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ABSTRACT The dual-polarization Doppler weather radar is a kind of radio-frequency sensor that can
provide abundant information about atmospheric particle scattering behavior. The identification of the
precipitation cloud type based on dual-polarization Doppler weather radar echoes is a study that classifies
precipitation clouds based on the scattering theory of precipitation cloud particles to polarized electromag-
netic waves. In recent years, the Doppler weather radar has been widely used in quantitative precipitation
estimation, and the accurate identification of precipitation cloud types plays an essential role in improving
the accuracy of precipitation estimation. The accuracy of the conventional precipitation cloud identification
method relies on the number of features that are identified by human eyes, and it greatly reduces the
operation efficiency. In order to improve the accuracy and efficiency of the precipitation cloud identification,
a methodology of precipitation cloud identification based on deep learning is proposed in this paper.
The method mainly consists of three major parts, which are constant altitude plan position indicator data
inversion, zero-layer bright band identification, and precipitation-cloud classification by using the deep
learning network model. At last, this paper evaluates the identification effect of this method through a real
precipitation process. The results show that this method can distinguish the stratiform clouds and convective
cloud precipitation in the precipitation area in real time, and it is in good agreement with the ground
observation data. This method is very useful for improving the accuracy of the quantitative precipitation
estimation of the Doppler weather radar.

INDEX TERMS CAPPI, deep learning, identification, precipitation cloud, zero-layer bright band.

I. INTRODUCTION
The capability of microwaves to penetrate cloud and rain
has placed the weather radar in an unchallenged position
for remotely surveying the atmosphere. Although visible and
infrared cameras on satellites can detect and track storms,
the radiation sensed by these cameras cannot probe inside
the storm’s shield of clouds to reveal, as microwave radar
does, the storm’s internal structure and the hazardous phe-
nomena that might be harbored therein. The Doppler radar
is currently the primary tool that can detect tracers of wind
and measure their radial velocities, both in the clear air and
inside heavy rainfall regions veiled by clouds. So it can be
claimed that Doppler radars are the most important sensors
for atmosphere sounding. The The dual linear polarization

Doppler weather radar is a kind of radio frequency sensor
capable of transmitting two linear polarizations of electro-
magnetic wave and provides several additional parameters of
interest to the meteorologist. It can transmit the horizontal
and vertical polarization waves alternately or simultaneously,
and adopt different signal processing in two polarization
channels, therefore it can derive several polarimetric mea-
surements, such as horizental reflectivity (ZH ), differential
reflectivity factor (ZDR), differential propagation phase con-
stant (KDP), linear depolarization ratio (LDR), correlation
coefficient (ρHV (0)) and so on. These polarimetric measure-
ments reflect the characteristics of the size, shape, phase and
orientation of the precipitation particles in the atmosphere,
and promote the development of quantitative precipitation
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estimation and hydrometeor classification [1]–[5]. Compared
with the Z-I relationship of the conventional Doppler
weather radar, the quantitative precipitation estimation based
on dual-polarization Doppler weather radar has obvious
advantages [6], [7].

Precipitation is a kind of common weather phenomenon.
According to the different types of precipitation clouds,
they can be divided into three precipitation types, which
are stratiform cloud precipitation, convective precipitation
and convective stratiform mixed cloud precipitation [8]. The
stratiform cloud precipitation is caused by the vertical rising
movement of the air in a wide range. In generally, stratiform
cloud has a large horizontal scale, but with small vertical
scale. The intensity of precipitation caused by stratiform
cloud is relatively weak, but with long duration, and the radar
echo presented as flakes, which is accompanied by the phe-
nomenon of the bright-band [9], [10]. The convective cloud
precipitation is caused by the air vertical movement due to the
instability of the atmosphere. Its horizontal scale is small, and
the vertical convection is strong, often accompanied by storm,
rainstorm, hail, and other disastrous weather [11]. Therefore,
the accurate identification of stratiform clouds and convective
clouds is helpful for understanding the formation mechanism
of precipitation cloud and improving the ability of estimating
rainfall intensity by Doppler weather radar.

In 2003, Ikeda and Brandes [12] analyzed the characteris-
tics of the polarization parameters of the precipitation parti-
cles in the melting layer, and they obtained the distribution
of the polarimetric parameters such as ZH , ZDR, LDR and
ρHV (0) in the melting layer. In 2005, Rico-Ramirez et al. [13]
utilized the fuzzy logic method to identify the zero-layer
bright band on the basis of these distribution laws, and the
recognition results are used in the classification of hydrome-
teors such as rain, snow and snowmelt.

In 2008, Wang J et al. utilized back propagation artificial
neural network (BP-ANN) method to realize the classifica-
tion of precipitation clouds. The BP-ANN takes reflectivity
and reflectivity gradient as input, and the input data is pro-
cessed by the hidden layer. Finally, the membership degree
of three kinds of precipitation cloud types can be obtained
by the BP-ANN method [8]. In 2011, based on the precip-
itation data in Singapore for many years, Kumar analyzed
the drop distribution of the precipitation particles during
the precipitation process of stratiform clouds and convective
clouds in this area.Meanwhile, they realized the classification
of precipitation cloud type, and derived corresponding Z-R
relation of different types of precipitation clouds by using
the parameters of rain rate R, reflectivity Z , median volume
diameter D0, NW that is generalized number concentration of
an exponential DSD having the same liquid water contentW
and mass-weighted diameter Dm as the actual DSD, and the
gamma model parameter µ [14].
In 2006, an article published in Science by Hinton et al.

opened up a new door of deep learning in the field of machine
learning. Deep learning, as a new kind of multilayer artifi-
cial neural network learning algorithm, solves the defects of

the traditional neural network algorithm, such as overfitting,
gradient diffusion and local optimization, and it has been
widely used inmachine learning and computer vision, and has
aroused wide attention in various fields [15]–[18]. In 2016,
Tao et al. [19] utilized the deep learning algorithm to extract
useful features from the multispectral satellite information,
and retrieved the rainfall in the local area at that time with
the extracted feature parameters. In 2017, Wang H et al.
utilized the convolution neural network algorithm to extract
the features from the polarimetric measurements of dual-
polarization Doppler weather radar. The extracted features
were classified by Softmax classifier, and the precipitation
particles are divided into rain, snow, hail, ice crystals and
other categories [20].

This paper presents a new identification method for pre-
cipitation clouds, based on the data of CINRAD-SA dual-
polarization Doppler weather radar in China and the study
of the characteristics of precipitation cloud. In this method,
the Vertical and Horizontal Interpolation (VHI) method is
used to interpolate the radar scanning volume data to obtain
the CAPPI data at any altitude. Considering the similarity of
the echo characteristics between the zero-layer bright band
and the convective cloud precipitation, this paper uses the
fuzzy logic method to identify the zero-layer bright band in
order to remove them from the CAPPI data. Then, this study
uses the CNNnetworkmodel to discriminate the precipitation
clouds. In the end, the identification result of precipitation
cloud at several altitudes have been merged into a complete
precipitation cloud distribution map.

II. DATA
In this research, we collected a large amount of precipita-
tion data from the CINRAD-SA dual-polarization Doppler
weather radar in Guangdong province of China, and the
radar parameters are shown in Table 1. The data include ZH ,
ZDR, LDR, ρHV (0), 8DP and KDP, which reflect the detailed
precipitation process between March 2017 and July 2017 in
Guangdong province of China.

TABLE 1. The main technical indicators of CINRAD-SA dual polarized
weather radars.

Polarization refers to the vibration direction of electromag-
netic waves in the propagation, and when the electric field
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vibrates in the horizontal direction, it is named the horizontal
polarized wave. Otherwise, if in the vertical direction, it is
named the vertical polarized wave. The CINRAD-SA dual-
polarization Doppler weather radar transmits the vertical and
horizontal polarization waves at the same time or alternately.
Due to the inhomogeneous distribution of spread medium in
space, the different polarization signal attenuation and phase
shift will be different, so the attenuation difference and phase
shift difference of two polarization waves can be obtained.
A series of polarimetric measurements data can be obtained
by the corresponding data processing and calculations of the
attenuation difference and phase shift difference. This section
will introduce the major polarimetric measurements and their
characteristics in detail.

A. HORIZONTAL AND VERTICAL REFLECTIVITY
FACTORS (ZH AND ZV )
Usually, the dual linear polarimetric Doppler weather radar
alternately transmits horizontal and vertical polarization
waves to obtain the horizontal and vertical reflectivity,
respectively. When the horizontal polarization waves
are transmitted, the horizontal reflectivity is defined by
equation 1.

ZH =

Dmax∫
0

N (D) • D6
HdD (1)

Where D is the diameter of precipitation particles, DH is
the projection of D in horizontal polarization direction, and
Dmax is the max diameter of these precipitation particles.
N (D) is the drop distribution of the precipitation particles, and
it is a function ofD.When the radar transmits vertically polar-
ized waves, the vertical reflectivity is given by equation 2.

ZV =

Dmax∫
0

N (D) • D6
V dD (2)

where DV is the projection of D in vertical polarization
direction. Thus, it is obvious that the horizontal and vertical
reflectivity factors are the functions of the particle diameter,
drop distribution and dielectric constant. For the rainfall,
the effect of particle diameter on the horizontal reflectivity
factor is greater, and the larger particle size produces the
larger the horizontal reflectivity factor. Therefore, the size
of the precipitation particles can be inferred. Besides, the
reflectivity factor is also affected by the dielectric constant
for different types of precipitation particles, such as hail and
raindrops.

B. DIFFERENTIAL REFLECTIVITY FACTOR ZDR
ZDR is computed by horizontal and vertical reflectivity factor:

ZDR = 10 • log
(
ZH
ZV

)
(3)

Equation 3 shows that ZDR is related to particle size and
axial ratio (axial ratio is defined by α/b, where α is horizontal

axial radius, and b is vertical axial radius). Therefore, differ-
ential reflectivity factor is the function of particle size, shape
and dielectric constant. For the spherical particles, ZH = ZV ,
and ZDR = 0. For the non-spherical particles, the larger
the eccentricity, the farther the differential reflectivity factor
deviates from the 0 value, so the differential reflectivity factor
can be used to distinguish different precipitation particles.

C. DIFFERENTIAL PROPAGATION PHASE 8DP AND
DIFFERENTIAL PROPAGATION PHASE CONSTANT KDP
The difference of the phase between the horizontally and
vertically polarized waves is called the differential phase,
which is given by equation 4.

8DP = 8HH −8VV (4)

Where 8HH and 8VV are respectively the two-way phase
angle at a certain distance from the arrival of the antenna
when the radar signal is in the horizontal and vertical polar-
ization. The specific differential phase KDPis defined by
equation 5.

KDP =
8DP(r2)−8DP(r1)

2(r2 − r1)
(5)

KDP is the difference between the propagation constants of
horizontally and vertically polarized waves, and it contains
the difference between isotropic particles and anisotropic
particles. Isotropymeans that the physical and chemical prop-
erties of the object do not change with the direction. In other
words, the characteristics of electromagnetic scattering echo
of the precipitation particles in different directions should
be the same. Therefore, the isotropic particles will produce
similar phase shifts for horizontal and vertical polarization
waves, and the difference of KDP is attributed to anisotropic
particles. In general, KDP increases as the dielectric constant
and eccentricity increase, and it depends on the number den-
sity of particles.

D. ZERO LAG CORRELATION COEFFICIENT ρHV (0)
The correlation coefficient at zero lag is defined by the
amplitude of zero lag cross correlation coefficient of the
received horizontally and vertically polarized signals, whose
expression is given by equation 6.

ρHV (0) =

〈
SVV S∗HH

〉
[〈
|SVV |2

〉 〈
|SHH |2

〉] 1
2

(6)

where SHH and SVV can be equivalent to the polarized
echo signal in horizontal and vertical direction, and ρHV (0)
reflects the correlation of the backscattering characteristics
of horizontal and vertical polarization waves. Thus, corre-
lation coefficients are closely related to the shape, density
and spatial orientation of precipitation particles. As men-
tioned above, these polarimetric measurements reflect the
size, shape, density, and orientation of precipitation particles
in atmospheric space. The comprehensive utilization of these
polarimetric measurements makes it possible to classify the
type of precipitation clouds precisely.
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III. METHOD
A. THE INVERSION OF CAPPI
In china, the main operational radar of China Meteorological
Administration is Doppler weather radar, which can not only
obtain the distribution information of precipitation particles
in atmosphere, but also provide the information of the atmo-
spheric wind field. During the Doppler weather radar oper-
ation process, VCP21 working mode is a common choices
for meteorological service. It can complete a volume scan
in 6 minutes, and each volume scan consists of 9 elevation.
For each elevation, the Plane Position Indicator (PPI) scan
mode is adopted. As shown in Figure 1, the radar antenna cap-
tures precipitation data in the atmosphere in a fixed elevation,
omni-directional scanning mode, and in polar coordinates
(radar-centered) with different color scales to indicate the
magnitude and direction of the values. This scanning method
is called PPI scanning. In other words, radar can acquire the
information of precipitation particles in a three-dimensional
space in 6minutes, which provides guarantee for the real-time
prediction in weather operation. In the process of identifying
the precipitation cloud, in order to describe the vertical and
horizontal characteristics of the precipitation cloud system
more intuitively, the PPI data of all elevations need to be
processed through spatial interpolation to obtain the informa-
tion of the precipitation particles at a certain altitude, namely
CAPPI data.

FIGURE 1. The schematic diagram of PPI scan mode.

In the detection stage of dual-polarization Doppler weather
radar, the noise of radar system itself, the interference of
ground clutter and the attenuation of radar signal will lead to
the data quality decline, which seriously affects the credibility
of the final identification result. Therefore, some meteoro-
logical data quality control methods is applied to improve
the accuracy of detection data, mainly including ground
clutter rejection, systematic error correction, and attenuation
correction.

VHI is a commonly used linear interpolation method,
as shown in Figure 2, where Z is the radar reflectivity,
R is the distance from the radar site to the target, θ is the
azimuth angle of the target, and φ is the elevation angle of
the target. For a data point to be interpolated Z (R, θ, φ), it is

FIGURE 2. The interpolation schematic of VHI.

linearly interpolated by the data below its elevation, namely
Z (R, θ, φi) and Z (R2, θ, φi), and the data above its elevation,
namely Z (R, θ, φi+1) and Z (R1, θ, φi+1).

Z (R, θ, φ) =
Wφi · Z (R, θ, φi)+Wφi+1 · Z (R, θ, φi+1)

Wφi +Wφi+1 +WR1 +WR2

+
WR1 · Z (R, θ, φi+1)+WR2 · Z (R, θ, φi)

Wφi+Wφi+1 +WR1 +WR2
(7)

where Wφi and Wφi+1 are the interpolation weights of
Z (R, θ, φi) and Z (R1, θ, φi+1), which are given by equation 8.
WR1 and WR2 are the interpolation weights of Z (R1, θ, φi+1)
and Z (R2, θ, φi), which are given by equation 9.{

Wφi = (φi+1 − φ)/(φi+1 − φi)
Wφi+1 = (φ − φi)/(φi+1 − φi)

(8){
WR1 = (R2 − R) / (R2 − R1)
WR2 = (R− R1) / (R2 − R1)

(9)

From table 1, the maximum effective detection range of
the radar data is 400 km, and the range bin is 250 meters with
1 degree beam width. In this paper, the CAPPI data of ZH ,
ZDR, KDPand ρHV (0) has been rebuilt by using VHI method,
and the minimum resolution is 100-meter.

B. IDENTIFICATION OF BRIGHT BAND
1) ZERO-LAYER BRIGHT BAND
The zero-layer bright band is an important feature of
stratiform cloud precipitation. It mainly refers to a phe-
nomenon that a strong echo bright band or a bright circle
appears on the high elevation angle radar echoes. During
the process of falling of solid precipitation particles such as
snowflakes or ice crystals, when the ambient temperature is
above 0◦C, the surface of the ice particles ismelted and a layer
of outsourced water film is formed. Due to the difference
of the complex refractive index of the liquid water and the
ice phase particle, the reflectivity of the melting particles
increases dramatically.

The zero-layer bright band reflects the obvious ice-water
conversion process during the stratiform cloud precipitation
process. Many kinds of precipitation particles exhibit in the
zero-layer bright band, and their physical properties are com-
plex and changeable. At the same time, some characteristics
are very similar to the convective clouds, which bring diffi-
culties to the accurate identification of the precipitation cloud.
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Therefore, it is of great significance to accurately distinguish
the position of the zero-layer bright band to improve the
accuracy of cloud identification and quantitative precipitation
estimation. In recent years, research on the identification of
the zero-layer bright band based on dual-polarization radar
data has yielded fruitful results. A large number of studies
show that in zero-layer bright band, as the altitude increase,
the horizontal polarization reflectivity ZH and differential
reflectivity factor ZDR increase firstly and then decrease,
and horizontal/vertical zero lag correlation coefficient ρHV (0)
decrease firstly and then increase. In general, in the products
of S-band polarimetric radar, ZH in the zero-layer bright band
mainly distributes from 30 to50 dBZ, and ZDR is mainly from
1 to 3.5dB, and ρHV (0) is mainly from 0.7 to 0.95.

2) DESIGN OF THE METHOD FOR IDENTIFYING THE
ZERO-LAYER BRIGHT BAND
This paper chooses the fuzzy logic algorithm to identify
the zero-layer bright band, which was proposed by Zadeh
in 1965 firstly. The traditional fuzzy logic algorithm mainly
includes: fuzzification, inference, aggregation, and defuzzi-
fication. As discussed in section 3.2.1, the input parameters
include the polarimetric measurements, such as ZH , ZDR and
ρHV (0), and so on. At the same time, considering that the
zero-layer bright band also has the obvious altitude charac-
teristic, we also take the height as an input parameter. In the
method of identification of zero-layer bright band based on
fuzzy logic, the input parameters are processed by fuzzifi-
cation, inference, aggregation and defuzzification, and the
final output is 1 (zero-layer bright band) or 0 (non-zero-layer
bright band). The schematic diagram is shown in Figure 3.

FIGURE 3. The structure of bright band identification system based on
fuzzy logic.

a: FUZZIFICATION AND MEMBERSHIP FUNCTION
SELECTIONS
When fuzzy logic algorithm is applied for the identification
of the zero-layer bright band, firstly, we need to process
fuzzification for the four input parameters. Namely, the orig-
inal input data are converted into fuzzy basis by membership
function, and a certain input data can belong to different fuzzy
basis, and it also corresponds to differentmembership degrees
in different fuzzy basis [20]. It is obvious that the most
important step is the construction of membership function.
Through a large number of experiments, it is found that the
performance of the beta membership function is the best, and
the beta function is given by equation 10.

β (x, a, b,m) =
1

1+
∣∣ x−m

a

∣∣2b (10)

Where x is the input parameter, and ais the function width,
and b is the slope and m represents the center point of the
function. The output of the beta function lies between 0 and 1.
The value of a, b, m correspoding to 4 input parameteors are
shown in Table 2.

TABLE 2. The parameteor of Beta membership function corresponding to
the polarimetric measurements.

FIGURE 4. The diagram of Beta membership function corresponding to
the polarimetric measurements. a the membership function of ZH . b the
membership function of ZDR . c the membership function of ρHV (0). d the
membership function of H .

b: INFERENCE
Through the analysis by the former researchers, the core of
classifier based on fuzzy logic mainly lies in the construc-
tion of membership functions and fuzzy rules, which can be
described as follows in logical language.

IF (X1 IS MBf1 ANDX2 IS MBf2 ANDX3 IS MBf3 AND
X4 IS MBf4)
THEN Output IS 1
Where, MBFi (i = 1, 2, 3, 4) represents the degree of

membership function corresponding to the four input param-
eters. Therefore, the intensity R of the precipitation particles
belonging to the bright band can be expressed by the follow-
ing expression:

R =
4∑
i=1

[Wi •MBfi (Xi)] (11)

Where Wi is the contribution of the i-th input parame-
ter to the bright band, and Wi = 0.25 (i = 1, 2, 3, 4).
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Moreover, MBFi(Xi) indicates the degree of membership
function of the input parameter Xi, and it corresponds to the
bright band.

c: AGGREGATION
Here, we select the strength R as the only parameter to deter-
mine whether the particle belongs to the zero-layer bright
band or not.

d: DEFUZZIFICATION
Strength R is the only parameter to determinewhether the par-
ticle belongs to the zero-layer light band or not. In this paper,
through a large number of experimental analysis, we found
that the identification effect is better when the Tdd-offset is
equal to 0.95. Therefore, when R ≥ 0.95, the output is 1,
otherwise the output is 0.

The fuzzy logic algorithm is applied to identify the bright
band, and it is mainly because that this method obtains
the classification results based on the degree of member-
ship function rather than the specific values. Moreover, this
method is not limited by the statistical formula and the
final result is not affected by the inaccurate value of some
parameters.

C. CLASSIFICATION OF PRECIPITATION CLOUDS BASED
ON DEEP LEARNING
The stratiform cloud precipitation is caused by a large range
of vertical movement of air, with a certain vertical velocity.
During the radar detection, its reflectivity is relatively small,
and the gradient of the horizontal reflectivity is relatively
small. The vertical thickness is relatively thin, and the top is
relatively flat. If precipitation at the ground is liquid, it is often
accompanied by the phenomenon of the zero-layer bright
band. The convective precipitation is produced by the air
vertical movement caused by the atmospheric instability. Its
reflectivity factor is stronger, and the horizontal reflectiv-
ity gradient is larger. The vertical thickness is thicker, and
the top is uneven. These features play an important role in
the identification of stratiform clouds and precipitation of
convective clouds. In this paper, the Convolutional Neural
Network (CNN) is used to identify the types of precipita-
tion clouds, and we utilize a large number of stratiform and
convective cloud precipitations to train and test the neural
network, so that it can meet the requirements of accurate
identification.

Convolutional Neural Network (CNN) is a multi-layer
sensor and it is inspired by the biological visual neural
mechanism. it is composed of multiple convolution and
sub-sampling layers, which has the ability of automatically
extracting sample features. In the convolution layer, the neu-
ron of each network layer is only connected with the neurons
in a small neighborhood of the upper layer. Through the local
sensor, each neuron can extract the primary visual feature
and guarantee the spatial structure relation of the original
signal, so that the image can be directly used as the input of
the neural network. It avoids complex feature extraction and

data reconstruction process in traditional recognition algo-
rithm. In the pooling layer, the original data is compressed by
sampling, which reduces the computational complexity and
constructs the invariance of the spatial structure. In addition,
CNN makes it more similar to the biological neural network
through the weight sharing network structure that reduces the
complexity of the network model and the number of weights.
Therefore, it has become an important research tool in many
fields such as the image recognition and the automatic speech
recognition.

1) SELECTION OF SAMPLE DATA
As stated in section 2.2, the polarimetric measurementsis
processed for each cell through CAPPI inversion by VHI
method in this paper, and the cell size is 0.1 × 0.1 km2,
including polarimetric data such as ZH , ZDR, and ρHV (0)
and so on. It is well known that the precipitation clouds are
distributed in a layered form in the atmosphere. In this study,
the paper takes the 10 km2 (32 × 32 cells) reflectivity ZH
data as input, and utilize CNN algorithm to classify the types
of precipitation clouds in this area.

Combining the horizontal and vertical structure charac-
teristics of stratiform clouds and convective clouds, and
based on a large number of stratiform and convective
cloud precipitations, and mixed cloud precipitation data, this
paper takes the CAPPI reflectivity data between 3-7 km.
We select 1200 reflectivity matrices (each matrix with a size
of 32× 32 cells) with typical stratiform cloud and convective
cloud precipitation characteristics to establish a database for
the training and testing of convolutional neural network of
precipitation cloud type recognition system.

2) DESIGN OF PRECIPITATION CLOUD TYPE
IDENTIFICATION METHOD
This paper presents a cloud type identification algorithm
based on CNN, which is an algorithm that is a typical
supervised deep learning algorithm, relying on a large num-
ber of tagged sample data to train the model. Using the
Python+Pytorch development platform, this paper constructs
a precipitation cloud type identification model based on
CNN, and its flow diagram is shown in Figure 5.

As shown in Figure 5, the precipitation cloud identification
system is mainly composed of input and output layer, two
convolutional layers, two residual block layers, two full con-
nection layers, and a Sofatmax classifier. The system input is
a reflectivity matrix with a size of 32×32 cells, which passes
through convolutional layer, two residual block layers (each
consists of one convolutional layer, one InstanceNorm layer,
and one ReLU active layer), and another convolutional layer.
Finally, we obtain 16 feature maps with a size of 3× 3 cells.
The system utilizes two full connection layers to convert the
16 feature maps into 1 × 64 feature vector, which is used
by Sofatmax classifier to classify the types of precipitation
clouds.

In our research, we take nearly 2400 samples to train
and test the identification system, contains 1200 stratified
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FIGURE 5. The flow chart of precipitation cloud type identification algorithm based on CNN.

cloud data matrices and 1200 convective cloud data matrices,
which are extracted from a large number of scaning data by
human eyes. Moreover, the stratiform cloud samples have
been marked as 0, and the convective cloud samples have
been marked as 1.

a: TRAINING PROCESS
The training process is mainly through BP algorithm to adjust
the parameters of the system based on a large number of
tagged sample data, so that each parameter in the system
can achieve the optimal value. The training set consists
of 1000 stratified cloud samples and 1000 convective cloud
samples. The training steps are given as follows.

Firstly, as shown in Figure 5, input the tagged sample data
into the identification system, where each sample data is
32 × 32 reflectivity matrices. The input data pass through
multiple processes such as convolution, normalization and
activation and so on. Finally, the system obtain 16 feature
maps with a size of with a size of 3× 3 cells.

Secondly, the obtained feature maps are converted into a
feature vector, and the Sofatmax classifier is used to classify
it, and finally the type of precipitation cloud corresponding
to the input data is obtained.

Finally, the result of the precipitation cloud identification
and the samples are compared and analyzed, so the corre-
sponding output error is obtained. The output error is back
propagated to the input layer through the hidden layer, and
the error is distributed to all the units of each layer, thus the
error signal of all units is obtained. Finally, the weights of
each unit are corrected by this error signal.

b: TESTING PROCESS
The testing process is to use a small amount of sample data
used in the system for the identification of precipitation cloud
type. By comparing the result from the model output to the
known categories, we can evaluate the accuracy of the sys-
tem.For the completed convolutional neural network model,
the parameters of each unit have been determined. The test
sample data can be input into the system, and then propagate
through each layer and finally reach the output layer to obtain
the result of classification. In this paper, 200 stratiform clouds
and convective cloud sample data are selected to test the
system, and the accuracy of the test process can reach 90.2%.

D. SYSTEM DESIGN
This paper constructs a precipitation cloud identification
system, which takes the original detection data of weather

radar as input, and finally outputs the type of precipitation
cloud through CAPPI inversion, identification of zero-layer
bright band, and classification of precipitation clouds based
on CNN. The schematic diagram is shown in Figure 6.

FIGURE 6. The schematic diagram of precipitation cloud identification
system.

As shown in Figure 6, the system realizes the identification
of the precipitation cloud type. As discussed in section 2.2,
the paper utilize the VHI method to process CAPPI inversion
for the volume scanning data of the dual-polarization Doppler
weather radar, and obtains the horizontal distribution of the
ZH , ZDR, ρHV (0) and the other polarization parameters at any
altitude.

In the southwest area of China, the precipitation clouds are
usually distributed in altitude from 2 to 7 kilometers. Thus,
for the identification of precipitation clouds types, the CAPPI
data in the range of 2-7 kilometers are chosen to analyze.
In the altitudes range of 2.5-5 kilometers, zero-layer bright
band is relative active, and it can cause large interference for
precipitation cloud identification. As stated in section 3.1, this
paper utilizes a fuzzy logic algorithm to identify the zone
of the zero-layer bright band through combing the distribu-
tions law of ZH , ZDR, ρHV (0) and H of the particles in the
zero-layer bright band.

For non-zero-layer bright band, the paper utilized the
CNN network model to identify the precipitation cloud type.
Because this module belongs to the category of deep learning,
its accurate identification of precipitation cloud type depends
on the training of large batch sample data. As described
in section 3.2, the paper selects 2000 sample data matrices
with typical stratiform and convective cloud precipitation
characteristics from the radar in 2017 to train and test the
CNN network, so as to realize the accuracy requirement of
identifying stratiform and convective clouds.

IV. RESULTS
In this paper, the performance of the system is evaluated by
the data detected in a mixed cloud precipitation process by
using the CINRAD-SA dual-polarization Doppler weather
radar which is upgraded in China. On 16 June 2017, a heavy
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rainfall process were detected by the CINRAD-SA radar,
which is located in Guangzhou, Guangdong, China (23◦01′N,
113◦35′E). The radar indicators are shown in Table 1. The
period of the rainfall was from 2000UTC on June 16th, 2017
to 0500 UTC on April 17th, 2017. The precipitation range
covered almost all areas of Guangdong province, and the
intensity of rainfall reaches 45mm for Guangzhou, which was
classified as a heavy rainfall process. The paper uses the pre-
cipitation cloud identification system described in section 3.4
to identify the precipitation cloud types in the process of
rainfall, and analyzes the identification result with the ground
precipitation data. Moreover, this paper verifies the correct-
ness of the identification result. The detailed process is given
as follows.

In this paper, the CAPPI inversionwithVHImethod is used
to process volume scan data. Figure 7 is CAPPI distribution
map of the ZH , ZDR and ρHV (0) at 4 km altitude. The paper
only processed the data in the area within 300 km. The data
resolution is 100 × 100 meters, and the distance between
adjacent circle is 75 km.

FIGURE 7. The CAPPI distribution of polarimetric parameters
correspoding to a ZH b ZDR c ρHV (0) at 4 km altitude.

As shown in Figure 7, in the vicinity of the radar station
(picture center point), the data in the area is less reliable due to
the existence of blind zone and the influence of ground clutter,
which has been removed by the article in the 10 km area.
Asmentioned in section 3.4, in the southwest region of China,
the zero-layer bright band is active in the precipitation area
with a altitude of 2.5-5 km, and it is necessary to preprocess
the zero-layer bright band when the precipitation cloud type
is identified in the region. The paper uses the CAPPI data
mentioned above to identify the type of precipitation cloud
at 2-6km altitude. Considering the interference caused by
the zero-layer bright band, the paper uses the fuzzy logic
algorithm to identify the area of the zero-layer bright band,
and then uses the deep learning network to identify the type
of the precipitation cloud, and the final identification result
correspoding to 4km altitude is shown in Figure 8.

As shown in Figure 8, the red area is a zero-layer light
band. Corresponding to the Figure 6, in this area, ZH is
from 35 to 40 dBZ, ZDR is from 2 to 3 dB, and ρHV (0) is
0.85-0.94, which are fully consistent with the distribution law
of the polarimetric parameters of the precipitation particle
in the zero-layer bright band zone described in section 3.2.
It proves that the correctness of the identification result of
the zero-layer bright band. The yellow area in the Figure 8 is
the precipitation area of convective clouds, which can be

FIGURE 8. The precipitation cloud map at 4 km altitude.

referred from Figure 7 (a). The echo intensity ZH in this
region has the following characteristics, the center intensity
of the echo is greater than the 40 dBZ, or the echo intensity of
the surrounding precipitation region has a large gradient. For
the region with Echo center intensity greater than 40 dBZ,
it corresponds to the development of the mature convective
cloud. For the latter echo, it corresponds to the developing
convective bubbles. Thus the identification result of the pre-
cipitation cloud type is reasonable.

In order to improve the accuracy and reliability of the final
identification result, this paper selects another five CAPPI
data in different altitudes in the range of 2-7km to identify
the types of precipitation cloud. The identification results are
shown in Figure 9.

The Figure 9 (a), (b), (c), (d) and (e) correspond to the
CAPPI distribution map of reflectivity of precipitation data
at 2, 3, 4, 5, and 6 km altitudes, and (a′), (b′), (c′), (d′),
and (e′) are the distributions of precipitation cloud types at
the corresponding altitudes.

In order to obtain a more complete distribution map of
precipitation clouds in this area. the 5-altitude precipitation
cloud distribution is merged. As described in Section 3.3,
the CNN is applied to identify the type of precipitation
clounds. For each input data (32 × 32 reflectivity matrix),
the features are extracted by multiple convolution kernels to
judge whether convection exists in the region, so as to realize
the identification of precipitation cloud types. For convective
clouds with a height of 3 km and below, it will directly lead to
convective cloud precipitation. For convective clouds above
3 km altitude, convective cloud precipitation will only occur
if convective intensity is large. Therefore, in the process of
data fusion, for a certain region, when there are convective
clouds at (a′) or (b′), or the precipitation clound types of
(c′), (d′), and (e′) all are convective cloud, it can be judged
as convective clouds, otherwise it can be judged as stratiform
clouds. The fusion result is shown in Figure 10.

The yellow area in Figure 10 is the precipitation area of
convective clouds, located in Guangzhou, Shantou and its sur-
rounding areas of Guangdong province, China. Comparing to
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FIGURE 9. The precipitation cloud map at multiple altitudes.

FIGURE 10. The distribution map of precipitation cloud type.

the Figure 9 (a), the reflectivity is ranging from 25 to 50 dBz
at the height of 2 km. Moreover, through checking the ground
precipitation observation data in the area, it is found that in
the process of precipitation, the cumulative precipitation in
Guangzhou and Shantou is 45mm and 39mm respectively,
and the duration is about 3 ∼ 4 hours. Therefore, It can be
inferred that the precipitation process should belong to the
convective precipitation, which is in correspondence with the
classification result of the system, thus verifying the accuracy
of the identification result.

V. CONCLUSION
A new deep learning method of precipitation cloud type
identification is proposed in this paper, based on the data of
the upgraded CINRAD-SA type dual-polarization Doppler
weather radar in China. Compared with the traditional
method of precipitation cloud type identification, the method
does not need artificial searching for the characteristic param-
eters of the precipitation cloud type, such as the maximum
reflectivity, the reflectivity gradient, and the top echo char-
acteristics. In this method, the CNN algorithm is applied to

extract the features from CAPPI data, which comes from
the original scaning data and is processed by VHI menthod.
Moreover, the softmax classifier is applied to classify the type
of precipitation cloud based on the the extracted features.
In the process of the precipitation cloud identification, con-
sidering the similarity of the echo characteristics between the
zero-layer bright band and the convective cloud precipitation,
the final identification result is interfered. The zero-layer
bright band is identified and removed, and the accuracy and
credibility of the identification result are greatly improved.

This paper takes a mixed cloud precipitation process in
Guangdong Province as a case, and the specific process of
this method is introduced in detail. The final identification
result is analyzed theoretically, and the rationality of the
recognition result is verified. Secondly, the paper verifies the
identification results based on the actual ground precipitation
data in this area. The accuracy of the identification is proved.
Thismethod is a good reference for improving the accuracy of
quantitative precipitation estimation of the Doppler weather
radar.
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