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ABSTRACT This paper presents a potential game-based method for the non-myopic planning of mobile
sensor networks in the context of target tracking. The planning objective is to select the sequence of sensing
points over more than one future time step to maximize information about the target states. This multi-
step lookahead scheme aims to overcome getting trapped at local information maximum when there are
gaps in the sensing coverage due to constraints of the sensor platform mobility or limitations in sensing
capabilities. However, long-term planning becomes computationally intractable as the length of planning
horizon increases. This paper develops a game-theoretic approach to address the computational challenges.
Themain contributions of this paper are twofold: 1) to formulate a non-myopic planning problem for tracking
multiple targets in a potential game, the size of which increases linearly as the number of planning steps and 2)
to design a learning algorithm exploiting the joint strategy fictitious play and dynamic programming, which
overcomes the gaps in sensing coverage. The numerical examples of multi-target tracking demonstrate that
the proposed method gives a better estimation performance than myopic planning and is computationally
tractable.

INDEX TERMS Potential game, sensor network management, mutual information, non-myopic planning,
multi-target tracking, wireless sensor networks, path planning.

I. INTRODUCTION
Mobile sensor networks have been successfully used to
acquire information about the quantities of interest spread
over large areas, including applications such as, moni-
toring spatial phenomena, mapping, and tracking targets
[1]–[6]. The mobility of sensor platforms certainly con-
tributes to expanding the sensing coverage and mission areas,
but the associated constraints in mobility and sensor modal-
ities necessitate the resolution of crucial decision making
around where and when to sense taking into account the
constraints. The waypoints of the sensor platforms need to
be chosen to maximize information gain while satisfying all
of the associated resource constraints.

Sensor planning schemes may be myopic or non-myopic
in terms of time domain. When we consider a set of sensing
locations for the next time step only, this approach is referred
to as ‘‘greedy’’ or ‘‘myopic’’. This short-term management
yields good performance in tasks such as sensor placements

for monitoring spatial phenomena [7], mobile sensor target-
ing for weather forecasting [2], [3], exploration path gen-
eration for simultaneous localization and mapping [8], [9],
and sensor management for target tracking [5], [10]–[13].
However, there are some situations in which non-myopic
strategies give poorer performance in the next step, but better
estimation accuracy at the end of the planning horizon. In [6],
[14], and [15], multi-step lookahead sensor planning was
shown to significantly improve target tracking performance.
Typically, when a sensor network contains ‘‘sensor holes’’,
a greedy algorithm results in poor performance [14]. The
sensor holes are gaps in the sensing coverage where the sen-
sor network cannot make observations of the targets. These
invisible areas are caused by the limited field of view of
sensors or by obstacles existing in environments, such as
elevation difference of surveillance regions or by physical
constraints on the sensor platform motion. This is the case
for tracking moving objects with such sensors of restricted
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capability. Non-myopic planning can address the issue of
sensor holes by looking multiple steps ahead in the future to
extend candidate sensing regions.

This paper considers non-myopic planning for multi-target
tracking. Previous work on sensor planning for target tracking
can be found in [1] and [16]–[18], and for resource manage-
ment for multi-function radars in [11] and [19]. Non-myopic
sensor planning is challenging because the number of possi-
ble sensing sequences increases exponentially with the length
of the planning horizon. Exponential explosion in computa-
tional time and memory usage follow for finding the optimal
sensing sequence. Several planning algorithms have been
proposed to reduce computational costs. A simple but sub-
optimal strategy is a greedy method that determines sensing
points in sequence, choosing the next location that provides
the maximum information gain conditioned on the preceding
sensing decisions [1]. Approaches to finding optimal solu-
tions can be found in [16], [17], and [20]. The methods
used approximate cost functions and reduce the computa-
tional burden by using pruning algorithms. Since sensor
planning has the uncertainty of the underlying states, adap-
tive path planning problems have been formulated as a Par-
tially Observable Markov Decision Process (POMDP) [21].
Reference [22] designed guidance algorithms for control-
ling unmanned aerial vehicles (UAVs) by solving a POMDP
approximately. However, these more complex algorithms still
suffer from computation cost, and thus can deal only with
problems of limited size.

This work addresses computational challenge by formu-
lating a non-myopic planning problem as a potential game.
The method is extended from the potential game formulation
that was proposed in the authors’ earlier work [23], [24] for
efficient selection of sensing points for the next time step
only. To formulate an optimization problem into a potential
game, we need to specify players, their respective actions,
their local objective/utility functions, and the learning rules
for the players [25]. In the game framework of [24], each
sensor in a sensor network represents a player trying to max-
imize its utility function defined by the conditional mutual
information. This local utility design leads to a potential
game, with a global objective being the mutual information
between the target states and the measurement variables to
be taken at the next time step. In addition to our earlier work,
more works exists, which use game theory for distributed
sensor network management. For example, track selection
for multi-target tracking in a multifunction radar network has
been made through an anti-coordination game [11]. A radar
in a network tries to maximize the overall tracking accuracy
criterion and a best response based dynamics is presented to
find an equilibrium. In [26], the sensor management assigns
moving sensors to targets through a distributed sensor-based
negotiation game. Each sensor makes a decision locally that
maximizes its utility by negotiating with neighboring sensors.
In [27], clusters of multistatic radars in a network select
the optimal waveforms maximizing the signal-to-disturbance
ratio through a potential game. The authors proved the

uniqueness of the Nash equilibrium using the discrete con-
cavity property of the proposed game. However, such game-
theoretic approaches also have the same computational cost
issue when considering long-term planning, thus the studies
handled short-term management only.

To yield an efficient potential game method for informa-
tive non-myopic planning, we modify the game framework
found in our earlier work and propose a learning algorithm.
In formulating a sensor network planning problem into a
potential game, we take three steps: (i) Specifying the global
objective function for multi-target tracking, (ii) formulating
the optimization problem as a potential game, and (iii) design-
ing a learning algorithm to find a Nash equilibrium of the
potential game. First, mutual information is used as a global
objective of a planning problem. The quantities of interest
are set to the target states at the last time of the planning
horizon to reduce the computational burden. Then, a potential
game is formulated by defining a player as a sensor at each
time step. A local utility is defined by using the marginal
contribution rule [24], [28], and it is shown to lead to a
potential game with the mutual information. Lastly, we pro-
pose a learning method to find a solution of the designed
game, which is extended from the joint strategy fictitious
play [29]. Dynamic programming is used in the first run of the
learning algorithm in order to fill the gaps in sensing coverage
caused by the limited sensing capabilities and constraints of
platform mobility. Numerical studies on UAV coordination
for optimal ground target tracking are presented to demon-
strate that the game-theoretic mechanisms provide compu-
tational efficiency in sensor planning over multiple time
steps.

II. PROBLEM FORMULATION
While the game-theoretic method of cooperative planning
applies to many different applications with sensor networks,
here we illustrate sensor planning in the context of multi-
target tracking.

In this section, we define a multi-target tracking problem
with a mobile sensor network. We then formulate a planning
problem to find out the sensing locations to enhance tracking
performance. First, the models of components comprising the
target tracking problem are defined, and then a data fusion
method for planning is described briefly to represent the
conditional probability density function (pdf) of the target
state conditioned on the measurements.

The goal of a target tracking problem is to estimate the
kinematic states of targets with a finite set of measurements.
In general, the state estimation is performed via Bayesian
filtering [30], which is a recursive algorithm consisting of two
processes: (i) Predicting the prior distribution of the target
states using the dynamic model of the target and (ii) updating
the distribution with the sensormeasurement model and taken
measurements. Therefore, specific models of target dynamics
and sensor measurement are presented for the sake of con-
creteness. It should be noted, however, that the planning algo-
rithms we introduce can be readily applied to other problems
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in which sensors have a finite set of actions (i.e., sensing
locations, sensor modes) to select.

A. TARGET AND SENSOR MODELS
We consider a number of unmanned aerial vehicles (UAVs)
carrying sensors to track a group of targets on the ground,
as shown in Fig. 1. To estimate the target states with measure-
ments, a sensor network holds information about the targets
using a motion model and prior distribution of the states.

FIGURE 1. A sensor network planning problem for multi-target tracking:
A number of targets moving on the ground are tracked by a sensor
network. Every UAV (unmanned aerial vehicle) is carrying a sensor that
observes the targets at a prespecified height.

Let a set of targets moving on the ground be T =

{1, 2, . . . ,M}. Here, we assume that the number of targets
are known and constant, M . The state of target j ∈ T at time
k is denoted by x(j)k = [x(j)k , y

(j)
k , ẋ

(j)
k , ẏ

(j)
k ]T , where x(j)k and

y(j)k represent the target position in two dimensional Cartesian
coordinates, and ẋ(j)k and ẏ(j)k are the corresponding velocity
components. We assume that each target follows continuous
white noise acceleration models and moves independently
from others. That way it is possible to ignore the joint dis-
tribution and use one tracking filter for each target [31].

x(j)k+1 = Fkx
(j)
k + w

(j)
k (1)

where w(j)
k ∼ N (0,Q(j)

k ) is a white Gaussian process noise,
independent of the other targets and measurements. Fk and
Qk are system transition and process noise covariance matri-
ces, respectively. For the simulations in this paper, we use a
continuous white noise acceleration model.

Fk =


1 0 1t 0
0 1 0 1t
0 0 1 0
0 0 0 1

 ;

Qk =



1t3

3
0

1t2

2
0

0
1t3

3
0

1t2

2
1t2

2
0 1t 0

0
1t2

2
0 1t


q (2)

where1T is the time between two successive measurements
at kth step to (k+1)th step, and q is the process noise intensity,
representing the strength of the deviations from predicted
motion by the dynamic model [32]. When q is small, this
model represents a nearly constant velocity. Note however,
the actual maneuver of the targets can be different from the
dynamics predicted by the sensor network. In the simulations,
we will show the effect of incorrectly fitted models on the
performance of planning algorithms.

A sensor network is represented by a set of vehicles N =
{1, 2, . . . ,N }, and each vehicle is assumed to be equipped
with one sensor for simplicity.1 For each sensor i ∈ N ,
the measurement taken at time k is denoted in a general
nonlinear form as

z(i)k = h(i)k (xk )+ v
(i)
k (3)

where v(i)k ∼ N (0,Rik ) is a white Gaussian noise process,
independent of the other measurement noises and of process
noise w(j)

k , ∀k, ∀j ∈ T . xk is the set of states of targets
and a sensor network. More specifically, in a target tracking
problem, sensors usually measure the kinematic information
about the target relative to the sensor, itself. Thus the state
of the i-th sensor in xk includes position, orientation, and
velocity of the agent. Denoting the pose of i-th sensing agent
at time k as x(i)sk , the measurement model can be rewritten to
express the relative kinematic state of the target as

z(i)k = h(x(j)k , x
(i)s
k )+ v(i)k (4)

For the simulations in this paper, we set the measurement
model to a radar-like measurement, consisting of range and
azimuth to a target. At each time k , sensor i obtains the
positional measurement z(i,j)k = [r (i,j)k , φ

(i,j)
k ]T for one of the

targets, j ∈ T :[
r (i,j)k
φ
(i,j)
k

]
=

[√
(xj − xi)2 + (yj − yi)2 + z2i
tan−1((yj − yi)/(xj − xi))

]
. (5)

This is illustrated in Fig 2. For notational simplicity, the dis-
crete time index k can be dropped later. The superscripts i and
j represent the index of target and sensor, respectively, in the
rest of this paper. As shown in Fig. 2, sensors have directivity,
thus only the target inside the sensing region can be detected,
and the sensor can obtain information about the location of
the target within that area.

1In this paper, we use a sensing agent, a sensor, and a sensing node
interchangeably. For simplicity, we assume that each vehicle has one sensor
on it. In general, some platforms can carry more than one sensor. In that case,
the sensing locations for the sensors equipped on the same vehicle should
match. Then the decision variables are for the vehicles not for the sensors.
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FIGURE 2. Radar-like measurement model for target tracking. (left) A
sensor is mounted on a UAV and takes measurements consisting of range
and azimuth to the target. (right) Sensors have a limited sensing region,
in which a target can be detected and the relative position of the target
can be measured.

In radars it is shown that the signal to noise ratio (SNR)
dependent error is a major factor of the measurement
error [33]. An azimuth angle error can be modeled as a
white Gaussian noise with zero mean and standard deviation
given by

σφ ≈
θBW / cosψ

km
√
2SNR

(6)

where θBW is the 3dB beamwidth in the angular coordinate
and km is the monopulse pattern difference slope. In addition
to SNR, angular measurement error increases when targets
are located offset from the beam center due to a loss of
gain [32], which is reflected in the term cosψ . ψ is the
beam scan angle off-broadside. Similarly, a range error can
be represented as zero-mean Gaussian noise with standard
deviation given by

σR ≈
1R
√
2SNR

(7)

where 1R is radar range resolution.
To make the problem simple, the three dimensional posi-

tion and heading angle x(i)s = [xi, yi, zi, θi]T of each sensing
agent i ∈ N are assumed to be known. There is no uncertainty
about the state of sensing locations. Thus, the information
about the target state can be obtained by considering the prob-
ability distribution of the target and the induced distribution
of measurement variables.2

B. ESTIMATION
Estimation of multi-target tracking is much harder than single
target tracking, because the number of targets varies over time
and the measurements need to be assigned to tracks. These
issues have their own importance in multi-target tracking
problems. However, in this paper, we aim at proposing a
planning algorithm to maximize information about the states
of moving targets. To focus on the algorithm that decides

2If the sensor state is represented by a probability distribution over the
possible sensing locations, the distribution of the measurement variable can
be obtained from the observationmodel. The distribution of themeasurement
variable usually spreads more widely than when the sensor state has no
uncertainty, thus less information about the target states is contained in the
measurement.

the next sensing positions we assume that data association
is known perfectly and that the number of targets to track is
known and fixed. With the assumption that each target moves
independently from the other targets, the single filter for each
target is sufficient to develop the planning method.

The planning algorithm we propose can be applied with
various estimation filters. Here, for each target j, the tracking
process is performed using an extended Kalman filter (EKF).
In the case of well defined transition models, the EKF has
been considered to be a practical means of nonlinear state
estimation [34]. Two types of targets are simulated for the
simulation in this chapter: A nearly constant velocity model
and a Dubins vehicle. When the sampling time is suffi-
ciently small, Dubins car models fit into the target dynamics
in (2) [15].

The EKF accomplishes the sequential estimation of the
mean and covariance through two stages: Prediction and
update, as follows [32]

– Prediction
State estimate: xk|k−1 = Fk−1xk−1|k−1
State covariance: Pk|k−1 = Fk−1Pk−1|k−1F ′k−1 + Qk−1
Measurement: z̄k|k−1 = h(xk|k−1, xsk )
Innovation covariance: Sk = HkPk|k−1H ′k + Rk

– Update
Innovation: z̃k = zk − z̄k|k−1
Filter gain:Wk = Pk|k−1H ′kS

−1
k

State estimate: xk|k = xk|k−1 +Wk z̃k
State covariance: Pk|k = Pk|k−1 −WkSkW ′k

where Pk|k−1 and Pk|k are the prior and posterior error covari-
ance, respectively. Hk =

∂zk
∂xk|k−1

is the linearized measure-
ment matrix evaluated at the predicted state xk|k−1. Since
the state variables are assumed to follow the normal distribu-
tion, the induced variables from the dynamic model and the
measurement model also follow normal distributions and the
joint probability distribution of all the variables including the
target states and measurements are denoted by multivariate
Gaussian distributions. Therefore, the covariance update for-
mula is a representation of the conditional covariance matrix
given the measurement variables. In the next section, we will
use the modified equation of covariance matrix considering
the time step to calculate the amount of information contained
in the measurement variables.

III. NON-MYOPIC SENSOR NETWORK PLANNING
The variables of interest in target tracking are the whole states
of targets denoted by XT

= {x(1), . . . , x(M )
}. The goal of sen-

sor network planning is to find out the sequences of sensing
locations for a sensor network such that information about
the states of all targets is maximized. Therefore, the objective
function can be the quantity of information about the targets’
kinematics at the instant of interest. Sensor planning is called
myopic when only the states at the next step are considered.
While myopic planning has low computational costs and
provides good performance in many examples [5], [7], [35],
it performs worse than non-myopic scheduling in some cases.
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Reference [14] shows that a simple scenario with sensor holes
can cause the performance degradation in myopic planning.
To overcome the problem of greedy algorithm, a potential
game based method that considers the change over a multi-
step lookahead horizon will be provided.

A. INFORMATION-MAXIMIZING PLANNING FRAMEWORK
The goal of sensor planning for a target tracking problem is
to select the sequences of sensing decisions for the next time
steps that hold the most information about the target states.
The information can be quantified by mutual information,
which is the difference between the entropy of the target state
and its conditional entropy conditioned on the measurement
variables [36]. Entropy is the measure of uncertainty in a
random entity. More specifically, (differential) entropy of a
continuous random variable with probability density function
fx(x) is defined as

H(x) , −Ex[log fx(x)] (8)

where Ex[·] denotes expectations over random entity x. The
conditional entropy is defined as

H(x|z) = Ez[H(x|z = z)] (9)

H(x|z) is an expected entropy of the conditional distribution
taken over all possible values of random variable z. It rep-
resents a measure of uncertainty that will remain in x on
the average before the specific value of z is given. From
the definition of the conditional entropy we can compute the
expected reduction in uncertainty of the target states before
the new measurements are taken.

I(x; z) = H(x)−H(x|z) (10)

As shown in Fig. 1, there are N sensors in a sensor network
andM targets to track. We seek to maximize the information
about the states of targets atK steps later by selecting themost
informative sequences of sensing decisions over the next K
time steps. The global objective of a sensor network can be
represented by

max
ZN
1:K

I(XT
K ;Z

N
1:K ) (11)

where XT
K = {x

(1)
K , . . . , x

(M )
K } is a set of random variables

representing all of the multi-target states at the last time step
of the planning horizon. ZN

1:K = {z
(1)
1:K , . . . , z

(N )
1:K } represents a

sequence of predicted measurements to be taken by a sensor
network N over a K -step horizon. All the variables here
follow the probability distribution after updating with the
previous measurement history, and the time step k of the
subscript represents the relative time from the planning time.
Thus, the random variables change with the time at which
the planning decisions are made. Note that the variables of
interest is the states at the final time of the planning horizon,
not the sum of rewards resulting from each decision stage.
References [16] and [17] adopted the additive cost also con-
sidering the cost at intermediate points in time. Even though

they showed good performance for tracking a single target,
the summation could be computationally expensive for multi-
target tracking. Therefore, we consider only the terminal
reward of a sensor sequence as our objective to reduce the
number of variables included in computing mutual informa-
tion. Additionally, since the final expected target states reflect
the intermediate condition of the targets, it is sufficient to
consider the mutual information about the final states only.

The quantity of information that each measurement has
about the targets depends on the sensing position and also
the heading angle due to the directivity of sensors. Since
a sensor can take one measurement at a time, we should
decide which target is to be observed. Therefore, there are
three decision variables for each measurement z(i)k , i ∈
N , k ∈ {1, 2, . . . ,K }, which are represented by a tuple:
a(i)k , [x, y, θ, j](i)k . Here, (x, y)(i)k denotes the sensing location
for sensor i ∈ N at time step k . As shown in Fig. 3,
the number of possible sensing locations at each time step
is finite and the set of sensing candidates is denoted by S(i)k .
For example, in the figure |S(i)k | = 17: stay at the previous
location or move one of 2 distances in one of 8 directions.
In the scenario for simulation, all of the sensors are supposed
to fly at different heights and maintain their heights to prevent
collision between agents, thus the z-coordinate is not a deci-
sion variable. For the heading angle of a sensor, there is a limit
to the heading angle that can be rotated in one time step, and
due to the limited field of view of sensors the heading angle is
important for the success of taking measurements. When it is
determinedwhich target is observed, the best heading angle to
the target can be decided from the current pose so that it does
not exceed the limit of rotation. The heading angle is consid-
ered as a function of the current sensor’s pose, next sensing
the candidate location, and selecting the target’s estimated
position. Therefore, the pose of a sensor can be dropped out
of the decision variables. The optimization problem (11) can
be rewritten with the modified decision variables as

aN1:K
∗
= argmax

aN1:K

I(XT
K ;Z

N
1:K ) (12)

where aN1:K is the set of a(i)k for all i ∈ N , k ∈ {1, 2, . . . ,K }.
Each action for sensor i at time step k is denoted by a(i)k =
[(x, y), j] where j ∈ T and (x, y) ∈ S(i)k .

FIGURE 3. Possible actions for a sensor: Locations(left) and heading
angle(right); the shaded area in the right figure is the field of view, and
the two arrows are the limit of rotation of a UAV in one time step.
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The above objective function for a multi-target tracking
problem can be simplified when the targets are assumed to
move independently of each other, because the state of each
target becomes independent of other targets.
Lemma 1: If each target moves independently of each

other, the objective function (11) can be rewritten as a sum of
information between each target and the measurements that
are taken from that target,

I(XT
K ;Z

N
1:K ) =

∑
j∈T

I(x(j)K ;Z
Nj,1
1 , . . . ,Z

Nj,K
K ) (13)

where Nj,k ⊂ N is a subset of sensors that decide to observe
target j at time step k. Z

Nj,1
1 , . . . ,Z

Nj,K
K are the set of measure-

ment variables that are taken for target j over the planning
horizon of length K. Proof: The above results can be
easily induced by applying chain rule of mutual information
[36].

I(XT
K ;Z

N
1:K ) =

∑
j∈T

I(x(j)K ;Z
N
1:K |x

(1)
K , . . . , x

(j−1)
K )

=

∑
j∈T

I(x(j)K ;Z
N
1:K )

Applying the chain rule to the measurement variables,
the mutual information for each target becomes

I(x(j)K ;Z
N
1:K ) = I(x(j)K ;Z

Nj,1
1 , . . . ,Z

Nj,K
K )

This follows directly from the mutual information between
independent variables being zero and the measurement vari-
ables from other targets also being independent.

From the above lemma, the global objective can be
obtained by considering information terms separately for
each target.

B. POTENTIAL GAME FORMULATION
In [24], we presented a potential game approach for select-
ing the informative sensing points over the next time step
and showed that the proposed method can achieve close-
to-optimal solution quality by exploiting a systematic deci-
sion update procedure of a potential game. In this section,
we will extend the game-theoretic framework for cooperative
selection to non-myopic sensor planning that decides sensing
points over several time steps. Before stating the potential-
game formulation for non-myopic planning, a brief introduc-
tion to the basics of a potential game will be given first.

A general strategic form of a game consists of a finite set
of players P = {1, 2, . . . ,L}; each player i ∈ P has a finite
action set Ai that the player can select, and has a preference
structure over the actions according to its utility (payoff)
function ui : A → R. A =

∏
i∈P Ai is a set of all possible

combinations of actions for all players to choose at a time.
a = (a1, a2, . . . , aL) ∈ A is the collection of strategies of all
players, called a strategy profile, where ai ∈ Ai denotes the
strategy chosen by player i ∈ P . For notational convenience,
a−i = (a1, . . . , ai−1, ai+1, . . . , aL) denotes the collection

of actions of players other than player i. With this notation,
a strategy profile is expressed as a = (ai, a−i).

A potential game is a non-cooperative game in which
the incentive of the players changing their actions can be
expressed by a single function, called the potential function.
That is, that the player tries to maximize its utility is equiva-
lent to maximizing the global objective [37].
Definition 1 (Potential Games): A finite non-cooperative

game G = 〈P, {Ai}i∈P , {ui}i∈P 〉 is a potential game if there
exists a scalar function φ : A→ R such that

ui(a′i, a−i)− ui(a
′′
i , a−i) = φ(a

′
i, a−i)− φ(a

′′
i , a−i) (14)

for every i ∈ P , a′i, a
′′
i ∈ Ai, a−i ∈ A−i. The function φ is

referred to as a potential function of the game G.
The property of a potential game in (14) is called perfect

alignment between the potential function and the player’s
local utility functions. In other words, if a player changes its
action unilaterally, the amount of the change in its utility is
equal to the change in the potential function.

Potential games have two important properties due to the
utility alignment [38]. The first one is that the existence
of pure strategy Nash equilibrium is guaranteed. Since in a
potential game the joint strategy space is finite, there always
exists at least one maximum value of the potential func-
tion. This strategy profile maximizing the potential function
locally or globally is a pure Nash equilibrium. Hence, every
potential game possesses at least one pure Nash equilibrium.
Definition 2 (Nash Equilibrium): A strategy profile a∗ ∈

A is called a (pure) Nash equilibrium if

ui(a∗i , a
∗
−i) ≥ ui(ai, a

∗
−i) (15)

for every ai ∈ Ai and every player i ∈ P .
The second important property concerns the dynamics of

a game. A learning algorithm involves a process of finding
out a Nash equilibrium by repeating a game. Many learning
algorithms for potential games are established and have been
proven to have guaranteed asymptotic convergence to a Nash
equilibrium [39].

A potential game approach for sensor planning problems is
to design the components of a game while satisfying perfect
alignment [39]. In [24], we set each sensing agent as a player
participating in a game and adopted a conditional mutual
information as a local utility function. When the same player
concept is applied to non-myopic planning game, it causes
a degree of computational burden. In the case of L sensing
allowable options for each step, there are a total of LK distinct
sensing sequences of lengthK , resulting in a total of LK×MK

actions for each player. A participant then has an exponen-
tially increased number of action strategies with the length of
planning horizon. Thus, it is computationally intractable to
calculate the utilities for all the different sensing selections.
To address this problem, we set a sensor at each time step
as a player, yielding a total of N × K players each having a
strategy space S(i)k ×T . If all the sensing agents have the same
possible movement options, the number of actions for each
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FIGURE 4. A graphical model with a proposed game design of a multi-target tracking
problem in which each target moves independent of each of the targets. A rectangle
represent a player in the potential game formulated for cooperative sensor network
planning.

player to consider is constant with the number of time steps
the algorithm looks ahead. Instead of an exponential increase
in the number of actions for each player, this specification
of players linearly increases the number of participants of a
game. In summary,

• The players are the sensors at each time step represented
by the set P , N × K, where K = {1, . . . ,K } is
the set of time steps that the planning algorithm looks
ahead. Each player is denoted by a 2-tuple [i, k], where
i ∈ N , k ∈ K

• The strategy space of each player is represented by the
setA(i)

k , S(i)k ×T for each player (i, k) ∈ P . The action
which player [i, k] can select is denoted by the tuple
a(i)k , [(x, y), j], where (x, y) ∈ S(i)k is one of the
possible sensing locations to which sensor i can move
at time step k . The candidate positions are constrained
by the sensor’s moving capability such as maximum
speed. The action set for player [i, k] corresponds to the
decision variables for measurement z(i)k as explained in
the previous section.

A graphical model of the state and measurement variables
and the players for a potential game formulation is depicted
in Fig. 4.

As proposed in [24], the conditional mutual information
conditioned on other players’ decisions is considered as a

local utility for each agent

u(i)k = I(XT
K ; z

(i)
k |Z−[i,k]) (16)

where Z−[i,k] is the collection of measurements of players
other than player [i, k]. As independence between the target
states and the measurements from other targets simplifies the
mutual information defined as a global objective, the local
utility can be rewritten in a simpler form.

u(i)k =
∑
j∈T

I(x(j)K ; z
(i)
k |Z−[i,k]) (17)

Since each sensor take measurements of one target at a
time, the above expression for a local utility becomes

u(i,j)k (a(i)k , a−[i,k]) = I(x(j)K ; z
(i,j)
k |Z

(j)
−[i,k]) (18)

which represents utility value when player [i, k] selects target
j for the next measurements. Z (j)

−[i,k] represents the measure-
ment variables that are taken for target j among the collec-
tion of measurements, Z−[i,k]. Using zero mutual information
between two independent variables, the above expression can
be easily derived. Therefore, it is sufficient to consider the
measurements of sensors that select the same target when
each player computes its utility values for a specific target
selection over possible sensing locations.
Lemma 2: With local utility function defined as (17) the

distributed procedure leads to a potential game with a global
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objective (potential function) as

φ(a(i)k , a−[i,k]) = I(XT
K ;Z

N
1:K )

Proof: Follows directly from [24, Lemma 1 and Proof of
Lemma 1].

IV. LEARNING ALGORITHM FOR NON-MYOPIC
SENSOR PLANNING
With the proposed utility function, the designed potential
game is solved by a process called a repeated game, in which
the same set of games is played over and over again while
adapting the decisions of players to updated sets of informa-
tion. At each play in a repeated game, every agent chooses
an action according to a specific rule (such as fictitious play,
better/best response and log-linear learning [40]), which is
generally represented as a probability distribution over the
player’s actions set. In [24], we adopted the joint strategy
fictitious play (JSFP) for finding the Nash equilibrium in
a myopic sensor network planning problem formulated as
a potential game. In this section, we will present learning
dynamics that exploits the same learning framework as in our
previous work. First, we review the basic concept of JSFP,
summarizing the description of [24]. Next, we introduce the
extended learning algorithm to non-myopic planning and ana-
lyze the computation complexity to perform the procedure.

A. JOINT STRATEGY FICTITIOUS PLAY
In the fictitious play based algorithms, each player presumes
that opponents choose an action according to the empirical
frequency of play. Particularly in JSFP, a player keeps track of
the joint actions of others, and computes an expected utility
based on the joint empirical frequency [29]. Let f−i(a−i; t)
be the frequency with which all players but i have selected
joint action profile a−i up to the t−th play. Then the expected
utility for action ai ∈ Ai is given by

ui(ai; t) = Ef−i(t)[ui(ai, a−i)]

=
1
t

t−1∑
τ=1

ui(ai, a−i(τ ))

where ui(ai, a−i(τ )) is the utility computed for ai ∈ Ai and
the joint actions of others a−i(τ ) selected at the previous
play τ . Marden et al. [29] gave a the simple expression for
the expectation ui(ai; t) as

ui(ai; t) =
t − 1
t

ui(ai; t − 1)+
1
t
ui(ai, a−i(t − 1))

This recursion form reduces computation complexity signif-
icantly compared to the traditional fictitious play based on
empirical frequencies of marginal actions [24]. Also, with
some notion of inertia, that is, a probabilistic reluctance to
change actions, JSFP was shown to converge to a pure strat-
egy Nash equilibrium [29, Th. 2.1].

B. LEARNING ALGORITHM WITH JSFP
In [24], we applied the JSFP algorithm to obtain a solution

of a myopic sensor planning problem. The previously pro-
posed JSFP method was simple in that the method does not
need to consider a kinematic constraint of a mobile sensor
over multiple time steps. It is sufficient to consider the set
of next possible sensing locations only, which is unchanged
during a repeated game. However, when considering the path
over more than one time step, the k-th possible sensing loca-
tions and heading angles are subject to the previous and next
pose of the sensing platform. Therefore, we should reflect
changing reachable candidates at each time step in a learning
algorithm.

Another challenge in non-myopic planning is sensor holes.
For example, when a sensor has a limited field of view and all
targets are located out of view at the planning time and in one
time step later, a greedy method can get trapped at the local
maximum [14]. Extending the candidate region to the K -step
reachable region, this sensor hole problem can be addressed.
Since a mobile platform can reach any location inside the
farthest points reachable by K movements, it is enough to
define the set of possible sensor configuration options for the
K th step candidates as the region including the farthest points
and inside that boundary.

A non-myopic learning algorithm to be presented starts
a repeating game from the last time step K . Player [i,K ]
for each i ∈ N first selects the optimal position as an
initial action within a K -step reachable region by solving the
local greedy method. This initialization scheme continues to
(K −1)th step with conditioning pdf of variables conditioned
on the K th decisions. After converging to the solution for
each time step, the algorithm goes back to the previous time
step until the one step lookahead decision. This initialization
planning method is similar to dynamic programming.

In Algorithm 1, the learning algorithm for non-myopic
planning is summarized. There are two while loops: Outer
and inner. The inner loop corresponds to JSFP for a potential
game considering k-th step only. The inner loop terminates
according to the following rules:

• If JSFP converges to a Nash equilibrium, the decisions
for k-th step are made with those optimal sensing loca-
tions.

• Otherwise, the loop terminates with probability 1 − β,
β ∈ (0, 1) (See line 12, where rand() generates a random
number from the uniform distribution on the interval
(0,1)).

where β represents the willingness to optimize at time step
k . According to these rules, players try to optimize their
decisions with probability β, and will stay with the previous
action with probability 1 − β at each repeated game. This
nonzero inertia term is required to avoid cycling in local
searching [29]. After the inner loop terminates, the selected
decisions are stored in Nj,k ’s, which are used for updating the
covariance matrix. The outer loop is performed recursively
until all of the decisions are not changed over a repeated
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Algorithm 1 JSFP-Based Double Loop Learning for Non-Myopic Sensor Network Planning

INPUT: target states: {x(1)0 , . . . , x
(M )
0 }, state covariances: {P(1)0 , . . . ,P

(M )
0 }, sensors’ pose: {x(1)s0 , . . . , x(N )s

0 }, α ∈

(0, 1)

1: Predict target states and covariances {x(1)1:K |0, . . . , x
(M )
1:K |0}, {P

(1)
1:K |0, . . . ,P

(M )
1:K |0}

2: Initialize Nj,k = ∅, ∀j ∈ T , for k ∈ K
3: Convergedout = FALSE
4: while ¬ Convergedout do
5: for k ∈ {K , . . . , 1} do
6: S(i)k = generate sensing locations at time step k , for each i ∈ N
7: Update covariance matrix {P(1)K |N1,−k

, . . . ,P(M )
K |NM ,−k

}

8: Initialize ū(i,j)k to zero vector
9: Exitin = FALSE

10: t := 0
11: while ¬ Exitin do
12: if rand() > β then
13: Exitin = TRUE
14: end if
15: t := t + 1
16: for i ∈ N do
17: u(i,j)k = compute utility values at time step k , for each (x, y) ∈ S(i)k and j ∈ T
18: ū(i,j)k :=

t−1
t ū

(i,j)
k +

1
t u

(i,j)
k

19: end for
20: for i ∈ N do
21: [(x, y), j]∗(i,k) = argmax(x,y)∈S(i)k ,j∈T

ū(i,j)k
22: if rand() > α ∧ ¬ Exitin then
23: a(i)k = [(x, y), j]∗(i,k) update strategy to the optimal decision.
24: end if
25: end for
26: Exitin = check convergence of inner game
27: end while
28: Update Nj,k from a(1)k , . . . , a

(N )
k

29: end for
30: Convergedout = check convergence of outer game
31: end while

game. Since the algorithm is a variant of JSFP, it can be
proved that the algorithmwith inertia almost surely converges
to a pure strategy Nash equilibrium.
Theorem 1: Algorithm 1 with α ∈ (0, 1) and β ∈ (0, 1)

almost surely converges to a pure strategy Nash equilib-
rium of the potential game in Lemma 2, with consistent tie-
breaking in all the argmax operations involved in the process.

We provide a proof of Theorem 1 in the Appendix. The
structure of Algorithm 1 is similar to fading memory JSFP
with inertia, because the utility values are not stored through
an outer loop. The utility ū(i,j)k is initialized to a zero vector
every time an inner loop ends. Therefore, we will prove Theo-
rem 1 by following a structure in [29, Proof of Theorem 3.1].

C. CALCULATION OF UTILITY FUNCTIONS
This section explains how to compute the utility values in
Algorithm 1 and analyzes its computation cost. In the pre-
vious section, the local utility function for a multi-target

tracking problem is defined as (17). When the dynamics and
measurement models are linear and Gaussian, the mutual
information objective of a normal distribution relates to its
covariance matrix only.

I(x(j)K ; z
(i,j)
k |Z

(j)
−[i,k])

= H(z(i,j)k |Z
(j)
−[i,k])−H(z(i,j)k |x

(j)
K , Z

(j)
−[i,k])

=
1
2
log

(∣∣∣P(z(i,j)k |Z
(j)
−[i,k])

∣∣∣)
−

1
2
log

(∣∣∣P(z(i,j)k |x
(j)
K , Z

(j)
−[i,k])

∣∣∣) (19)

where P(z(i,j)k |Z
(j)
−[i,k]) and P(z

(i,j)
k |x

(j)
K , Z

(j)
−[i,k]) represent the

conditional covariancematrices of z(i,j)k conditioned on Z (j)
−[i,k]

and additional x(j)K , respectively. When P(x, z) represents
the covariance between x and z, the conditional covariance
matrix for a Gaussian can be computed as

P(x|z) = P(x)− P(x, z)P−1(x)P(z, x). (20)
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From the above equation, we need the covariance matrix
relating three variables x(j)K , z(i,j)k and Z (j)

−[i,k] to compute the

utility (19). Here, x(j)K represents the a priori state estimate
predicted at the planning time, then

x(j)K = x(j)K |0 = F (j)
K x(j)0

For notational simplicity, we will omit the superscript (j)
specifying the target in this section, then all the variables
here are for the single target j. Likewise, the measurement
variables to be taken at time step k are induced from the a pri-
ori estimate x(j)k|0. From target dynamics (1) and measurement
model

xk = xk|0 = Fkx0 + wk
z(i)k = h(xk|0, x

(i)
k )+ v(i)k

The measurement noise v(i)k is a zero mean uncorrelated
Gaussian process with covariance R(i)k and is uncorrelated
with any other sensor noise as well as the state variables and
the process noise. The covariance matrices are computed as
follows,

P(xk , xk ) = FkP0F ′k + Qk for k ∈ K

P(z(i)k , z
(i)
k ) = H (i)

k P(xk , xk )H
(i)
k
′

+ R(i)k for k ∈ K
P(z(i)k , xK ) = H (i)

k P(xk , xk )F
′
K−k

P(z(i)k , z
(i)
l ) = H (i)

k P(xk , xk )F
′
l−kH

(i)
l
′

for l < k

where Fl−k is the system transition matrix from time step k
to l as defined in (2) with appropriate time interval between
two time steps. The elements in the covariance matrix related
to the target states P(xk , xk ) can be obtained prior to exe-
cuting the learning algorithm for solving the potential game.
Predicting the covariance matrices of the target states from
k = 1 to k = K requires O(K ). There are two types of
the measurement variables in (19). While z(i,j)k is the mea-
surements for a sensing candidate at the current game, Z (j)

−[i,k]
are the measurement variables selected in the previous game.
Before starting each game in a repeated game, the terms
related to the measurement variables can be computed and
the resulting conditional covariance matrix P(z(i,j)k |Z

(j)
−[i,k])

and P(z(i,j)k |x
(j)
K , Z

(j)
−[i,k]) are obtained. The maximum size of

Z (j)
−[i,k] is (N−1)(K−1). Since inversion of a n×n symmetric

positive matrix requires O(n3) flops and a determinant com-
putation using Cholesky factorization needsO(n3) flops [41],
the resulting computation time for obtaining a set of utility
values of one agent is O(N 3 K 3) + O(L). After obtaining
the conditional matrix, computing each utility value requires
constant time, resulting in O(L) because the size of z(i,j)k is
constant (2 for this scenario). In a repeated game, the pre-
diction of the target states is done once, on the other hand,
the conditional covariance matrix is computed for every game
step. Therefore, the overall computing time is approximated
as O(N 3 K 3) if L is fixed. Compared with myopic planning
(K = 1), the calculation time increases polynomially to the
length of the time horizon.

V. NUMERICAL SIMULATIONS
To compare the performance of a new algorithm with a
greedy method, a scenario with sensor holes is presented.
There are five targets moving on the ground. The map size is
approximately 600× 600. Three of the targets move straight
with nearly constant velocity and change their speed sign
when the target crosses the map boundary. The remaining
two targets are modeled as Dubins vehicles that have a fixed
forward velocity with a bounded turning radius. One example
of this scenario is shown in Fig. 5 (red, green, blue: nearly
constant velocity model. magenta, yellow: Dubins vehicles).
The reason for there being two types of target movement is
to see the performance difference between a well predicted
model and a poorly matched model. A multi-step lookahead
sensor planning is expected to outperform short-term meth-
ods in situationswhere the dynamics of targets are predictably
changing, but to give poor performance in cases where the
dynamic model is not matched to a real target dynamics.
A target model applied to EKF is close to a nearly constant
velocity model, while Dubins vehicles do not fit into that
dynamics.

FIGURE 5. One example of a multi-target tracking scenario, in which (red,
green, and blue) squares move in nearly constant velocity and the other
two squares follow Dubins vehicle model.

For sensor platforms, we consider a set of quadrotors mov-
ing at different heights from each other to alleviate collision
avoidance constraints. In a scenario for simulation, there are
three platforms, each of which is equipped with one radar-
like sensor. The sensors are mounted at a slight angle to
look down. The standard deviations of measurement noise
are depicted in Fig. 6, in which a sensor is located 500 high
from the ground and (x, y) = (0, 0). Figure 7 depicts the
mutual information that can be obtained when a ground target
is located with respect to the sensor. The coordinates of
the sensor are (0, 0), and the sensor is oriented towards the
positive x-axis, as shown in Fig. 6.

The proposed non-myopic planning is realized in two ways
as [16]. The first is open-loop planning (OL), in which the
planning is performed after all the planned decisions are
exhausted. The second is open-loop feedback (OLF), which
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FIGURE 6. Measurement error term of a radar-like sensor. A sensor
locates at (0,0, 490) and points to the positive x-axis slightly looking
down.

FIGURE 7. Mutual information with varying target location on the ground.

is the same as rolling horizon planning. In OLF, the forepart
part of decisions is executed, and then a new plan for the
followingK steps is generated, having updated the covariance
matrices and the state variables. To overcome the sensor hole
problem and prevent the divergence of the filter, the decisions
are made every two time steps and take the measurement
of the same target as the previous one in the intermediate
time step. Thus, K = 2 corresponds to myopic planning,
which finds the optimal sensing actions in two steps and
the same target is observed for two steps. We ran 100 sim-
ulations using both non-myopic planning schemes. For each
run, the states of targets and the positions of the sensors
were randomly initialized. Figures 8 and 9 present a compar-
ison between myopic planning and two different non-myopic
planning methods. As expected, when the target dynamics
predicted the real target movements well, the performance

FIGURE 8. Comparison of the RMSE of the target position for nearly
constant velocity target.

FIGURE 9. Comparison of the RMSE of the target position for Dubins
vehicle target.

of non-myopic planning was better than myopic planning
(See Fig. 8). On the other hand, when the dynamic model for
the target state does not fit into the actual movement of the
target, non-myopic planning (OL) gives poorer performance
(See Fig. 9) than a greedy method. However, the open-loop
feedback planning overcomes the nonlinearity of the target
dynamics and gives the best performance of all the planning
methods.

VI. CONCLUSIONS
In this paper, we investigated a potential game approach
to long-term sensor network planning. Since a non-myopic
optimization problem requires an exponentially increasing
computation time as the length of the planning time horizon
increases, a player for a potential game is needed to be defined
differently from the myopic case in order to keep the size of a
problem manageable. Accordingly, a new learning algorithm
was proposed combining dynamic programming and JSFP.
To demonstrate the performance of the non-myopic plan-
ning method, we considered a multi-target tracking problem
involving sensor holes due to the constrained mobility of
platforms and limitations on sensor visibility. The numer-
ical simulations showed the effectiveness of the proposed
approach and the conditions in which non-myopic planning
gives better performance than myopic planning.

APPENDIX
PROOF OF THEOREM 1
According to [29], for the proof of convergence it is sufficient
to show that there exists a non-zero probability, ε∗ > 0, such
that the probability of convergence to an equilibrium by finite
time t∗ is at least ε∗. Since ε∗ does not depend on stage t
of a learning, this will imply that the action profile almost
certainly converges to an equilibrium.

In [29], the proof of fadingmemory JSFPwith inertia relies
on the fact that if the current action profile is repeated a
sufficient number of times (finite and independent of time)
then a best response to the empirical frequencies becomes
equivalent to a best response to the current action profile and
hence will increase the potential provided that there is only
a unique deviator. This will always happen with at least a
fixed (time independent) probability because of the inertia.
The outer loop of the proposed learning algorithm considers
the most recent information only. That is, the outer structure
of the learning rule is fading JSFP with inertia considering
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the immediately previous decisions only. Thus, an outer loop
with the same action profile does not need to be repeated.
If there is a probability that one player changes its decision
unilaterally to optimize its decision, the proof will be com-
pleted. Due to the parameter β and the inertia term α of JSFP
in an inner loop, this unilateral best response will always
happen with at least a fixed probability. Thus, the iterative
procedure is proven to converge to a pure strategy Nash
equilibrium almost surely as in [29, Proof of Theorem 3.1].
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