
SPECIAL SECTION ON SECURITY ANALYTICS AND INTELLIGENCE
FOR CYBER PHYSICAL SYSTEMS

Received February 14, 2017, accepted March 9, 2017, date of publication April 24, 2017, date of current version September 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2017.2690456

A Novel Internet of Things-Centric Framework
to Mine Malicious Frequent Patterns
NIGHAT USMAN1, QAISAR JAVAID2, ADNAN AKHUNZADA1,
KIM-KWANG RAYMOND CHOO4, (Senior Member, IEEE),
SAEEDA USMAN3, ASMA SHER1, MANZOOR ILAHI1, AND MASOOM ALAM1
1Department of Computer Science, COMSATS Institute of Information Technology, Islamabad, Pakistan
2Department of Computer Science & Software Engineering, International Islamic University, Islamabad, Pakistan
3Department of Electrical Engineering, COMSATS Institute of Information Technology, Sahiwal, Pakistan
4Department of Information Systems and Cyber Security, The University of Texas at San Antonio, San Antonio, TX 78249-0631, USA

Corresponding author: A. Akhunzada (a.adnan@siswa.um.edu.my)

1

2

3

4

5

6

7

ABSTRACT There are a number of research challenges associated with Internet of Things (IoT) security, and
one of these challenges is to design novel frameworks to mine malicious frequent patterns for identifying
misuse and detecting anomalies without incurring high computational costs (e.g., due to generation and
analysis of unnecessary patterns and gap creation between patterns). Association rule mining is a popular
approach in the literature; hence, in this paper, we critically analyze existing association rule mining
techniques. We then present a framework for mining malicious frequent patterns in an IoT deployment,
prior to evaluating the utility of the proposed framework using data from a Pakistan-based organization.

8

9

INDEX TERMS Malicious behavior, security logs, Internet of Things (IoTs), frequent pattern mining,
anomaly detection.

I. INTRODUCTION10

Internet of Things (IoT) is a recent promising trend, which has11

widespread applications. Specifically, in an IoT implementa-12

tion, device to device communications [1] can be achieved13

using communication platforms such as wireless sensor14

networks, radio frequency identification, Bluetooth, etc. The15

amount of data store and transfer between IoT devices in a16

typical deployment is increasing, partly due to the digitization17

of our society [2]–[4]. Construction of IoTs has progressed18

fundamentally in last couple of years – see Table 1.19

This, however, results in vectors that could potentially be20

exploited by attackers to infiltrate a system and/or exfilitrate21

data from IoT devices. as billions of devices are intercon-22

nected, so networks are vulnerable to a range of security23

threats which in turns have an adverse effect on performance24

of the thing [6], [7]. Not surprisingly, IoT security and privacy25

have attracted the attention of both researchers and policy26

makers.27

A popular area of research is using data mining tech-28

niques, such as classification, association analysis, statistical29

learning, link mining and clustering, to analyze and discover30

relationships, patterns and other useful information from IoT31

raw data [8]–[10]. Association rule mining (ARM) is one32

such popular technique, which allows one to determine the33

correlations among all features of a dataset, and detect anoma- 34

lies [11]. ARM has been used in a number of applications, 35

such as market basket analysis whose objective is to identify 36

/ predict trends (commonly grouped items) within the data 37

[12]. In the latter context, findings are used to determine 38

which items are more probable to be paired with other items 39

to make an itemset [13], [14]. 40

ARM technique comprises of multiple algorithms such 41

as Apriori, FP-Growth association rule, Prefixspan, Spade, 42

and Spam. For example, the Apriori algorithm was proposed 43

in 1994 by Agarwal and Srikant. This level-wise bottom- 44

up approach is used to extract frequent itemsets (candidate 45

generation) from a dataset. It finds the itemsets according 46

to the specified minimum support count. However, there are 47

some limitations with Apriori. For instance, multiple scans 48

are required. An explicit scan is required for each candidate 49

set that can lead to an I/O cost. Moreover, all required patterns 50

are not guaranteed. The computational cost is also high due 51

to the need for large storage and processing time. Pattern 52

fragment growth is another method commonly used to mine 53

the complete set of frequent patterns (FP-Growth Associa- 54

tion Rule Mining). This method uses a divide-and-conquer 55

approach to create a relationship among multiple items. The 56

processing speed is comparatively fast and it utilizes the space 57

133914
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019



N. Usman et al.: Novel IoT-Centric Framework to Mine Malicious Frequent Patterns

TABLE 1. Device connections and expected growth: A snapshot [5].

in a better way. However, this method is inefficient when58

the dataset has a large number of items and the patterns are59

twinned. Prefixspan (i.e., Prefix-projected Sequential pattern60

mining) mines the complete set of patterns in sequential61

pattern mining. Unlike FP-Growth, the attempts of candidate62

sequel generation are significantly reduced. It uses the divide63

and conquer approach to discover hidden patterns in the64

database [15]. The limitations with Prefixspan include the65

processing required for further child possible patterns and66

Gaps.67

These algorithms, however, do not performwell in network68

security applications, as we would need to locate malicious69

patterns in the IoT real-time traffic [16]. For example, due to70

high costs in memory, resources for processing, creation of71

unnecessary pattern and gap creation between the patterns,72

these algorithms are not suitable for suspicious pattern73

mining – see also Section V.74

In order to overcome the limitations in these algorithms,75

the Mine Malicious Frequent Patterns (MMFP) algorithm is76

proposed in this paper. MMFP is designed to mine frequent77

patterns efficiently to facilitate the detection of anomalous78

behavior. However, prior to presenting MMFP in Section III,79

we will first discuss related work (see Section II).80

II. RELATED WORK81

The process to find hidden behavior in a dataset that may82

either be benign or abnormal, is known as anomaly detection.83

While anomaly refers to an unexpected behavior, not all84

anomalies are cyber or attempted attacks [17]–[20]. Anomaly85

detection has widespread applications such as detecting86

fraudulent credit card transactions and malicious network87

activities [21]–[25]. For instance, a behavior profile of a legit-88

imate user is learned by the algorithm, and any behavior that89

deviates from the typical behavior (e.g. a banking transaction90

in a different country or conducted when the user is supposed91

to be asleep) will trigger an alarm [26]–[28].92

A number of data mining techniques designed to detect93

malicious activity have been proposed in the literature. For94

example, techniques such as Prefixspan [29], Apriori [30],95

GSP [31] and FP-Growth [32] are used to locate hidden96

patterns and their associations. This allows the identification97

of zero day attacks. Agrawal et al. [33] proposed the AIS98

algorithm, which uses the previous acquaintance of the recur-99

sive item set. In this algorithm, level-wise search is used.100

In order to search kitems, we need to have (k-1) itemsets, and 101

in order to find recursive 1itemsets, the database is scanned 102

to obtain counts for each item. Any item that satisfies the 103

minimum support will produce a result labeled L1. Recursive 104

2itemsets i.e. L2 is found by using L1. The process continues 105

until no k-itemset can be found. However, this requires the 106

searching of the entire database for each itemset. To reduce 107

the search efforts, Apriori property is used. According to this 108

property, every non-empty subset of recursive itemset must 109

also be recursive [34]. 110

To improve search efficiency, another method was intro- 111

duced to remove the itemsets that may not be frequent. 112

By doing so, counting is reduced for these itemsets. For 113

efficient memory management, one could remove redundant 114

itemsets or to remove larger set having parent and children 115

and store only the parent on the disk at the start of the next 116

iteration [35]. A limitation with AIS is that a lot of candidate 117

itemsets are generated which are not useful due to their small 118

size. Also, the database is scanned multiple times, which 119

results in unnecessary time and CPU cycles [36]. 120

The Apriori algorithm is proposed for ARM in [30]. 121

Apriori is comparatively accurate and faster than AIS. 122

In Apriori, there are two steps involved in discovering the 123

large-size itemsets. First, the candidate sets are created. 124

To find the support threshold value, the database is scanned. 125

Next, we prune itemsets whose frequencies are less than the 126

pre-defined support threshold value. Apriori avoids investi- 127

gating candidate itemsets that are rare [37]. Consequently, 128

after pruning again and again, the leftover candidate sets are 129

reduced. Therefore, the requirements for I/O, computational 130

cost and memory are also slightly reduced [38]. However, 131

Apriori still scans the entire databases several times and does 132

not guarantee all required patterns due to limitation in storage. 133

To find frequent items, the MCAR (Multi-class Classifica- 134

tion based on Association Rule) is proposed. MCAR con- 135

sists of a rule generation, and a building classifier. In rule 136

generation, MCAR studies the training dataset to identify the 137

frequent k items. After that, it recursively pools the items 138

to return items that have more attributes. Then, ranks are 139

created and the patterns of these itemsets stored. At the second 140

stage, rules are defined for the patterns that were stored to 141

build a classifier [39]. Accuracy and speed are two important 142

performance parameters. The advantages of using MCAR 143

is the ability to identify frequent items and rules in only 144

VOLUME 7, 2019 133915



N. Usman et al.: Novel IoT-Centric Framework to Mine Malicious Frequent Patterns

single pass; thus, saving on storage and execution time. By145

following a method of rule ranking, a random choice to pick146

one rule among different rules is minimized [40].147

In RARM (Rapid Association Rule Mining) [41], the148

database is viewed in the form of a tree rather than a can-149

didate generation process. RARM is much quicker than FP-150

Tree. In the sizable itemsets generation process, there are two151

phases:152

i) Preprocessing phase: SOTrieIT (Support Ordered Trie153

Itemset) structure is used to rapidly generate big size154

1-itemsets and 2-itemsets from every transaction.155

By doing so, scanning the database and candidate gen-156

eration for the next time is not required. Similar to157

FP-Tree, every link of SOTRie IT bears one item and the158

relevant support count. SOTrieIT is the enhanced version159

of TrieIT. TrielIT is similar to SOTrieIT. However, in160

TrieIT, morememory is required due to the need for indi-161

vidual storage of support counts. SOTrieIT is introduced162

to reduce the storage requirement.163

ii) Mining large itemsets: by following a depth-first164

approach, SOTrieIT tree first scans the leftmost first165

level node and checks for the minimal support threshold166

value at each level. After the generation of big size167

1-itemsets and 2-itemsets, the Apriori algorithm is168

applied to identify some new large itemsets.169

Although the most expensive operation during the process170

of mining is to create the biggest size 2 itemsets. How-171

ever, findings in [41] demonstrate that generation of big size172

1-itemsets and 2-itemsets through SOTrieIT algorithm can173

be improved. However, SOTrieIT has the same limitations to174

FP-Tree [36], [42].175

FP-Tree (Frequent Pattern Tree) [32] is an ARM tech-176

nique that mines better than Apriori as it overcomes two177

limitations of Apriori. Rules are generated using a tree struc-178

ture of multiple items. By scanning only the database twice,179

frequent itemsets are generated without generating a candi-180

date set. Thus, the databases are scanned only twice and it181

is much faster than Apriori [43]. This involves two child182

processes:183

i) Building FP-Tree: Similar to the Apriori algorithm,184

it first scans the database, collects the support count of all185

items, sorts the frequent itemsets in descending order by186

considering their support values. By doing so, sequential187

frequent 1-itemsets is generated.188

ii) Creating frequent patterns using FP-Tree: An FP-Tree189

is constructed by scanning the database again with the190

main table. For each iteration, frequent items’ state is191

re-sorted according to the main table. For instance; the192

T1 (I2, I4, I6) is changed to T2 (I4, I2, I6) because193

I4 occurs more frequently than I2 in the dataset.194

Frequent patterns use a divide-and-conquer approach.195

While this has a low computational cost since no candidate196

set is generated, the FP-Tree is not suitable for incremental197

mining and interactive mining system as in the incremen-198

tal mining approach, databases continually change as time199

passes. This is because records may be updated or newly200

inserted, and this updating may results in repetition of the 201

entire process. While in interactive mining system, legiti- 202

mate users can alter the minimum support threshold value 203

by considering the rules and it too results in repetition of the 204

entire process. This approach also generates similar patterns 205

of itemsets, according to the frequency [36], [44]. 206

A comparative summary of AIS, Apriori, MCAR, RARM, 207

and FP-Growth is presented in Table 2. and GSP, SPADE, 208

SPAM, and Prefixspan is presented in Table 3. 209

The GSP (Generalized Sequential Pattern) algorithm [31] 210

is an effective method to examine ordered patterns which 211

uses the bottom-up approach. However, by decreasing 212

the minimum support value, large number of candidates 213

are generated. Thus, this requires significant time and 214

resources [45], [46]. Candidate k-sequences are generated 215

from (k-1)-sequences. Depending on the support count, 216

the candidate k-sequence frequency is obtained in every 217

iteration [47]. To address this over generated candidate 218

set problem, the authors proposed using the SPADE algo- 219

rithm to split the candidate sequences into blocks [48]. 220

A bottom-up approach is used in SPADE to obtain the regular 221

sequences [49]. In order to reduce the cost, an ID-List tech- 222

nique is used to compute support count. This ID-List keeps 223

a record of pairs that indexes the positions in the database. 224

However, a single sequence can be recorded more than once. 225

SPADE is costly when the number of candidate sequences is 226

large andwhen continual merging of Id-lists are required [50]. 227

To reduce merging costs, the authors in [51] proposed the 228

SPAM algorithm where every ID-list is viewed as a straight 229

icon. As all icons can be stored in the RAM, the algorithm 230

has a fast performance [52], [53]. 231

Prefixspan is designed to mine frequent items from a 232

dataset, using a divide-and-conquer approach to discover 233

hidden patterns in the database. Here, unlike FP-growth, the 234

number of candidate sequel generation is greatly reduced. 235

In order to discover the frequent 1-sequences, such as 236

<(x)>, <(y)>, <(z)>, <(a)>, <(b)>, it scans the database 237

first. Next, projected database is generated for all frequent 238

1-sequence [29]. To detect the frequent (k+1)-sequences, 239

the Prefixspan algorithm recursively creates the projecting 240

databases for every frequent k-sequence. However, similar to 241

SPADE and SPAM, Prefixspan is costly and extra Gapsİ are 242

created while yielding sizable projected databases twinned 243

patterns are generated [53]–[55]. 244

As previously discussed, ARM techniques have been 245

widely used in networking context. For instance, the authors 246

in [56] demonstrated the utility of association rules in extract- 247

ing intrusion patterns from tcpdump log file and system 248

call logs. In [57], the author identifies events of interest 249

from the MAWI traffic depository using frequent itemset 250

mining technique in traces [58]. Chandola and Kumar [59] 251

outlined heuristic program rules for discovering small set of 252

frequent itemsets that can sum up sizeable sets of flows. The 253

‘‘eXpose’’ [60] is an application that exploits the imperma- 254

nent correlation between flows in a very small time stamp 255

window and detects abnormal communication patterns [61]. 256

133916 VOLUME 7, 2019



N. Usman et al.: Novel IoT-Centric Framework to Mine Malicious Frequent Patterns

TABLE 2. A comparative summary of existing data mining approaches: AIS, Apriori, MCAR, RARM, and FP-growth.

TABLE 3. A comparative summary of existing data mining approaches: GSP, SPADE, SPAM, and Prefixspan.

In the proposed framework, we have evaluated perfor-257

mance of Prefixspan, FP-Growth and Apriori mining tech-258

niques. We have compared the performance against our novel259

approach (as mentioned in section V. All aforementioned260

shortcomings affiliated to these three techniques are resolved261

in the proposed framework. We claim that Prefixspan262

generates surplus gaps; however, our algorithm efficiently263

overcome this issue. Prefixspan and FP-Growth generates264

redundant patterns due to which large storage is utilized and265

performance is compromised. Likewise, FP-Growth, Apriori266

is also not preferable for large datasets as all required pat- 267

terns are not guaranteed, and thus it requires extra storage 268

and surplus processing time which is unfordable in IoT(s). 269

We have overcome these deficiencies by converting all 270

records to the same data type through mask creation (as men- 271

tioned in section 3.B), due to which processing time, power 272

and storage utilization is reduced [62]. Our proposed scheme 273

MMFP, expeditiously results in exact existing patterns with 274

no gaps. Hence, an optimized framework is launched that can 275

deliver better performance for secure communication among 276

VOLUME 7, 2019 133917



N. Usman et al.: Novel IoT-Centric Framework to Mine Malicious Frequent Patterns

things. The resulting patterns from this structure aid firms to277

discover anomalies and respond accurately against them in278

things to things communication.279

III. PROPOSED FRAMEWORK FOR MINING280

MALICIOUS FREQUENT PATTERN281

Our proposed scheme is illustrated in Fig. 1, which consists282

of three key phases.283

A. FEATURE SELECTION284

Determining the right dataset for pattern mining can be285

challenging but this is an important step, as the choice of286

accurate features for dataset will dictate the effectiveness287

of discovering anomalies. In our proposed framework, the288

essential features are extracted using Principle Component289

Analysis (PCA). It is used to investigate and conceptualize290

the data by concentrating on fluctuation(s) in the dataset.291

Features having identical values are removed and those with292

most variations are selected. This phase is described in293

Algorithm 1.294

Algorithm 1 Feature Selection
1: Input: dataset.txt
2: Output: legends_dataset.txt F A file

containing records with legends.
3: procedure
4: for each li ∈ logs do
5: extract redundant features
6: apply PCA F Principle

Component Analysis.
7: store in feature_extr.txt
8: endfor
9: if features extraction done then
10: call Legends Creation
11: endif
12: return legends_dataset.txt

B. LEGENDS CREATION295

In practice, it is challenging to build the desired dataset296

manually out of log files as there are various types of log files297

with different kinds of attributes. Moreover, the features of298

the dataset also need to be managed properly, as we have to299

set appropriate data types of the features in order to prepare300

them for association. In order to make the dataset appropriate301

for computations, we have to convert the string values to302

numerical values.303

0 −→ feature should not be selected for dataset;304

1 −→ feature should be selected the way it is;305

2 −→ feature should be selected and assigned with306

legends.307

After the selection of attributes using PCA, the next step is308

to create legends by making mask. Mask is the structure that309

facilitates the construction of legends of a specific data type.310

In order to make our scheme space efficient, non-numeric311

Algorithm 2 Legends Creation
1: Input:
a) feature_extr .txt
b) mask.txt
2: Output: legends_dataset.txt F A file containing

records with legends.
3: procedure
4: for each Mi ∈ Mask do
5: if Mi == 0 then
6: move to next
7: endif
8: else
9: if Mi == 1 then
10: store Mi in legends_dataset.txt
11: M++
12: endif
13: else
14: if Mi == 2 then
15: Mi← UL F A file

containing records with legends.
16: create UL.attr .txt
17: write Mi | UL
18: store UL in legends_dataset.txt
19: endif
20: endfor
21: return legends_dataset.txt

Algorithm 3Main Framework
1: Input: legends_dataset.txt
2: Output: OFP.txt
3: procedure
4: for each Fi ∈ legend do
5: calculate index of F_i
6: If ← indexofFi
7: j← If + 1
8: while line(j) != Fi do
9: j++
10: end while
11: for k ← If ; k < j do
12: for z← If − 1; z < k do
13: write line[z] in the OFP.txt
14: move to next line
15: endfor
16: endfor
17: endfor
18: return OFP.txt

values can be converted to numeric values using mask, which 312

ranges between [0-2] according to the requirement of values 313

of the attributes. With a view to convert all values to the same 314

data type, a novel approach is proposed and demonstrated in 315

Algorithm 2. 316

The desired datasets can be formed through a mask as it 317

is user-defined. After converting values to a single data type, 318

133918 VOLUME 7, 2019



N. Usman et al.: Novel IoT-Centric Framework to Mine Malicious Frequent Patterns

FIGURE 1. Proposed framework for mining malicious frequent patterns (MMFP).

FIGURE 2. Framework for mask creation.

the scheme consumes less memory; thus, more cost efficient.319

Fig. 2 outlines the complete legend assignment phase.320

C. FREQUENT PATTERN MINING321

Existing algorithms do not only result in redundant patterns,322

but also yield extra gaps; thus, consuming more memory and323

incurring additional costs. MMFP mines frequent patterns324

without producing extra gaps and redundant patterns. The 325

main framework of the proposed approach is described in 326

Algorithm 3. 327

IV. PARAMETERS SELECTION 328

Two user-defined parameters, that are incorporated by the 329

proposed algorithm which are listed below: 330

VOLUME 7, 2019 133919



N. Usman et al.: Novel IoT-Centric Framework to Mine Malicious Frequent Patterns

TABLE 4. Comparison of ARM techniques and MMFP for a sample of 50 records.

TABLE 5. Comparison of ARM techniques and MMFP for a sample of 100 records.

TABLE 6. Comparison of ARM techniques and MMFP for a sample of 150 records.

TABLE 7. Comparison of ARM techniques and MMFP for a sample of 200 records.

• Minimum Support Value (MSV): In order to collect331

frequent patterns that occur more than the specified332

threshold value, the Minimum Support Value parameter333

is used. MSV takes a value in [0-1].334

• Confidence Level: For observing the occurrence of a335

pattern in the dataset, a confidence level is specified336

which takes a value in [0-1].337

The MMFP algorithm scans the entire dataset at once to338

locate frequent patterns according to MSV and confidence339

level; thus, avoiding limitations in existing algorithms. Unlike340

traditional algorithms, all frequent patterns that reside in the341

original database become the output file. The algorithm dis-342

cards non-frequent patterns and ensures an optimum solution.343

After the frequent patterns have been mined, rules are created344

for every resultant pattern. If a pattern deviates from normal,345

then expert analysis is performed on that sequence to deter- 346

mine whether it is an anomaly. 347

V. FINDINGS AND DISCUSSIONS 348

We now present a comparative summary of Apriori, Prefixs- 349

pan, FP-Growth and the proposed framework MMFP. In the 350

evaluations, we used a machine of at least 6GB RAM, and 351

2.10Giga Hertz processor. A sample of 200 security pertinent 352

records from a dataset of 10,48,569 records of a real-world 353

case study organization (Trillium Pakistan) was segregated in 354

4 chunks (i.e. 50, 100, 150 and 200), and the performance 355

metrics used were processing time, memory utilization, and 356

number of generated patterns. 357

Table 4 displays the outcomes of using Apriori, Prefixs- 358

pan, FP-Growth and MMFP for 50 records. Based on the 359

133920 VOLUME 7, 2019



N. Usman et al.: Novel IoT-Centric Framework to Mine Malicious Frequent Patterns

FIGURE 3. Processing time for multiple transactions.

specified value for number of transactions and minSup, the360

algorithms were then evaluated. By comparing the results,361

we observed that MMFP performs comparatively well with362

respect to memory usage. Prefixspan needs more memory363

as it creates the projecting databases for every frequent k-364

sequence and generates extra gaps in the patterns. Therefore,365

it requires additional time for rules generation and is not366

suitable for environment that consists of resource-constrained367

devices (e.g. IoT devices) [63]. In terms of memory usage368

and time, FP-Growth performance is very poor because of369

redundant pattern generation. Table 5 displays the outcomes370

of using Apriori, Prefixspan, FP-Growth and MMFP for 100371

records. MMFP outperforms Apriori in terms of memory372

usage.373

The other findings for 150 and 200 records are reported in374

Tables 6 and 7, respectively. As observed from Table 7.375

From our evaluations, we observed that Apriori does not376

workwell for large dataset as it does not guarantee all frequent377

patterns. Prefixspan modifies existing frequent patterns by378

creating gaps in order to generate every possible pattern;379

however, these patterns are of little use in detecting anoma-380

lies. FP-Growth is also not suitable for large datasets as it381

generates identical patterns more than once; thus, incurring382

additional costs. The processing time for multiple transac-383

tions of the four algorithms is illustrated in Fig. 3. It is384

clear that FP-Growth results in the most number of frequent385

itemsets as it returns surplus patterns. Prefixspan with a large386

difference shows frequent itemsets, and Apriori achieves387

better performance than FP-Growth and Prefixspan in all388

segregated portions. MMFP executes all transactions with389

the optimal number of frequent itemsets and thus, results in390

optimal use of memory and processing time.391

Fig. 4 depicts the rule generation processing time for all the392

four algorithms, it is clear that MMFP has the best processing393

time.394

From Figs. 5.a), 5.b), 5.c) and 5.d), we observed that395

MMFP requires less memory compared to the three algo-396

rithms as it generates meaningful but fewer number of397

FIGURE 4. Frequent patterns generated for multiple transactions.

FIGURE 5. Memory required in multiple transactions.

patterns. 398

The products and systems that connect to the IoT are 399

changing business in many commercial enterprises. MMFP 400

can be used anywhere such as in scheduling maintenance for 401

auto vehicles, predicting results through E-voting, tracking 402

exact record for home appliances, medical applications for 403

patients to capture their health data and so on. 404

VI. CONCLUDING REMARKS 405

Ensuring the security of data and devices in an IoT 406

infrastructure can be challenging due to the nature of such 407

infrastructure (e.g. resource-constrained devices). Thus, it is 408

generally accepted that deployed security solutions should be 409

lightweight [64], [65]. 410

In this paper, we presented a framework to mine mali- 411

cious frequent patterns in IoT communications that would 412

allow us to identify misuse and detect anomalies without 413

incurring high computational costs. We evaluated the utility 414

of our proposed framework by benchmarking the frame- 415

VOLUME 7, 2019 133921



N. Usman et al.: Novel IoT-Centric Framework to Mine Malicious Frequent Patterns

work with three popular ARM techniques, namely: Apriori,416

FP-Growth and Prefixspan, using real-world security logs417

from a Pakistan-based organization.418

Future research includes deploying the proposed frame-419

work on multiple datasets and systems to further fune-tune420

the framework for enhanced efficiency and accuracy. In order421

to make a proficient recommendation system, there is a need422

to associate MMFP with Deep Learning techniques for inter-423

communication and intra-communication among Internet of424

Things (IoTs).425

REFERENCES426

[1] Q. Alam et al., ‘‘Formal verification of the xDAuth protocol,’’ IEEE Trans.427

Inf. Forensics Security, vol. 11, no. 9, pp. 1956–1969, Sep. 2016.428

[2] D. Quick and K.-K. R. Choo, ‘‘Big forensic data management in hetero-429

geneous distributed systems: Quick analysis of multimedia forensic data,’’430

Softw., Pract. Exper., to be published.431

[3] D. Quick and K.-K. R. Choo, ‘‘Pervasive social networking forensics:432

Intelligence and evidence from mobile device extracts,’’ J. Netw. Comput.433

Appl., to be published.434

[4] D. Quick and K.-K. R. Choo, ‘‘Digital forensic intelligence: Data subsets435

and Open Source Intelligence (DFINT+OSINT): A timely and cohesive436

mix,’’ Future Generat. Comput. Syst., to be published.437

[5] A. D. Thierer, ‘‘The connected world: Examining the Internet of Things,’’438

Tech. Rep. SSRN 2563765, 2015.439

[6] D. Singh, G. Tripathi, and A. J. Jara, ‘‘A survey of Internet-of-Things:440

Future vision, architecture, challenges and services,’’ in Proc. IEEE World441

Forum Internet Things (WF-IoT), Mar. 2014, pp. 287–292.442

[7] C. J. D’Orazio, K.-K. R. Choo, and L. T. Yang, ‘‘Data exfiltration from443

Internet of Things devices: iOS devices as case studies,’’ IEEE Internet444

Things J., to be published.445

[8] R. Alur et al. (2016). ‘‘Systems computing challenges in the Internet of446

Things.’’ [Online]. Available: https://arxiv.org/abs/1604.02980447

[9] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy,448

Advances in Knowledge Discovery and Data Mining. 1996.449

[10] B. Thuraisingham, ‘‘A primer for understanding and applying data min-450

ing,’’ IT Prof., vol. 2, no. 1, pp. 28–31, Jan. 2000.451

[11] T. Steen and R. Lindsay, ‘‘RecB: Set theory based technique for large scale452

pattern mining inWeb logs,’’ Int. J. Comput. Appl., vol. 124, no. 8, pp. 1–9,453

2015.454

[12] C. C. Aggarwal, Data Mining: The Textbook. Springer, 2015.455

[13] J. Han and Y. Fu, ‘‘Mining multiple-level association rules in large456

databases,’’ IEEE Trans. Knowl. Data Eng., vol. 11, no. 5, pp. 798–805,457

Sep. 1999.458

[14] M.-S. Chen, J. Han, and P. S. Yu, ‘‘Data mining: An overview from459

a database perspective,’’ IEEE Trans. Knowl. Data Eng., vol. 8, no. 6,460

pp. 866–883, Dec. 1996.461

[15] A. Guevara-Cogorno, C. Flamand, and H. Alatrista-Salas, ‘‘COPPER—462

Constraint optimized prefixspan for epidemiological research,’’ Procedia463

Comput. Sci., vol. 63, pp. 433–438, 2015.464

[16] M. Sookhak et al., ‘‘Remote data auditing in cloud computing environ-465

ments: A survey, taxonomy, and open issues,’’ ACMComput. Surv., vol. 47,466

no. 4, p. 65, 2015.467

[17] J.West andM. Bhattacharya, ‘‘Intelligent financial fraud detection: A com-468

prehensive review,’’ Comput. Secur., vol. 57, pp. 47–66, Mar. 2016.469

[18] A. Akhunzada et al., ‘‘Secure and dependable software defined networks,’’470

J. Netw. Comput. Appl., vol. 61, pp. 199–221, Feb. 2015.471

[19] A. Akhunzada et al., ‘‘Man-at-the-end attacks: Analysis, taxonomy, human472

aspects, motivation and future directions,’’ J. Netw. Comput. Appl., vol. 48,473

pp. 44–57, Feb. 2015.474

[20] B. Arrington, L. Barnett, R. Rufus, and A. Esterline, ‘‘Behavioral mod-475

eling intrusion detection system (BMIDS) using Internet of Things (IoT)476

behavior-based anomaly detection via immunity-inspired algorithms,’’ in477

Proc. 25th Int. Conf. Comput. Commun. Netw. (ICCCN), Aug. 2016,478

pp. 1–6.479

[21] V. Chandola, A. Banerjee, and V. Kumar, ‘‘Anomaly detection: A survey,’’480

ACM Comput. Surv., vol. 41, no. 3, p. 15, 2009.481

[22] M. E. Edge and P. R. F. Sampaio, ‘‘A survey of signature based methods482

for financial fraud detection,’’ Comput. Secur., vol. 28, no. 6, pp. 381–394,483

2009.484

[23] J. Peng, K.-K. R. Choo, and H. Ashman, ‘‘User profiling in intrusion 485

detection: A review,’’ J. Netw. Comput. Appl., vol. 72, pp. 14–27, Sep. 2016. 486

[24] S. Iqbal et al., ‘‘On cloud security attacks: A taxonomy and intrusion 487

detection and prevention as a service,’’ J. Netw. Comput. Appl., vol. 74, 488

pp. 98–120, Oct. 2016. 489

[25] P. Dokas, L. Ertoz, V. Kumar, A. Lazarevic, J. Srivastava, and P.-N. Tan, 490

‘‘Data mining for network intrusion detection,’’ in Proc. NSF Workshop 491

Next Generat. Data Mining, 2002, pp. 21–30. 492

[26] S. Agrawal and J. Agrawal, ‘‘Survey on anomaly detection using data 493

mining techniques,’’ Procedia Comput. Sci., vol. 60, pp. 708–713, 2015. 494

[27] R. J. Baxley, C. J. Rouland, and M. T. Engle, ‘‘Anomalous behavior 495

detection based on behavioral signatures,’’ U.S. Patent 2015 0 350 233, 496

Dec. 3, 2015. 497

[28] H. Banuri et al., ‘‘An android runtime security policy enforcement frame- 498

work,’’ Pers. Ubiquitous Comput., vol. 16, no. 6, pp. 631–641, 2012. 499

[29] Y. Xu and Y. Wang, ‘‘Analysis of Web access sequence based on the 500

improved PrefixSpan algorithm,’’ in Proc. Int. Ind. Inform. Comput. Eng. 501

Conf. (IIICEC), 2015, pp. 788–791. 502

[30] R. Agrawal and R. Srikant, ‘‘Fast algorithms for mining association rules,’’ 503

in Proc. 20th Int. Conf. Very Large Data Bases (VLDB), vol. 1215. 1994, 504

pp. 487–499. 505

[31] R. Srikant and R. Agrawal, ‘‘Mining sequential patterns: Generalizations 506

and performance improvements,’’ in Advances in Database Technology. 507

Springer, 1996. 508

[32] J. Han, J. Pei, and Y. Yin, ‘‘Mining frequent patterns without candidate 509

generation,’’ ACM SIGMOD Rec., vol. 29, no. 2, pp. 1–12, 2000. 510

[33] R. Agrawal, T. Imieliński, and A. Swami, ‘‘Mining association rules 511

between sets of items in large databases,’’ ACM SIGMOD Rec., vol. 22, 512

no. 2, pp. 207–216, 1993. 513

[34] K. Khurana and S. Sharma, ‘‘A comparative analysis of association rules 514

mining algorithms,’’ Int. J. Sci. Res. Pub., vol. 3, no. 5, pp. 1–4, 2013. 515

[35] L. M. Goyal, M. M. S. Beg, and T. Ahmad, ‘‘A novel pruning approach 516

for association rule mining,’’ BVICAM’s Int. J. Inf. Technol., vol. 7, no. 1, 517

pp. 827–834, 2015. 518

[36] J. C.-Y. N. Xian-Jun, ‘‘Association rule mining: A survey,’’ Comput. Sci., 519

vol. 4, p. 044, 2003. 520

[37] D. Adhikary and S. Roy, ‘‘Trends in quantitative association rule mining 521

techniques,’’ in Proc. IEEE 2nd Int. Conf. Recent Trends Inf. Syst. (ReTIS), 522

Jul. 2015, pp. 126–131. 523

[38] S. Rao and P. Gupta, ‘‘Implementing improved algorithm over APRIORI 524

data mining association rule algorithm 1,’’ Tech. Rep., 2012. 525

[39] W. Hadi, ‘‘EMCAR: Expert multi class based on association rule,’’ Int. J. 526

Modern Edu. Comput. Sci., vol. 5, no. 3, pp. 33–41, 2013. 527

[40] F. Thabtah, P. Cowling, and Y. Peng, ‘‘MCAR: Multi-class classification 528

based on association rule,’’ in Proc. 3rd ACS/IEEE Int. Conf. Comput. Syst. 529

Appl., Jan. 2005, p. 33. 530

[41] A. Das, W.-K. Ng, and Y.-K. Woon, ‘‘Rapid association rule mining,’’ in 531

Proc. 10th Int. Conf. Inf. Knowl. Manage., 2001, pp. 474–481. 532

[42] Ö. M. Soysal, ‘‘Association rule mining with mostly associated sequential 533

patterns,’’ Expert Syst. Appl., vol. 42, no. 5, pp. 2582–2592, 2015. 534

[43] Y. Zeng, S. Yin, J. Liu, and M. Zhang, ‘‘Research of improved fp-growth 535

algorithm in association rules mining,’’ Sci. Program., vol. 2015, Jan. 2015, 536

Art. no. 910281. 537

[44] Z. Rong, D. Xia, and Z. Zhang, ‘‘Complex statistical analysis of big data: 538

Implementation and application of Apriori and FP-Growth algorithm based 539

on MapReduce,’’ in Proc. 4th IEEE Int. Conf. Softw. Eng. Service Sci. 540

(ICSESS), May 2013, pp. 968–972. 541

[45] Y. Fan, Y. Ye, and L. Chen, ‘‘Malicious sequential pattern mining for 542

automatic malware detection,’’ Expert Syst. Appl., vol. 52, pp. 16–25, 543

Jun. 2016. 544

[46] X. Cheng, S. Su, S. Xu, P. Tang, and Z. Li, ‘‘Differentially private max- 545

imal frequent sequence mining,’’ Comput. Secur., vol. 55, pp. 175–192, 546

Nov. 2015. 547

[47] M.-T. Tran, B. Le, B. Vo, and T.-P. Hong, ‘‘Mining non-redundant sequen- 548

tial rules with dynamic bit vectors and pruning techniques,’’ Appl. Intell., 549

vol. 45, no. 2, pp. 333–342, 2016. 550

[48] M. J. Zaki, ‘‘SPADE: An efficient algorithm for mining frequent 551

sequences,’’ Mach. Learn., vol. 42, nos. 1–2, pp. 31–60, 2001. 552

[49] A. P. Wright, A. T. Wright, A. B. McCoy, and D. F. Sittig, ‘‘The use 553

of sequential pattern mining to predict next prescribed medications,’’ 554

J. Biomed. Inform., vol. 53, pp. 73–80, Feb. 2015. 555

[50] C. A. Fowler and R. J. Hammell, ‘‘Mining information assurance data with 556

a hybrid intelligence/multi-agent system,’’ in Proc. IEEE/ACIS 14th Int. 557

Conf. Comput. Inf. Sci. (ICIS), Jun./Jul. 2015, pp. 23–28. 558

133922 VOLUME 7, 2019



N. Usman et al.: Novel IoT-Centric Framework to Mine Malicious Frequent Patterns

[51] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu, ‘‘Sequential pattern mining559

using a bitmap representation,’’ in Proc. 8th ACM SIGKDD Int. Conf.560

Knowl. Discovery Data Mining, 2002, pp. 429–435.561

[52] C. Liu, X. Dong, C. Li, and Y. Li, ‘‘SAPNSP: Select actionable positive and562

negative sequential patterns based on a contribution metric,’’ in Proc. 12th563

Int. Conf. Fuzzy Syst. Knowl. Discovery (FSKD), Aug. 2015, pp. 811–815.564

[53] M. Verma, D. Mehta, V. Dahiya, and K. Mehta, ‘‘Mining sequences—565

Approaches and analysis,’’ Int. J. Innov. Res. Sci. Technol., vol. 1, no. 7,566

pp. 229–233, 2015.567

[54] D.-Y. Chiu, Y.-H.Wu, andA. L. P. Chen, ‘‘An efficient algorithm formining568

frequent sequences by a new strategy without support counting,’’ in Proc.569

IEEE 20th Int. Conf. Data Eng., Apr. 2004, pp. 375–386.570

[55] K. K. Arya, V. Goyal, S. B. Navathe, and S. Prasad, ‘‘Mining frequent571

spatial-textual sequence patterns,’’ in Database Systems for Advanced572

Applications. Springer, 2015, pp. 123–138.573

[56] W. Lee and S. J. Stolfo, ‘‘Data mining approaches for intrusion detection,’’574

in Proc. Usenix Secur., 1998.575

[57] K. Yoshida, Y. Shomura, and Y. Watanabe, ‘‘Visualizing network status,’’576

in Proc. IEEE Int. Conf. Mach. Learn., vol. 4. Aug. 2007, pp. 2094–2099.577

[58] The MAWI Working Group of the WIDE Project, ‘‘MAWI working group578

traffic archive,’’ Tech. Rep., 2012.579

[59] V. Chandola and V. Kumar, ‘‘Summarization—compressing data into an580

informative representation,’’ Knowl. Inf. Syst., vol. 12, no. 3, pp. 355–378,581

2007.582

[60] S. Kandula, R. Chandra, and D. Katabi, ‘‘What’s going on?: Learning com-583

munication rules in edge networks,’’ ACM SIGCOMM Comput. Commun.584

Rev., vol. 38, no. 4, pp. 87–98, 2008.585

[61] M. Alam et al., ‘‘Dynamic remote attestation through behavior measure-586

ment and verification,’’ Int. J. Innov. Comput. Inf. Control, vol. 8, no. 3(A),587

pp. 1821–1836, 2012.588

[62] M. Alam et al., ‘‘Optimizing SIEM throughput on the cloud using paral-589

lelization,’’ PLoS ONE, vol. 11, no. 11, p. e0162746, 2016.590

[63] Q. Alam, S. U. Malik, A. Akhunzada, K.-K. R. Choo, S. Tabbasum, and591

M. Alam, ‘‘A cross tenant access control (CTAC) model for cloud com-592

puting: Formal specification and verification,’’ IEEE Trans. Inf. Forensics593

Security, vol. 12, no. 6, pp. 1259–1268, Jun. 2016.594

[64] Y. Yang, H. Cai, Z. Wei, H. Lu, and K.-K. R. Choo, ‘‘Towards lightweight595

anonymous entity authentication for IoT applications,’’ in Information596

Security and Privacy (Lecture Notes in Computer Science), vol. 9722.597

2016, pp. 265–280.598

[65] Y. Yang, J. Lu, K.-K. R. Choo, and J. K. Liu, ‘‘On lightweight security599

enforcement in cyber-physical systems,’’ in Lightweight Cryptography for600

Security and Privacy (Lecture Notes in Computer Science), vol. 9542.601

2015, pp. 97–112.602

NIGHAT USMAN, photograph and biography not available at the time of 603

publication. 604

QAISAR JAVAID, photograph and biography not available at the time of 605

publication. 606

ADNAN AKHUNZADA, photograph and biography not available at the time 607

of publication. 608

KIM-KWANG RAYMOND CHOO, photograph and biography not 609

available at the time of publication. 610

SAEEDA USMAN, photograph and biography not available at the time of 611

publication. 612

ASMA SHER, photograph and biography not available at the time of 613

publication. 614

MANZOOR ILAHI, photograph and biography not available at the time of 615

publication. 616

MASOOM ALAM, photograph and biography not available at the time of 617

publication. 618

619

VOLUME 7, 2019 133923


