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ABSTRACT With the rapid development of wireless mobile communication, local content sharing has
become the emerging demand for users who are geographically close. Device-to-device (D2D) communi-
cation allows two users to communicate directly with each other. In order to achieve more effective content
distribution and content spread by allocating better spectrum resources to users with better social networking
and content diffusion capabilities, we propose an optimization scheme for resource allocation of the
D2D communication by utilizing the potential social relations that are embedded in the communication
devices. The degree of intimacy between users is abstracted from the call records to quantify social-relation
strengths. Considering the time-varying property of social relations, the auto-regressive integrated moving
average model is applied to map the call records into time sequence to predict users’ social relations. Besides,
instead of individual utility or the overall network utility, each user aims to maximize its social-community
utility which takes other social related D2D users into consideration. Potential game is utilized to solve
the social-community utility maximization problem of resource allocation for the D2D communication due
to its outstanding mapping nature and always has the Nash equilibrium. Finally, a social-aware distributed
resource allocation algorithm is proposed, and the algorithm achieves convergence and stability. Numerical
results show that our proposed scheme increases the overall utility over 30% compared with coalition game
scheme, and over 50% compared with random selection scheme without loss of the fairness.

INDEX TERMS Device-to-device communication, time-varying, social relations, resource allocation,
potential game.

I. INTRODUCTION
WITH the rapid spread of intelligent terminals and the
explosive growth of network capacity, great challenges
have been brought to wireless mobile communication [1].
Local content sharing has become the emerging demand
for users who are geographically close. Mobile devices can
act as caching servers and send content to other devices
through short -distance communication [2]. As an example of
short-distance communication, device-to-device (D2D) com-
munication allows users to communicate directly by multi-
plexing cellular spectrum resources, which can improve the
spectral efficiency and enlarge the system capacity [3], [4].
On the other hand, D2D communication as one of the wire-
less mobile communication, the most important feature is
mobile communication devices are carried and operated by
people [5], [6]. Their behaviors are regular and predictable
to some extent in the interaction process. Social rela-
tions between people can be reflected by social behaviors,

personal interests, type of activities, intimate relation-
ships [7]. If social relations between people can be applied
in D2D communication, not only can system performance
be improved, the user experience (UE) can be improved
too. In addition, D2D communication is a high-speed and
low-power communication between users at short range [8].
Thus, the performance of D2D communication depends on
the meeting frequency of users whose locations are near, and
the frequency at which they require online communication
or content sharing. In other words, the performance of D2D
communication in cellular network is highly dependent on
the behavior of the nodes. So taking social relations between
D2D users into account is significant in D2D communication
research. Through the consideration of social-aware resource
allocation, effective content distribution and content spread
can be achieved among users. Users with better social net-
works have better content diffusion capabilities. If better
spectrum resources are allocated to them, the goal of efficient
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content distribution for users can be achieved in the process
of resource allocation with considering the social attributes
and the potential social fluctuations.

There are some researches focused on social-aware
resource allocation for D2D communication. Some schemes
are proposed to model social relations between users.
Yang et al. [9] exploited social ties with delivery willing-
ness of content owner to enhance D2D resource sharing and
further proposed a social aware resource allocation frame-
work. In this paper, social information is considered static.
Wu et al. [10] proposed a social-aware cluster-based game
theoretical scheme for resource allocation in which clusters
are formatted based on the new defined weighted social
interference degree and the physical interference graph. They
utilized a new asymmetric social weighted graph to study
the problem of resource allocation for D2D wireless social
networks. Sun et al. [11] presented a novel approach to
formulate the social relationships for the offline mobiles by
comparing the similarity of mobile users’ social activities
with the Bayesian model. In these papers, the social relations
between users are modeled by specific formulas or weighted
graph based on the user’s interests, common friends and
other factors of social relations into the unresolved problems.
Whether there is interaction between users are not considered.
Moreover, as D2D environment and social relations among
the users vary from time to time, social-relation models for
D2D communication should be adaptive in nature. There is
no current research considering the changes in social relations
over time.

Current researches on social-aware D2D communication
considered mainly four factors of social relations: social
bond, social links, social community, social centrality [15].
The social communities are based on social relationships
among people who have the same social behaviors or inter-
ests. There are also some researches about social-community-
aware resource allocation for D2D communications.
Fang et al. [13] exploited social ties in human-formed social
networks to enhance D2D resource sharing and further pro-
posed a social-community-aware D2D resource allocation
framework, where cellular users would like to share their
channels with D2D communications in the same commu-
nity formed by a group of people with close social ties.
Zhao et al. [14] considered the small size social communi-
ties formed by people with similar interests and exploited
them to optimize the resource allocation of the communities.
In this paper, social relations are normalized by physical-
social graph methods. Ahmed et al. [15] proposed a novel
social-community-aware LLs establishment strategy, which
exploited the interplay between social network features and
communication domain constraints. To evaluate the impact
of social community on physical network, the users in a
community care only about the average path length (APL)
of the same community. In these papers, social community is
utilized, but there is no explanation of how to get the social
relations between users and how to obtain communities based
on social relationships.

On the other hand, D2D users usually choose to multiplex
cellular user’s spectrum resource to increase the resource
utilization, which improves the spectrum utilization, but also
causes strong interference between D2D users and cellular
users. In order to maximize the system data rate, an effective
resource allocation approach is needed to manage the inter-
ference between users. Bai et al. [16] formulated the resource
allocation into a social awareness and social blind optimiza-
tion problem. In order to optimize the network utility and
resource utilization, linear programming is utilized to solve
the optimization problem. The advantage of using linear pro-
gramming to solve the problem is there is a unified algorithm
and any linear programming problem has a solution. The dis-
advantage is that the demand of data accuracy is high and the
calculating amount is quite large. Bastug et al. [17] analyzed
the influence of considering social relations for D2D com-
munication in the downlink OFDMA network and modeled
the resource allocation problem into mixed integer nonlinear
programming (MINLP) problem. The solution multiplexes
the downlink cellular subscriber resources, greatly increasing
the available spectrum bandwidth. However, it also requires
highly complex and expensive equipment. Jiang et al. [18]
designed SoCast, which is a social video multicast system
for D2D communication based on social trust and social
reciprocity. They proposed a distributed algorithm based on
cooperative game. The problem is solved by game theory,
which simplifies the optimization process to some extent, but
it is one-sided for cooperative game to assume that users are
altogether altruistic.

Based on the above analysis, in this paper, the intimacy
degree of users is presented based on the user’s call records
for quantifying social relations, then we map the call-log
data into time sequence and use Auto-Regressive Integrated
Moving Average (ARIMA) model to predict the social rela-
tions. This can model the user’s interactive behavior based
on the actual call records, and social relations among users
vary from time to time, ARIMAmodel for resource allocation
in D2D communication can be adaptive. In addition, assum-
ing that all users are completely altruistic or selfish repre-
sents two extreme user relationships. The social relationships
between D2D users are more complex than the two cases.
In this paper users are divided into naturally formed groups
called social communities. Social communities are based on
social relationships among people who have the same social
behaviors or interests. Instead of maximizing D2D users’
individual utility or the overall network utility, each user aims
to maximize its social-community utility with consideration
of other D2D users who have social relations with it, which
has distributed characteristics of the optimization problem.
In [16] and [17] linear programming or MINLP are utilized
to solve the optimization problem, which require massive
computation and highly complicated equipment. Due to the
distributed nature of the problem and in order to simplify
the computational process, potential game [19] is used to
solve the social-community utility maximization problem of
resource allocation for D2D communication. Potential game
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FIGURE 1. Illustration of two-domain architecture for social-aware
resource allocation in D2D communication, where there are 2 cellular
users and 3 D2D pairs.

is a useful tool to analyze the optimization problem, since the
incentives of all players can be mapped into one function, and
pure Nash Equilibrium can be found by potential function.
Finally, a social-aware distributed resource allocation algo-
rithm is proposed, and the algorithm achieves convergence
and stability.

The rest of this article is organized as follows. The system
model including physical domain and social domain and
basic assumptions are established in Section II. In Section III,
potential game is used to solve the social-community util-
ity maximization problem and a social-aware distributed
resource allocation algorithm is presented. The performance
evaluation is given in Section IV. Finally, SectionV concludes
the paper.

II. SYSTEM MODEL
Since the performance of D2D communication in cellular
network is highly dependent on users’ behaviors, in order
to achieve effective content distribution and content spread,
social relations are applied in this paper. We consider a two-
domain system model, which consist of physical domain and
social domain, as shown in Figure 1. The physical domain
describes the physical relations between users, and the social
domain quantifies the social relations between mobile users
derived from ARIMA model. In the social domain, mobile
users in D2D communication are divided into different com-
munities based on social behaviors or interests and users in
the same community who have the same backgrounds and
interests may be interested in similar contents.

A. PHYSICAL DOMAIN
In order to present everyD2Duser’s social-community utility,
the user’s physical relations need to be proposed first.

In physical domain, it is assumed that cellular users share
their uplink resources with D2D users to maximize spectrum
efficiencies. Research scenarios are located in public areas

such as office buildings and shopping malls. The users’ den-
sity is much higher than that of other locations. The users’
demands for data transmission are great and the propagation
environment has a high path-loss exponent. But in order to
avoid severe interference caused by D2D communication,
one D2D user can share at most one resource block of a
cellular user at a time. And the transmission powers of the
cellular users and D2D users are constant.

Suppose a set of D2D users M = {M1,M2, . . . ,

Mi, . . . ,Mj, . . . ,Mm}, share the upstream spectrum resources
with a set of cellular users N = {N1,N2, . . . ,Ni, . . .Nn}.
When D2D user Mi receives data from D2D user Mj and

share the upstream spectrum resources with cellular user Ni,
the data rate of user Mi can be given as:

RMi = W log2

(
1+

PMjgMi,Mj

Pint + N0

)
(1)

Where W is the channel bandwidth, which is a constant.
PMjgMi,Mj is the received power from user Mj. PMj is the
transmit power of userMj. gMi,Mj is the channel gain between
user Mi and Mj of D2D link. N0 is the additive Gaussian
white noise. Pint is the interference between users and can
be denoted by

Pint =
∑

Ni∈N
αNi,MiPNigMi,Ni

+

∑
Mk∈M\{Mi,Mj}

αMi,MkPMkgMi,Mk (2)

Where
∑

Ni∈N αNi,MiPNigMi,Ni is the aggregated interfer-
ence caused by cellular users, PNi is the transmit power of
user Ni, gMi,Ni is the channel gain between D2D user Mi
and cellular user Ni. αNi,Mi is a binary decision variable,
where αNi,Mi = 1 indicates D2D user Mi share the
spectrum resources with cellular user Ni and the inter-
ference between them exits. Otherwise αNi,Mi = 0.∑

Mk∈M\{Mi,Mj}
αMi,MkPMkgMi,Mk is the aggregated interfer-

ence caused by other D2D users, PMk is the transmit power of
userMk . gMi,Mk is the channel gain between D2D userMi and
Mk . αMi,Mk is also an indicator variable, αMi,Mk = 1 indicates
there is interference between D2D userMi andMk , otherwise
αMi,Mk = 0.

B. SOCIAL DOMAIN
In this section, the degree of intimacy between users is quan-
tified for social relation strengths based on mobile phone-call
detail records. Then auto-regressive integrated moving aver-
age (ARIMA) model is applied to map the call-log data into
time sequence and the users’ predictions of social relations
are made by the ARIMA model.

1) DEGREE OF INTIMACY
A vector of normalized frequencies of calls Pab =

{pabin , p
ab
out , p

ab
inter} is utilized to describe the degree of intimacy

between any two users a and b. pabin denotes the frequency of
that user a receives calls from b, pabout denotes the frequency
of a calls b, pabinter denotes the frequency of that a gives b
a call then b calls back. pabinter is a very important index,
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it can indicate the degree of interaction between user a and b.
Pab = {pabin , p

ab
out , p

ab
inter} can be calculated as follows:

The number of phone calls follows a Poisson distribu-
tion [20]. Suppose the arrival rate of user a receives calls from
user b is λabin . The total arrival rate of user a is

∑
k 6=a λ

ka
in . Then

user a′s received number of calls from b in the interval [0,tj]
is Cab

in = λ
ab
in tj, the total incoming number of calls of user a

is Ca
in =

∑
k 6=a λ

ka
in tj, so

pabin =
Cab
in

Ca
in
=

λabin tj∑
k 6=a

λkain tj
=

λabin∑
k 6=a

λkain
(3)

Similarly, pabout can be denoted as

pabout =
Cab
out

Ca
out
=

λabout tj∑
k 6=a

λkaout tj
=

λabout∑
k 6=a

λkaout
(4)

Where λabout is the arrival rate of user a calls b,
∑

k 6=a λ
ka
out is

the total arrival rate of other users receives calls from user a.
Cab
out denotes the number of calls that a calls b, Ca

out denotes
the total outgoing number of calls of user a.
pabinter is calculated as follows. Due to the number of phone

calls follows a Poisson distribution, the probability of no
arrival calls in the interval [0, t] is P(τ > t) = e−λt ,
where λ is the arrival rate and τ is inter-arrival time. The
probability of at least one call arrivals in the interval [0, t]
is P(τ > t) = 1−e−λt . The rate of user a calls user b in [0,ti]
is λabout ti. After a period of time user b calls user a back in
[ti, tj] with rate λabin (tj − ti). According to [21],

P(a calls b and b calls a back)

= P(a calls b)P(b calls a ,when it is know that a calls b)
= P(a calls b)[P(b calls a)+ pabinterP(b does not call a)]

= (1− e−λ
ab
out ti )[(1− e−λ

ab
in (tj−ti))+ pabintere

−λabin (tj−ti)]

The factor P(b calls a, when it is know that a calls b) is the
conditional probability. The factor is denoted as the prior
probability that b calls a plus a fraction of the probability
that b does not call a [22]. Then the fraction is pabinter, which
present the possibility of interaction between user a and b.
It is obvious that pabinter is zero when there is no tendency to
reciprocate and unity when the tendency is maximal.

The number of calls from user a to b is denoted by Cab
out as

mentioned above, then the expected value of the number of
calls describing the interaction between user a and user b, can
be denoted by E(Cab

inter), as

E(Cab
inter)

= Cab
out (1− e

−λabout ti )[(1− e−λ
ab
in (tj−ti))+ pabintere

−λabin (tj−ti)]
(5)

After rearranging, pabinter can be denoted by

pabinter =
Cab
inter − C

ab
out (1− e

−λabout ti )(1− e−λ
ab
in (tj−ti))

Cab
out (1− e−λ

ab
out ti )e−λ

ab
in (tj−ti)

(6)

Where Cab
inter is observed number of interaction calls.

After the calculation of Pab = {pabin , p
ab
out , p

ab
inter} for the past

few moments, ARIMA model is applied to predict the value
of Pab.

2) PREDICTION OF SOCIAL RELATIONS
The above method is used to calculate the past value of Pab.
The call-log data between any two user a and b are mapped
into time sequence denoted by (Pabt−1, P

ab
t−2, . . .), which can

be utilized to predict Pabt by ARIMAmodel. Auto-Regressive
IntegratedMovingAverage (ARIMA)model integrates Auto-
Regressive (AR), Integrated (I), and Moving Average (MA)
into a general comprehensive time sequence model.

Before using the ARIMA model to predict Pabt , it is nec-
essary to determine the type and parameters of the model.
Firstly possible models need to be selected from the general
models and then check the selected model based on historical
data to see if the sequence is accurately described. If the resid-
uals are small, the selected model is appropriate. It consists
of the following three steps.
Step 1: The first step is model recognition. For conve-

nience, we will abbreviate Pabt as Pt . First, it is necessary to
determine whether Pt is stable. If the sequence is stable, it can
be expressed by ARMA (r, s). i.e.

Pt = π1Pt−1 + π2Pt−2 + · · · + πrPt−r
+ et − ψ1et−1 − ψ2et−2 − · · · − ψset−s (7)

Where (Pt−1, Pt−2, . . . ,Pt−r ) is the past values of Pt .
(et , et−1, . . . , et−s) is the disturbance sequence that drives
the system, which is a sequence of irrelevant random vari-
ables whose mean is zero and variance is constant. πi,
i = 1, 2, . . . , r and ψj, j = 1, 2, . . . , s are coefficients to be
estimated.

By using the backshift linear operator B defined by
BPt = Pt−1, BiPt = Pt−i for any integer i, ARMA( r, s)
model can be written in backshift linear operator form

(1− π1B− π2B2 − . . .− πrBr )Pt
= (1− ψ1B− ψ2B2 − . . .− ψsBs)et (8)

That is,

πr (B)Pt = ψs(B)et (9)

Where πr (B) is defined by πr (B) = 1 − π1B − π2B2

− . . .−πrBr ,ψs(B) is defined byψs(B) = 1−ψ1B−ψ2B2−
. . .− ψsBs.

If {P̃t } is an unstable time sequence, ARMA(r, s) model
can be extended to ARIMA(r, d, s) model. Considering the
difference linear operator 1 defined by 1P̃t = P̃t − P̃t−1 =
P̃t − BP̃t = (1 − B)P̃t , the stable time sequence {Pt } can be
obtained by the d th difference 1d of unstable time sequence
{P̃t }, i.e. Pt = 1d P̃t = (1 − B)d P̃t , so the ARIMA( r, d, s)
model can be denoted as

πr (B)1d P̃t = ψs(B)et (10)

The main tool of model recognition is the autocorrelation
function and partial correlation function of

{
Pabt

}
. If the
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autocorrelation function of
{
Pabt

}
decays slowly,

{
Pabt

}
is

unstable and can be fitted with the ARIMA(r, d, s) model.
Otherwise it is a stable sequence and ARMA(r, s) model is
used to fit the sequence.
Step 2:The second step is model estimation. If the previ-

ous judgment of
{
Pabt

}
is unstable,

{
Pabt

}
is subjected to a

sufficient number of differentials to be stable and the number
of times of difference is d . That is, d is the difference order
required to achieve stabilization. 5 = {π1, π2, . . . πr } and
9 = {ψ1, ψ2, . . . ψs} need to be estimated by linear least
squares iteration or Bayes principle [23].
Step 3:The third step is model validation. After the model

is identified and estimated, the model is subjected to diag-
nostic tests. An effective method to test the model is ‘‘over-
fitting’’, that is, comparing the variance of ARIMA (r, d,
s) with ARIMA (r+1, d, s) and ARIMA (r, d, s+1). If the
variance of ARIMA (r, d, s) is the smallest, the model is
fitted successfully. Otherwise, the coefficients need to be re-
estimated and re-validation until the condition is satisfied.

According to [24], a large number of tests on the actual
call records is done, the model of the actual call records is
ARIMA(r, 0, s), i.e.

Pt = π1Pt−1 + π2Pt−2 + . . .+ πrPt−r
+ et − ψ1et−1 − ψ2et−2 − . . .− ψset−s (11)

The parameters 5={π1, π2, . . . πr }, 9 = {ψ1, ψ2, . . . ψs}

can be determined by the three steps above.
So As long as {Pt−1,Pt−2, . . .Pt−r } is calculated based on

the call records observed before, the user’s degree of intimacy
at time t can be predicted, expressed as

Pabt = {p
ab
tin , p

ab
tout , p

ab
tinter} (12)

The vector Pabt = {p
ab
tin , p

ab
tout , p

ab
tinter} can be combined into a

parameter ωtab. For a pair of users a and b who have social
relations between them, the strength of social relation at time
t can be described as

ωtab =
1
3
pabtin +

1
3
pabtout +

1
3
pabtinter (13)

ωtab ∈ [0, 1], which is obtained by ARIMA model. ωtab = 1
means the strongest relations between user a and b while
ωtab = 0 means the weakest relations between them.

III. SOCIAL-AWARE POTENTIAL GAME APPROACH
In order to achieve effective content distribution and content
spread with consideration of social networks among users,
that is, better spectrum resources are given to users who
have better social networks and content diffusion capabilities.
In order to achieve this goal, we aim at maximizing the
social-community utility by potential game in the process of
resource allocation for D2D communication. Potential game
is utilized due to its outstanding mapping nature and always
has the Nash Equilibrium. Finally, a social-aware distributed
resource allocation algorithm is proposed, and the algorithm
achieves convergence and stability.

A. GAME FORMULATION
Due to the distributed nature of the problem, game theory is
utilized to solve the social-community utility maximization
problem, which can effectively reduce the computational
complexity.

The game of resource allocation for D2D communication
can be defined as G =

{
M , {XMi}Mi∈M , {UMi}Mi∈M

}
, where

M = {M1,M2, . . . ,Mi, . . . ,Mm} is the set of D2D users, that
is, game players. {XMi}Mi∈M is the set of resource allocation
strategies for each D2D user Mi. {UMi}Mi∈M is the payoff
function for each D2D user Mi.

In this paper, {UMi}Mi∈M is the social-community utility
of user Mi. The social-community utility for any D2D user
Mi ∈ M , can be defined as

UMi (x) = RMi +

∑
Mi 6=Mj

ωMi,MjRMj (14)

Where x = (xM1,xM2, . . . xMm ) ∈ 5
Mm
M1
XMi is the strategy

profile of all users, xMi is the strategy of D2D user Mi and
xMi ∈ XMi , XMi = {N1,N2, . . . ,Nn} is all possible strate-
gies for D2D user Mi. The social-community utility consists
of 2 parts: its own data rate RMi , and the weight sum of other
D2D users’ data rate who have social relations with it. The
strength of social relations ωMi,Mj is utilized in user’s utility.
When a D2D user has more social-related users and stronger
social-tie strengths, it has a better content diffusion capability,
and its social-community utility gets higher. In this case,
the D2D user can be assigned to better spectrum resources
to achieve more efficient content distribution.

Let x−Mi = (xM1,xM2, . . . xMi−1,xMi+1, . . . xMm ) be the set of
chosen strategies for other D2D users except user Mi. Then
x = (xM1,xM2, . . . xMm ) = (xMi , x−Mi ) is the set of all the
strategies selected by the users. Given the strategies x−Mi of
other users, the user Mi needs to choose a strategy xMi to
maximize its own social-community utility. i.e.

max
xMi∈XMi

UMi (xMi , x−Mi ), ∀Mi ∈ M (15)

We can prove that the optimization problem of resource
allocation for D2D communication can be solved by potential
game. First the definition of potential game is given. In a
game, if each player’s change for its own strategy can be
mapped into a global unique function, the function is called
potential function, and the game is called potential game.
Potential function P(x) satisfies the following condition:

UMi (x−Mi , xMi )− UMi (x−Mi , x
′
Mi
) > 0 (16)

If P(x−Mi , xMi ) − P(x−Mi , x
′
Mi
) > 0, for every D2D user

Mi ∈ M and for every x−Mi ∈ X−Mi .

The potential function in this optimization problem can be
defined as

P(x) =
∑
Mi∈M

UMi (X ) =
∑
Mi∈M

(RMi +

∑
Mi 6=Mj

ωMi,MjRMj )

(17)
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Suppose D2D userMi changes its spectral resource alloca-
tion from xMi to x

′
Mi
, then the change of payoff for D2D user

Mi is

UMi − U
′
Mi

= RMi +

∑
Mi 6=Mj

ωMi,MjRMj − (R′Mi
+

∑
Mi 6=Mj

ωMi,MjR
′
Mj
)

= RMi +

∑
k∈Z sMi∩Z

p
Mi

Rk −

R′Mi
+

∑
k∈Z sMi∩Z

p
Mi

R′k

 (18)

Where Z sMi
and ZpMi

present the set of users who have social
relations and physical relations with user Mi, respectively.
Here we suppose the strength of social relations in the same

community is 1 for simplicity. The change of function P(x) is

P(x−Mi , xMi )− P(x−Mi , x
′
Mi
)

=

∑
Mi∈M

(RMi +

∑
Mi 6=Mj

ωMi,MjRMj )

−

∑
Mi∈M

(R′Mi
+

∑
Mi 6=Mj

ωMi,MjR
′
Mj
) = UMi − U

′
Mi

+

∑
k∈M\{Mi}∩Z sMi∩Z

p
Mi

Rk+ ∑
j∈Z sk∩Z

p
k

Rj−

R′k+ ∑
j∈Z sk∩Z

p
k

R′j




=

(∣∣∣Z sMi
∩ ZpMi

∣∣∣+ 1
) (
UMi − U

′
Mi

)
(19)

So UMi (x−Mi , xMi ) − UMi (x−Mi , x
′
Mi
) and P(x−Mi , xMi ) −

P(x−Mi , x
′
Mi
) have the same positive or negative values.

Finally, we conclude that

UMi (x−Mi , xMi )− UMi (x−Mi , x
′
Mi
) > 0 if

P(x−Mi , xMi )− P(x−Mi , x
′
Mi
) > 0, ∀Mi ∈ M

So the optimization problem of resource allocation for D2D
communication is potential game has been proved.

The social-community utility maximization problem of
resource allocation for D2D communication is

max
x∈∈5Mm

M1
XMi

P(x) (20)

Where every D2D user can increase P(x) by changing its own
resource allocation strategy.

B. NASH EQUILIBRIUM
It can be proved that potential game G =

{
M ,

{XMi}Mi∈M , {UMi}Mi∈M

}
has pure Nash Equilibrium. First,

the definition of Nash Equilibrium is given. If any D2D
user can not increase the social-community utility by chang-
ing its own resource allocation strategy, the game G ={
M , {XMi}Mi∈M , {UMi}Mi∈M

}
has Nash Equilibrium, i.e.

x∗Mi
= arg max

xMi∈ℵMi
UMi (xMi , x−Mi ), ∀Mi ∈ M (21)

One of the characteristics of potential game is that there
must be a pure Nash Equilibrium. Because each player must

be monotonous for each change of its strategy, which always
makes its utility higher. If the utility function’s change of
every player is mapped to a potential function, the poten-
tial function is also monotonous. If the potential function is
monotonous, every monotonic change to it will always come
to an end (until every player is satisfied and no one can change
its own strategy). Then potential game comes to a pure Nash
Equilibrium. It has already been proved that the problem is
potential game, so pure Nash Equilibrium solution must exist
in the optimization problem.

C. DISTRIBUTED RESOURCE ALLOCATION SOLUTIONS
The key to the optimization problem is that each D2D user
must decide which channel of the cellular users to occupy
according to the social-community utility. Based on the

Algorithm 1 Social-Aware Distributed Resource Allocation
Algorithm for D2D Communication

Initialization:

Choose a channel xMi = Ni randomly for each user Mi;

The base station calculates the strength of social relations
with ARIMA

model between any two users;

End initialization

Set i = 1;

While i < Imax do
For each user Mi do
Calculate the data rate RMi ;
Report the call-log data of user Mi, data rate RMi and
other transmission configuration to the base station;
The base station broadcasts the social relations and
other users’ data rate to user Mi;
Compute UMi (xMi ) for D2D user Mi;
Choose a new channel N ′i for D2D userMi randomly;
if (UMi (x

′
Mi
) > UMi (xMi )&

UMj (x
′
Mj
) ≥ UMj (xMj ),∀Mj ∈ M ,Mi 6= Mj)

Stay in the new channel N ′i ;
else

Get λ uniform distribution in (0,1];
if (λ < 1

1+exp(−(U (x ′)−U (x))/ log(i−1)) )
Stay in the new channel N ′i ;

else
Go back to the original channel Ni;

end if
end if
end for
i = i+1;

end while
returnPotential Game Equilibrium x∗.

property of the potential game, the resource allocation
strategy x∗ has Nash Equilibrium, whichmaximizes the value
of potential function. In addition, since the potential function
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has a finite value, the potential game G has a finite improve-
ment property. Specifically, the order in which D2D users
get more efficient spectrum resources scheme can be random
and D2D users can achieve Nash Equilibrium through limited
steps.

Assume that the resource allocation vector x =

{xM1 , . . . , xMi , . . . , xMj , . . . , xMm} for a set of D2D users
M = {M1,M2, . . .Mm}, and the set of current resource
allocation strategies is x ∈ X . For any D2D user Mi, if and
only if UMi (x

′
Mi
) > UMi (xMi )&UMj (x

′
Mj
) ≥ UMj (xMj ),∀Mj ∈

M ,Mi 6= Mj, the current strategy xMi can change to a
new strategy x ′Mi

. With repeating the changing operations,
the potential function will monotone increasing until every
player is satisfied and no one can change its own strat-
egy. Then it will come to the Nash Equilibrium. Social-
aware distributed resource allocation algorithm is presented
as Algorithm 1.

In the algorithm of resource allocation for D2D commu-
nication, D2D users first send the call-log data to the base
station. The social relations are calculated by ARIMA model
and sent to the D2D users. Next, for any user Mi, UMi (xMi )
is calculated based on the received social relationships and
the data rate of other D2D users. Finally, D2D users choose
whether to change the current channel based on the social
community utility compared with the previously selected
channel until that they reach the Nash equilibrium.

In order to avoid the local maximum value, when the
constraint is not satisfied, we also define the acceptance
probability

βx ′,x =
1

1+ exp(−(U (x ′)− U (x))/ log(i− 1))
(22)

Where i is the current times of change operations.

D. COMPLEXITY, CONVERGENCE AND STABILITY
The complexity of algorithm 1 is much lower than the cen-
tralized solution, because the change operations in algorithm
1 are used in the community, not in the whole network. After a
limited number of change operations, the resource allocation
algorithm converges to the final Nash stable resource alloca-
tion vector x∗.
Specifically, the upper bound of the computational com-

plexity in the resource allocation solution is O(nD), where
D is the number of D2D links, n is the number of possible
strategies. However, the time complexity of our algorithm
is linear because of the monotonicity of potential function.
In each iteration, we define the exchange cost of social infor-
mation and average utility broadcast from the base station as
A andB, respectively. As for userMi, the report overhead of its
own data rate is denoted as C . The total overhead in system
in each iteration can be written as: O = A+B+C∗m, where
m is the number of users who have social relations with Mi,
which is small compared to state-of-art schemes.

In each change operation in Algorithm 1, a new resource
allocation vector is generated by changing to a new strategy,
and the maximum number of resource allocation strategies

FIGURE 2. A snapshot of resource allocation with 5 cellular users and
20 D2D users Magnetization as a function of applied field.

for each D2D user is n, which is the number of cellular users.
Therefore, the number of resource allocation vector for the
set of D2D users M is a Bell number according to [25].
Thus, the sequence of random exchange operations will be
terminated with probability 1, and the system converges to the
final resource allocation vector x∗ after a finite transition with
a probability of 1, which proves the probability convergence
of the proposed distributed algorithm [25].

As for contradiction, assume that the final resource allo-
cation vector x∗ obtained from algorithm 1 is not Nash
stable. The present resource allocation vector of D2D user
Mi is xMi , and there exists a new resource allocation vector
x ′Mi
∈ x∗ which makes UMi (x

′
Mi
) > UMi (xMi )&UMj (x

′
Mj
) ≥

UMj (xMj ),∀Mj ∈ M ,Mi 6= Mj According to algorithm 1,
D2D user Mi can still change from xMi to x

′
Mi
, which con-

tradicts the fact that x∗ is the final resource allocation vector.
Thus, we have shown that algorithm 1 generated by the final
network resource allocation vector xfin must be Nash stable.

IV. PERFORMANCE EVALUATION
The performance of time-varying social-aware resource allo-
cation for D2D is evaluated and analyzed in this section.
We consider a hexagonal area of 100 meters, where the base
station is in the center of the system. The cellular and D2D
users are randomly deployed as shown in Fig.2. In the exam-
ple, 20 D2D users occupy the spectrum resources of 5 cellular
users. The transmitters of D2D links are randomly distributed
within the coverage of the BS, and the receivers are randomly
distributed in the circumference of the transmitter in the range
of 3 meters to 10 meters. In simulations, we use the uniform
distribution to generate social network. The path loss index of
the free space propagation path-lossmodel is set to 4. Both the
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FIGURE 3. The social community utility of different resource allocation algorithms with (a) different number of D2D users and (b) different
number of cellular users.

FIGURE 4. Sum rate of different resource allocation algorithms with (a) different number of D2D users and (b) different number of cellular
users.

path loss and shadow fading are taken into account for cellular
and D2D links. The main parameters used in the simulation
are shown in Table 1. For each simulation scenario with fixed
D2D links and cellular users, we repeated the simulations
for 1000 times, and each simulation will re-randomly select
positions of users. Fig. 2 shows a snapshot of the wireless
scene.

The performance of our scheme is compared with the
following two schemes:

1) Coalition game (CG) [26], where the resources is allo-
cated through the coalition game model. The algorithm can
achieve the near-optimal solution of system sum utility.

2) Random selection (RS), where D2D links randomly
choose the spectrum resource for communication.

We evaluate the following five performance indicators:
1) The sum of social community utility P(x), which is

determined by the D2D users’ data rates and social relation-
ships between them.

2) System sum rate R, which is the sum data rate of cellular
users and D2D users. The data rate of each user is calculated
by (1).

3) The influence of social strength, we will observe
the sum of social community utility as social strength
changes.

4) Jains fairness index [27], [28], which can determine
whether the users have a fair allocation of resources.

5) The property of convergence, which can determine
whether the algorithm converges.
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FIGURE 5. The social community utility of different resource allocation
algorithms with different social strength.

A. SOCIAL COMMUNITY UTILITY
Fig. 3 shows the sum of social community utility when
D2D users get spectrum resources through different schemes.
In this simulation, we set the number of cellular users to be 5
and vary the number of D2D users from 10 to 30 in Fig. 3(a),
and set the number of D2D users to be 30 and vary the number
of cellular users from 3 to 13 in Fig. 3(b). Fig. 3(a) and (b)
indicate that the sum of social community utility gets higher
with the increasing number of D2D users or cellular users.

In Fig. 3(a), the sum of social community utility is higher
than that of CG and RSmore than 33% and 50%, respectively.
In Fig. 3(b), the sum of social community utility is higher than
that of CG and RS more than 36% and 60%, respectively.
From the results, we can observe that that our algorithm
performs better when the number of D2D or cellular users

increase, which consider both physical and social relation-
ships.

B. SYSTEM SUM RATE
Fig.4 shows the system sum rate of the three schemes.
Similarly, we set the number of cellular users to be 5 and
vary the number of D2D users from 10 to 30 in Fig. 4(a),
which represents a resource-poor system where D2D users
may need to share the same spectrum resource, and set the
number of D2D users to be 30 and vary the number of
cellular users from 3 to 13 in Fig. 4(b), which represents a
resource-rich system where D2D users may have more spec-
trum selections. The results indicate the system sum rate gets
higher with the increasing number of D2D users or cellular
users.

In Fig. 4 (a), due to the increase of system bandwidth
resources, the total system rate increases as the number of
cellular user increases. In Fig.4 (b), when the number of
D2D user increases, the total system rate increases because
neighboring D2D users occupy the same spectrum resources
of cellular users. We can see that the CG always achieves
the best performance because the solution represents the
ideal situation. Each D2D user has the same goal to max-
imize the performance of the entire network. Although the
PG performance is not optimal, it represents the real situation.
In fact, not all users are selfless. However, the stronger the
social relationship between users, the closer the performance
of PG to CG.

C. THE INFLUENCE OF SOCIAL STRENGTH
Fig. 5 shows the change of the sum of social community util-
ity with social strength. In this simulation, we set the number
of cellular users and D2D users to be 5 and 30, respectively.
Fig. 5 indicates that sum of social community utility gets
higher with the increasing of social strength. Obviously PG
performs better under different social strength. When social

FIGURE 6. Fairness of different resource allocation algorithms with (a) different number of D2D users and (b) different number of cellular users.
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FIGURE 7. System convergence of proposed algorithm with 5 cellular
users and 20 D2D users.

strength is 1, users are selfless. PG and CG have the same
social community utility.

D. SYSTEM FAIRNESS
In Fig. 6, we use the Jains fairness index to get how the
data is actually shared among D2D users. As shown in
Figs. 6(a) and (b), when the number of D2D users and cellular
users change, the system fairness of coalition game, random
selection, and potential game is not affected obviously. How-
ever, coalition game has a better performance in fairness,
because potential game has considered social relationships
and better spectrum resources are utilized by users whose
social relations are strong. Therefore, it has an impact on
the fairness of the algorithm. But potential game maximizes
the social community utility. Effective content distribution
and content spread with the consideration of social networks
among users is achieved by the social-aware resource alloca-
tion algorithm.

E. GAME CONVERGENCE
Fig. 7 shows the convergence of the proposed algorithm with
5 cellular users and 20 D2D users. Due to the poor channel
conditions, even if they obtain the best spectrum resources,
a small part of users can hardly achieve equilibrium. In order
to avoid the influence of extreme cases, when the change
operations reach a sufficient number of times, we assume that
the base station will execute resource allocation procedure.
By observing the social community utility of D2D users,
we can find that our proposed algorithm can quickly converge
to equilibrium.

V. CONCLUSIONS
In this paper, we propose a time-varying social-aware
resource allocation for D2D Communication. Social rela-
tions are predicted by the Auto-Regressive IntegratedMoving

Average (ARIMA) model with the call records. The utility
function of potential game is defined by social community.
A distributed resource allocation algorithm for D2D com-
munication is proposed and we theoretically prove that the
proposed algorithm has pure Nash Equilibrium. The simu-
lation results show that our algorithm is fair and effective.
Compared with other strategies, our algorithm improves the
total utility of the system by more than 30%, more than
50% higher than the random selection, effectively enhance
the system capacity. On the other hand, mode selection also
has influences on social-aware D2D communication. There-
fore, our future works will concentrate on the joint works of
resource allocation and mode selection.
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