
Received April 17, 2018, accepted June 7, 2018, date of publication July 12, 2018, date of current version May 24, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2853153

Scenario Oriented Program Slicing for
Large-Scale Software Through Constraint Logic
Programming and Program Transformation
SHENGBING REN AND MENGYU JIA
School of Software, Central South University, Changsha 410075, China

Corresponding author: Mengyu Jia (154711013@csu.edu.cn)

This research work is supported only by the Central South University Graduate Research Innovation Project under Grant 2017zzts615.

ABSTRACT Program slicing, as a technique of program decomposition, is widely used in the field of
program testing, model checking, software verification, symbolic execution, and other fields. However,
the traditional approaches of program slicing tend to produce too large slices and the static program analyses
are hard to be precise enough. Scenario-oriented program slicing, which considers the actual usage of
software, gives a more precise perspective of program slicing. In this paper, we propose an approach of
scenario-oriented program slicing, which combines constraint logic programming and program transforma-
tion. According to the observation that the output of a program transformation is a semantically equivalent
program where the properties of interest are preserved, we can apply a sequence of transformations, more
powerful than those needed for program specialization, refining the slicing to the desired degree of precision.
And constraint logic programming has been shown to be a powerful, flexible formalism to reason about the
correctness of programs. The novel contributions of this paper are as follows: 1) converting the problem of
program slicing into program transformation and retrieval; 2) presenting a set of constraint handling rules for
scenario-oriented program slicing in constraint logical programming programs; and 3) deriving a scenario-
oriented program slicing algorithm. The method of scenario-oriented program slicing has been implemented
and we have demonstrated its effectiveness and efficiency on three open source software projects in GitHub.

INDEX TERMS |Constraint logic programming, large-scale software, program slicing, program transfor-
mation, scenario.

I. INTRODUCTION
Software applications will play more andmore important role
in our daily life. With the continuous expansion of software
applications and the recognition of open source concepts,
software code is growing rapidly. And the scale and structure
of software architecture are more and more complicated. The
analysis for large-scale software tends to become infeasible
for their state spaces more easily becoming too big [1].

Program slicing, as an efficient way of model check-
ing, software verification, symbolic execution and reverse
engineering and other fields, is an important decomposition
technique for large-scale programs [2]. Although traditional
methods of program slicing can reduce the size of final
slices, they either highly depend on executable system and
representative test cases, or have serious efficiency problems
in applying into large-scale industrial programs [3].

Requirement plays a key role in many development pro-
cesses, and the value is generated only if the system is actually
used. It is much better to focus on how the system will be
used than on what functions or features it will offer. Scenario
provides its focus by concentrating on how the system will be
used to achieve a specific goal for a particular user [4]. Across
the set of slices all the activities could go on in parallel and the
scenario slice is the most important element of Use-Case [5].
As a program is often tangled with lots of different scenarios,
we believe that slicing program under a specified scenario
may achieve better precision [6]. A scenario can exclude
some program paths from being passed and thus exclude
many program states from being reached. These scenarios
capture a subset of the program’s functionalities and often
permit developers to perform an ad hoc form of program
slicing. We believe that combing program decomposition and

62352
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-6676-4562


S. Ren, M. Jia: Scenario-Oriented Program Slicing for Large-Scale Software

scenario oriented program slicing may provide a promising
support for understanding large-scale programs [7].

As shown by a number of applications, program transfor-
mation, as an operation which can be applied to a program
to generate another equivalent program (provided any given
applicability conditions are satisfied), is a powerful technique
for the development and optimization of large-scale pro-
grams [8]. It is possible to easily take into account alternative
operational semantics definitions for modeling additional
language features. Since the output of a program trans-
formation is a semantically equivalent program where the
properties of interest are preserved, we can apply a sequence
of transformations, more powerful than those needed for
program specialization, thereby refining the analysis to the
desired degree of precision [9]–[12].

Constraint logic programming, also named constrained
Horn clauses, has been shown to be a powerful, flexible
formalism to reason about the correctness of programs [13].
Constraint logic program is an artificial intelligence-based
constraint satisfaction model with the ability of both logi-
cal programming and constraint solving. It can be used to
represent attributes, programs and execution. In recent years,
the declarative language that separates the logical compo-
nents from the control components has been widely studied.
Simultaneously, constraint logic programming algorithms are
mainly divided into two parts: control and logic, which are
easy to implement in parallel. The information on the con-
strained network can be propagated at the same time and used
to store solving problems. The logic between the information
used at any time and any way the information is used. And
constraint logic programming has been applied into model
checking of both finite and infinite state systems [14].

Inspired by the preliminary work of the article [15] and
our previous work in representation, storage and retrieve for
large-scale software, in order to address the problems of the
state space exploration and the precision for analyzing large-
scale software, a method named scenario slicing is proposed
which combines and extends the ideas which were developed
in the fields of constraint logic programming and program
transformation. There is no restriction on the languages with
which our approach can be used, but for the simplicity we
have only explored its use with java. The actual novelty of the
work is that scenario is used as a property to reduce the size
of the state space providing a more precise result. The idea is
to render properties as scenarios and exploit their locality to
reduce the size of the verification space. In order to use the
result of the scenario oriented program slicing for program
verification, the slicing is measured by the basic unit of
constraint logical fact instead of the program statement. The
objective of the transformation is to derive a new constraint
logical program. Our method is based on transformations
of constraint logical programs that preserve the least model
semantics related with certain scenario.

The rest of this paper is organized as follows. Section II
discusses the related work, highlighting the original contri-
butions of this paper. After giving the motivating example

in Section III, we introduce the overall approach of the
proposed solution in section IV. And section V presents
the experimental implement and evaluation. Section VI con-
cludes summarizing the contributions of this paper, and
outlining our future research plans.

II. RELATED WORKS
Weiser [16] introduced static program slicing in 1982 which
has opened the research boom of program slicing. Recently,
the method of calculating the static program slice includes
the data flow equation and the dependency graph relation-
ship. Though the specific data values doesn’t need to be
considered, the result of static program slicing are often
too large. Scenario is usually described as UML sequences
diagram. Generally UML sequences diagram works at con-
ceptual level, and doesn’t consider implementation details.
Even so, it provides a very interesting means for program
analysis.

Kumar et al. [3] proposes a scenario oriented program
slicing method which takes the user specified scenario into
account and finds all the program parts relevant to a special
computation under the give execution scenario. Although the
actual uses of the user are taken into account, this paper lacks
the necessary theoretical basis.

With the maturation of the constrained logic theory,
the constraint solution accelerates the development of
the program slicing theory. Hofer and Wotawa [17] and
Hofer and Wotawa [18] applied the CONBAS algorithm,
which combines constraint solving together, into reducing
the size of dynamic slicing with the average reduction of
the number statements of more than 28% in the resulting
slice compared with relevant slice However with the apparent
weakness of its complexity, CONBAS can’t be applied for
large-scale software, and dynamic slicing, which takes test
case into account, can only get slice results related with a
specific input. Particularly, ignoring the object-oriented part
and method calls, the CONBAS algorithm can only handle
Integer and Boolean data types.

III. A MOTIVATING EXAMPLE
Constraint logic programming, also known as constrained
Horn clauses, can be used to determine the correctness of
a program. Constraint logic programming has been success-
fully applied to performmodel checking for finite and infinite
systems, and it turns out that constraint logic programming
can be used to express symbolic execution and invariants of
imperative programs.

A constrained logic program is an artificial intelligence-
based constraint satisfaction problem model that combines
the power of logic programming and constraint solving. It can
be used to represent attributes, procedures, and execution.
In recent years, the declarative language that separates the
logical components from the control components has been
widely studied. The constrained logic programming algo-
rithms are mainly divided into two parts: control and logic.
It is easy to implement in parallel, and the information on the

VOLUME 7, 2019 62353



S. Ren, M. Jia: Scenario-Oriented Program Slicing for Large-Scale Software

constrained network can be simultaneously propagated for
storage problem solving. The logic between the information
used at the time and the way the information is used.

The program transformation is generally to translate the
program of easy-to-understand but not-efficiently-executed
into a programwith higher execution efficiency, and to ensure
the correctness of the conversion process and the conversion
result. The purpose of program transformation is to generate a
new CLP program that is related to a specific scenario, and to
improve the analysis efficiency of the programwhile ensuring
the correctness of the program. Our method based on the CLP
program transform retains minimal model semantics. Many
applications show that program transformation can generate
another equivalent program with the same semantics as the
source program. It is an effective method for the development
and optimization of large-scale complex programs. Since the
output of the program transformation is a semantic equivalent
program that preserves the properties of interest, we can
apply a series of transformations to refine the analysis to the
required precision

IV. SCENARIO ORIENTED PROGRAM SLICING
Since the problems, which includes the explosion of state
space and the difficulties in balancing accuracy and scal-
ability for program slicing, have limited the credibility of
large industrial software, the focus of our work is to design
an approach to effectively and effectively realize scenario
oriented program slicing for large-scale software through
constraint logic programming and program transformation.
In this section, we will introduce the overall method of
scenario oriented program slicing from two steps of trans-
formation, two CHRs and an algorithm for scenario oriented
program slicing in detail.

A. TRANSFORMATION 1: GENERATION OF CLP BASED
SOFTWARE NETWORK
Profile, whose suffix is .xml or .yml or .fxml etc, plays
an important role in some web project, even have a great
influence on the control flows, and the profile is supposed
to be taken into account when comes to scenario oriented
program slicing. Firstly, in order to model the source code for
large-scale software, we form the architecture of generating
constraint logical programming based software network as
follows in Figure 1.

The scheme of generating constraint logical programming
based software network in shown in Figure 1. There are three
components in the architecture, naming XML Parser, File
Parser and Redis DB. Firstly the config file belonging to
source code and information flow extracting from scenario
can be putted into XML Parser to get Java object, and then
the java object, combining with source and resource file, can
be used as the input of file parser to get CLP facts stored into
Redis database.

And then we define the CLP facts related with large-
scale software as follows, the definitions of related constraint
logical facts are depicted in Figure 2.

FIGURE 1. Architecture of CLP based software network.

FIGURE 2. Definition of related constraint logical facts.

The definition 1 shows that there is a package named
packName. Definition2 specifies that there is a class named
className that belongs to the package of package. Defini-
tion3 means that there is a method named medthodName
that belongs to the class of className in the package of
packName, where the retType, visibility, param, entryPointId
means the return type, access permission, parameters and the
identity of entry point of themethod respectively. Definition 4
specifies that there is an entry point of method where the
entryPointId and methodName_row_col means the identity
of entry point and the corresponding entry point depicted
by method name, the number of row and line. Similarly,
the definition in the range of 5 and 10 corresponds to the
statement of branch, loop, assignment, call, goto and halt
separately.

B. TRANSFORMATION 2: REMOVAL OF UNRELATED
SCENARIO
Slice criteria, proposed by M. Weiser firstly, is denoted as
SC = <n, V>. And particularly static slice criteria can be
denoted as SCsta = <n, V>. A dynamic slice criterion is
denoted as SCdyna = <n, V, I0 >. The notations in the slice
criteria denote as follows. The variant n is one of the program
execution points, V is a collection of variables, and I0 is a
specific input in programs.

62354 VOLUME 7, 2019



S. Ren, M. Jia: Scenario-Oriented Program Slicing for Large-Scale Software

Similarly, we define scenario criteria as SCscenario =
<enteryPointList, MedthodList>, which can be obtained
by extracting from scenario model where entryPointList is
a list of entry points relevant to the given scenario, and
the medthodList is a list of method related with the given
scenario.

Scenarios are concerned with situations that might rea-
sonably occur in the operations of the system. A scenario
typically presented by a sequence diagram (or a collaboration
diagram) in UML. The core element of a scenario is the
message flow.

Firstly we denote formal definition of sequence diagram as
follows:
Definition 1: Let M be a message, let O be an Object,

the sequence diagram denoted by SD can be noted as
SD = < M, O>.
Definition 2: Let msg_id be message identity, the method

which is called by the message is denoted by the notation
of Method, fromObj is a sender of the message, toObj is a
receiver of the message and the notation of guard denotes
optional for guard condition, a message Mi (Mi ∈ M) can
be denoted as Mi = 〈 msg_id, Method, fromObj, toObj,
[/guard] 〉.
Definition 3: The method called by message named as

Method can be denoted as Method = 〈 medthod_name,
return_type, visibility, pre_condition, post_condition,
parameter 〉.
CHR offers a rule-based programming style to express

constraint simplification and constraint propagation which
includes simplification, propagation and merging. Easily,
with the above of three definitions we can conclude the
following constraint handling rules for scenario in Figure 3.

FIGURE 3. Constraint handling rules for scenario.

In figure 3, we import the constraint’s package named ech
firstly to insert the constraint handle rules. In order to only
preserve the needed constraint lastly, we apply the simplifi-
cation into constraint handling rules for scenario.
Rule 1 (Removal of Constraint Facts Unrelated With the

Given Scenario): While there’s a constraint fact F which
contains an unsatisfiable constraint related with the given
scenario in TransfC do: TransfC = TransfC-{F}, which can
easily be realized by retrieving from CLP based software
network generated by transformation1, to generate scenario
related file suffixed by pl.

Rule 2 (Simplification): When encountered with condi-
tional expression and assignment statement, simplification
tips are as follows in Figure 4.

The simplification tips depicted in Figure 4 can easily be
implemented, and it should be applied with priority from left
to right.

FIGURE 4. Smplification tips.

Our algorithm depicted in Figure 5 is used to compute
control dependences based on constraint facts obtained from
transformation, whose body contains not just control depen-
dences, but also data dependences, which are extremely vital
for program slicing.

This algorithm for scenario oriented program slicing can
be applied into after simplification and generating scenario
related file which is suffixed by .ecl.Where the clause1 builds
the constraint among package, class and method, clause2
denotes the constraint betweenmethod and entry point, taking
the different number and type of parameter into account,
clause3 are used to express the constraint between entry
point and statement, whereas clause4 constructs the con-
straint between statement and statement, clause5 builds the
constraint of branch and clause6 shows the constraint of
assignment and call statement.

V. IMPLEMENTATION AND EVALUATION
In this section, wewill describe our prototype implementation
firstly, and experimentally evaluate our approach by case
studies based on three open source software.

A. IMPLEMENTATION
Based on the approach for scenario oriented program slicing
proposed in section II, we can conclude our architecture
in Figure 6.

In figure 6, there are three components, including parser,
transformarion 1 and transformation 2. The architecture of
the approach is realized by JAXB, ANTLR, Redis, ECLi PSe,
and python. JAXB (Java Architecture for XML Binding),
which combines the benefits of DOM parser and API for
XML Parser, is used as an important part of XML Parser
proposed in Figure 1 which can be used to convert valid
XML file into java object that are instances of the classes by
using unmarshalling process. ANTLR is used to parser source

VOLUME 7, 2019 62355



S. Ren, M. Jia: Scenario-Oriented Program Slicing for Large-Scale Software

FIGURE 5. Algorithm for scenario oriented program slicing.

FIGURE 6. Architecture for the scenario oriented program slicing.

code which can generate lexical analyzer, parser, listener
etc which are related with certain program language using
related grammar automatically, and the exaction of source
code information is written by python for transform source
code to software network with constraint logic programming.
Redis, as one of the NoSQL database, is very suitable for

solving the problem for its rich data types, high speed and
performance in concurrent read and write, which can easily
be used to store and select the results of software network.
ECLi PSe, as an open-source software system for the cost-
effective development and deployment of constraint logic
programming applications, can be applied into scenario ori-
ented program slicing. Consequently, JAXB and ANTLR
are applied into the component of parser, Redis is the core
element in transformation1, and ECLiPSe is used to realize
the component of transformation 2.

B. EVALUATION: CASE STUDYS
In this section we will evaluate our prototype implementation
on three open source projects written by Java including
SoundSea (https://github.com/sacert/SoundSea), renren-
generator (https://gitee.com/babaio/renren-generator) and
commons-pool (https://github.com/apache/commons-pool).
SoundSea, as a music platform, is one of the top ten Java
programworth your attention in Github. renren-generator can
generate source code including entity, XML, dao, service,
js and so on. And commons-pool is the Apache Commons
Object Pooling Library.

And firstly, we evaluate our transformation1 naming gen-
eration of constraint logical programming based software
network by the tool of SoNet in Figure 7.

FIGURE 7. GUI of SoNet.

SoNet can be used in two ways including command line
mode and GUI for convenience. And in GUI the window
of SoNet composed of components of menu bar, text field
of input, display panels of global and sliced views and text
area of error output, shown in Figure 7. In order to make
the usage easier, the menu item of File/Import can be clicked
in GUI and file chooser is used to select directory of source
code regarding open source software. And then Parsermodule
can be activated to extract the primary information including
package, class, function, variant and relations among them.
And then the primary information can be stored into Redis by
calling storage module for cluster storage. Consequently the
global view can be displayed in the left of GUI by invocating
the layout of twopi provided by Graphviz in visualization

62356 VOLUME 7, 2019



S. Ren, M. Jia: Scenario-Oriented Program Slicing for Large-Scale Software

FIGURE 8. Global view related SoundSea.

module shown in Figure 8. Particularly, the color of red,
yellow, green and blue represent the nodes of package, class,
function and variant respectively. And in order to distin-
guish the functions from all kinds of functions, the library
functions, which play a key role in software and don’t exist
in Redis however, are denoted by circle, while others are
denoted by ellipse.

In order to obtain the information related with a given
keyword, the commit button can be clicked when a keyword
putted into the text field. And then the transformation1 real-
ized by SoNet will be invocated to search constraint logic
facts and partial view stored in Redis. Consequently the con-
straint facts will be outputted suffixed by .ecl and partial view
will display in the right of GUI respectively. For the purpose
of distinguishing the nodes in different granularity, in the
partial view related to a given keyword, the tab and record are
used to represent package and class, and self-defined shape of
computer and cylinder are applied into the node of function
and variant separately.

Further we visualize the access rights including public,
private, protected and friendly using different font colors
such as red, gold, black and blue. And the relationships
of inclusion and reference are denoted by the line of solid
and dotted separately. Taken the three keywords in different
level including threadHandles.SearchThread.run (a function),
threadHandles.SearchThread (a class) and threadHandles
(a package) as example, the partial views are depicted in
Figure 9-11 respectively. Especially, the information of errors
and exceptions are outputted in text area under the GUI.

In order to evaluate our prototype implements, we conduct
the experiments using nine scenarios from the three open
source softwares mentioned above, and consequently obtain
the result for scenario oriented program slicing depicted
in Table 1. And in Table 1, we present the following data:
the name of the program (Program), sum time of generating

FIGURE 9. The partial view based on the method of
threadHandles.SearchThread.run in SoundSea.

FIGURE 10. The partial view based on the class of
threadHandles.SearchThread in SoundSea.

FIGURE 11. The partial view based on the package of threadHandles in
SoundSea.

constraint facts (SumTime), the number of lines of
code (LOC), the number of constraint facts (SumFacts),
the serial number of scenario (Scenario), the number of
constraint facts obtained by scenario slicing, the time of
scenario slicing. Obviously, we can observe that SumFacts
usually is more than LOC since a line of code may embody
more than one constraint facts.

Compared with generating constraint facts, the time of
obtaining sliced facts is smaller, and when comes to scenario
oriented slicing, the process for generating constraint logi-
cal facts only need once for a certain open-source project
program, you can slice for different scenarios to reduce time
consumption.

Particularly, we can observe that it is not a serious pos-
itive correlation relationship between the slicedFacts and
SliceTime, since there are constraint logic facts including
package, class, entry point and the statement of branch,

VOLUME 7, 2019 62357



S. Ren, M. Jia: Scenario-Oriented Program Slicing for Large-Scale Software

TABLE 1. Result for scenario oriented program slicing.

iterate, goto and halt in the library of constraint logic facts,
the capacity of the scenario oriented program slicing for
all kinds of constraint logical facts are not always actually
equal.

Accuracy and recall are two metrics which are widely
used in the field of information retrieval and statistical clas-
sification. Rather than take mean of precision and recall,
F1 score (also F-score or F-measure) uses the harmonic
mean. The higher the F1 score, the better the predictions.
Similarly, in order to verify and validate the results of slice
and obtain the threshold of slice, we use four parameters
in Figure 11 where A is the number of constraint facts that
belong to the scenario which is obtained by slicing, B is the
number of constraint facts that don’t belong to the scenario
which is obtained by slicing, C is the number of constraint
facts that belong to the scenario which can’t be obtained by
slicing, and D is the number of constraint facts that don’t
belong to the scenario which can’t be obtained by slicing.
Simply redefine the three terms as follows:

accuracySlice =
A

A+ B
(1)

recallSlice =
A

A+ C
(2)

F1Slice =
accuracy× recall
accuracy+ recall

(3)

Traditional approaches for slicing include dynamic slice,
static slice and the combination of both of them, which cater
of the most actual needs effectively and efficiently using all
kinds of theories and techniques. However there is no uniform
provision for the method of generating actual slice. And the
actual total number of constraint facts that belong to a certain
scenario, which correspond to A and C depicted in Figure 12,
can’t be obtained. Simply, we can easily get the total number

FIGURE 12. Four parameters of metrics.

of constraint facts obtained by slicing, which corresponds to
the sum of A and B depicted in Figure 12 of (slicedFacts),
and the total number of constraint facst can’t be obtained by
slicing, which corresponds to the sum of C and D depicted
in Figure 12 (SumFacts- slicedFacts). In order to evaluate
the effect of the approach, we introduce a metric naming
sliceRate denoted by formula 4.

sliceRate =
(
1−

slicedFacts
sumFacts

)
× 100% (4)

We replace the three open source softwares of SoundSea,
Renren-generator and Commons-pool with S, R and C for
simplicity. And consequently the nine scenarios can be
denoted as S1-S3, R1-R3, C1-C3. In Figure 13 we depicted
the siceRate of our approach related with the nine scenarios
in the three programs.

In Figure 13 we can easily observe that the slice rate of
scenario oriented program slicing is more than 96%, and there
is no necessary relationship among the total slicing rate and
the total number of lines, the total number of constraint facts
and the slicing time.

FIGURE 13. The slice rate of scenario oriented program slicing.

62358 VOLUME 7, 2019



S. Ren, M. Jia: Scenario-Oriented Program Slicing for Large-Scale Software

We further investigate the efficient of method of scenario
oriented program slicing. Compared with the number of
statements in total (LOC), the number of constraint fact
(SumFact) plays a key role in complexity of software. Simply,
we introduce a metric naming slicing time rate denoted by
formula 5.

timeRate =
sumTime+ sliceTime

sumFact
× 100% (5)

And in Figure 14 we depict the trend of timeRate of
our approach. In order to analyze the trend of the timeRate
of slicing along with the total number of constrained facts
(sumFact), we rank the sumFact of nine scenarios in the three
open source softwares.

FIGURE 14. The time rate of scenario oriented program slicing.

Simply we can get that the growth of slicing time rate
is linear other than exponent, and along with the growth of
SumFact the acceleration is more and more smaller, which
obviously indicates that our approach is efficient enough to
some extent.

VI. CONCLUSION
Software applications will play more and more important
role in our daily life. With the continuous expansion of
software applications, software code is growing rapidly, and
the scale and structure of software architecture are more and
more complicated. The problems including the explosion of
state space and the difficulties in balancing accuracy and
scale have limited the credibility of large-scale industrial
software.

Inspired by the preliminary work of the article [15] and
our previous work in representation, storage and retrieve
for large-scale software, in this paper we present a novel
approach of scenario oriented program slicing based on
the combination of constraint logic programming and pro-
gram transformation, which is implemented as a tool. And
our experimental evaluation suggests that our approach can
realize scenario oriented program slicing efficiently and
effectively.

There are also exists some limitations in the approach,
however, which are supposed to be considered in future work.
Rigorous mathematical foundation is very important to pro-
gram analysis and manipulation. Without such a foundation,
it is all too easy to assume that a particular transformation is
valid, and come to rely upon it, only to discover that there are
certain special cases where the transformation is not valid.
In the future work, the results of scenario oriented program
slicing is supposed to be formal validated based on rigorous
mathematical foundation, and visual link between the result
of slicing and source code are also can be created for error
positioning, consequently the slice can be applied into the
analyze the range of program variants.

REFERENCES
[1] E. Pira, V. Rafe, and A. Nikanjam, ‘‘Deadlock detection in com-

plex software systems specified through graph transformation using
Bayesian optimization algorithm,’’ J. Syst. Softw., vol. 131, pp. 181–200,
Sep. 2017.

[2] M. Weiser, ‘‘Program slicing,’’ in Proc. 5th Int. Conf. Softw. Eng.
Piscataway, NJ, USA: IEEE Press, 1981, pp. 439–449.

[3] R. S. Kumar, M. G. Nath, and U. Raaghul, ‘‘An approach for UML based
scenario oriented slicing,’’ Int. J. Recent Trends Eng. Technol., vol. 1, no. 2,
pp. 141–143, 2009.

[4] I. Jacobson, I. Spence, and B. Kerr, ‘‘Use case 2.0: The guide to succeeding
with use cases,’’ Commun. ACM, vol. 59, no. 5, pp. 61–69, 2016.

[5] I. Jacobson, I. Spence, and B. Kerr, ‘‘Use-case 2.0,’’ Commun. ACM,
vol. 14, no. 1, pp. 61–69, 2016.

[6] J. Qian and B. Xu, ‘‘Scenario oriented program slicing,’’ in Proc. ACM
Symp. Appl. Comput., 2008, pp. 748–752.

[7] C. Pietsch, M. Ohrndorf, U. Kelter, and T. Kehrer, ‘‘Incrementally slicing
editable submodels,’’ inProc. 32nd IEEE/ACM Int. Conf. Automated Softw.
Eng. Piscataway, NJ, USA: IEEE Press, 2017, pp. 913–918.

[8] S. Etalle and M. Gabrielli, ‘‘Transformations of CLP modules,’’ Theor.
Comput. Sci., vol. 166, nos. 1–2, pp. 101–146, 1996.

[9] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti, ‘‘Verification
of imperative programs by constraint logic program transformation,’’ in
Proc. EPTCS, vol. 129, 2013, pp. 186–210.

[10] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti, ‘‘A rule-based
verification strategy for array manipulating programs,’’ Fundam. Inform.,
vol. 140, nos. 3–4, pp. 329–355, 2015.

[11] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti, ‘‘Verifying
relational program properties by transforming constrained horn clauses,’’
in Proc. CILC, 2016, pp. 69–85.

[12] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti, ‘‘VeriMAP:
A tool for verifying programs through transformations,’’ in Proc. Int. Conf.
Tools Algorithms Construct. Anal. Syst. Berlin, Germany: Springer, 2014,
pp. 568–574.

[13] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti, ‘‘Semantics-
based generation of verification conditions via program specialization,’’
Sci. Comput. Program., vol. 147, pp. 78–108, Nov. 2017.

[14] F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni, ‘‘Generalization
strategies for the verification of infinite state systems,’’ Theory Pract. Logic
Program., vol. 13, no. 2, pp. 175–199, 2013.

[15] S. Ren, M. Jia, F. Huang, and Y. Liu, ‘‘Visualization analysis frame-
work for large-scale software based on software network,’’ in Proc. Int.
Conf. Pioneering Comput. Sci., Eng. Educ. Singapore: Springer, 2017,
pp. 751–763.

[16] M. Weiser, ‘‘Programmers use slices when debugging,’’ Commun. ACM,
vol. 25, no. 7, pp. 446–452, 1982.

[17] B. Hofer and F. Wotawa, ‘‘Combining slicing and constraint solving for
better debugging: The CONBAS approach,’’ Adv. Softw. Eng., vol. 2012,
pp. 1–18, 2012.

[18] B. Hofer and F. Wotawa, ‘‘Reducing the size of dynamic slicing with
constraint solving,’’ in Proc. 12th Int. Conf. IEEE Qual. Softw. (QSIC),
Aug. 2012, pp. 41–48.

VOLUME 7, 2019 62359



S. Ren, M. Jia: Scenario-Oriented Program Slicing for Large-Scale Software

SHENGBING REN was born in Yueyang, Hunan,
China. He received the B.Sc. degree in com-
puter software from the Department of Mathemat-
ics, Huazhong Normal University, Hubei, China,
in 1992, the master’s degree in computer applica-
tion technology from the Department of Computer
Science, Central South University of Technology,
Hunan, in 1995, and the Ph.D. degree in control
theory and control engineering from the School
of Information Science and Engineering, Central

South University, Hunan, in 2007. He is currently an Associated Professor
with the School of Software, Central South University. He has published over
50 papers. His research interests include software engineering, embedded
system, image processing, pattern recognition, and dependable software.
He is dedicated to the research concentrated mostly on dependable software
and pattern recognition. He accomplished 10 research projects including two
the National Natural Science Foundation of China as a Key Member. He is a
Senior Member of the China Computer Federation.

MENGYU JIA is currently pursuing the master’s
degree with the School of Software, Central South
University, China. She has published a paper and
has applied for a patent. Her research interest is
dependable software.

62360 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORKS
	A MOTIVATING EXAMPLE
	SCENARIO ORIENTED PROGRAM SLICING
	TRANSFORMATION 1: GENERATION OF CLP BASED SOFTWARE NETWORK
	TRANSFORMATION 2: REMOVAL OF UNRELATED SCENARIO

	IMPLEMENTATION AND EVALUATION
	IMPLEMENTATION
	EVALUATION: CASE STUDYS

	CONCLUSION
	REFERENCES
	Biographies
	SHENGBING REN
	MENGYU JIA


