recycle, Piano, Teddy, Cones, Art, Dolls,

Baby1, Reindeer and Cloth1.

2) COMPARISON ON NSP AND NGS DATASETS
NSP and NGS source inputs were used to simulate the dispar-
ity from the RGBD cameras with specific noise information.
The NSP datasets were created with salt and pepper noise,
which satisfies the uniform distribution requirement. The
NGS datasets were created with Gaussian noise. As shown
in Table 2, the results for NSP and NGS listed in the last
two columns represent the mean error ratios. According to the
table, our proposed method yielded the best result among all
themethods at all upsampling rates. The JBUmethod took the
second-best position on the NGS datasets, as the JBUmethod
assumes noise with a Gaussian distribution. The WMF and
NAFDU methods performed well on the NSP datasets, as the
median filter and the filter proposed by NAFDU were good
at removing the salt and pepper noise. Then, learning-based
method MSG-Net met with poor results, since it was sensi-
tive to the content of inputs. Furthermore, with confidence
guidance and the hierarchical structure, our proposed method
presented a clear advantage. As shown in Fig. 11, the results
of our proposed methods on NSP and NGS proved that our
method can remove noise with a specific distribution, in con-
trast to the other state-of-the-art methods, since most noise
points (except for the occlusion points) were corrected by our
proposed method.

3) COMPARISON ON ADC AND MS DATASETS
AdC and MS source inputs were used to determine the dis-
parity from stereomatching with unknown noise information.
As shown in Table 2, the results for AdC and MS listed in the
first two columns represent the mean error ratios. The dispar-
ity image results with the error maps are shown in Fig. 12.
According to the table and the figures, our proposed method
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FIGURE 11. The upsampled results obtained on the NSP and NGS datasets. The first row shows the results obtained on the NGS
datasets. The second row shows the results obtained on the NSP datasets. The first column represents the input sources; other
columns contain the upsampled results of different methods.

FIGURE 12. The upsampled results obtained on the AdC and MS datasets. The first row shows the results obtained on the AdC
datasets. The second row shows the results obtained on the MS datasets. The first column represents the input sources; other
columns contain the upsampled results of different methods.

performed the best, being clearly superior, especially at
higher upsampling rates. Moreover, the results of other meth-
ods listed in the table are similar to the original source.
Therefore, it was concluded that the other methods were less

competitive in terms of denoising on datasets with unknown
noise distributions. In contrast, the hierarchical structure and
confidence-based modules of our method resulted in a robust
noise suppression. Moreover, among the modules, the CBFT
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module corrected the error disparity via robust fine-tune on
the datasets with unknown noise distributions.

E. TIME CONSUMPTION
The time consumption was related to the upsampling rate and
the target resolution while almost independent of the input
sources. Thus, it was evaluated using the mean values at the
3 upsampling rates. As listed in Table 5, the time consumption
of our framework had a positive correlation with the target
upsampling resolution. Furthermore, the time consumption of
CBFT at all upsampling rates was fairly consistent, as most
error disparities were corrected at low levels in the hierarchi-
cal framework.

TABLE 5. Mean time consumption (in milliseconds, ms) of the modules
for 2 resolutions at 3 upsampling rates.

V. FUTURE WORKS
According to the experimental results, the confidence evalu-
ation plays a vital role in our framework. However, the con-
fidence in the NDC area cannot be measured well through
current strategy and more information, such as structural
information in the image, should be used to measure confi-
dence. In the future, emphasis will be placed on the establish-
ment of an efficient confidence measuring scheme that is able
to offer a more precise evaluation for every pixel in the input
disparity maps. Advanced methods such as learning-based
ones are promising, as a learned confidence value can be,
on average, more accurate and robust. Improved specific
upsampling strategies for stereo matching inputs will be con-
sidered, as the stereo information in this work was mainly
used to measure the confidence.

VI. CONCLUSIONS
A novel, confidence-based, multistrategy hierarchical frame-
work, which can handle an upsampling task with input
low-resolution disparity corrupted with multidistribution
noise, was proposed in this study. The proposed efficient
confidence evaluation has an advantage in terms of disparity
quality monitoring and plays a role in the absolute guidance
of the framework. A hierarchical structure combined with
several modules results in a robust and efficient framework
for disparity upsampling and enhancement. This proposed
method has clear advantages on noisy and noise-free datasets
compared with previous state-of-the-art methods. Further-
more, the real-time speed of the framework makes further
acceleration via code optimization and the use of an FPGA
possible.
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