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ABSTRACT Doris, the social robot girl, is under development to be employed in museums and trade fairs as
a tour guide. External sensorial information must be inputted so that Doris moves around each new location
by using landmark identification points that can improve the real localization of the robot in combination with
an extended Kalman filter. Doris is equipped with a semantic map that contains several information points
such as the building structure, sites that the robot must pass, features (obstacles) of the built environment,
and landmark locations. Three additional sensors were installed on Doris: a laser range finder LMS-200,
an omnidirectional Mobotix C25 camera, and an RFID system Speedway Revolution 220 by Impinj. The
use of these sensors implies the use of different types of landmarks: 35-cm-high circular landmarks, placed
on the ground and covered with a reflective laser-detectable material; markers similar to QR codes placed at
250 cm above the ground level that the omnidirectional camera can identify; and RFID detectable dogbone
antennas. One contribution is to prove a simple methodology of localization by using sensor fusion with a
semantic map, without mapping the whole environment by creating a point cloud map and without using the
SLAM technique. Additionally, another contribution for the research is to define a good methodology for
a precise sensors calibration. The initial results showed that each sensor functions efficiently, when using
only the laser and the camera, due to the low accuracy of the RFID system alone. The final results show
the behavior of the robot localization in the presence of people and different objects when both sensors
are working at the same time. Occlusions may affect the reflective landmarks or visual markers. Therefore,
the sensor fusion is implemented to achieve better robustness in the location estimation.

INDEX TERMS State estimation, extended Kalman filter, indoor localization, sensor fusion, laser localiza-

tion, visual localization, RFID localization, social robotics.

I. INTRODUCTION

The presence of people, sculptures, counters, and paintings,
among other factors mean that museums and trade fairs are
very complex environments. Robot localization is therefore
essential for any high-level task that it might perform in
that kind of environment. Many studies have been aimed
at achieving dependable indoor localization of robots. The
study presented by [1] implemented a sensor fusion with
a sonar sensor and a Microsoft Kinect for acquiring depth
information. Another, in [2], described a robust Multi-sensor
fusion localization for indoor mobile robots. It was based
on a set-membership estimator, developed by fusing a laser
scanner and an odometer, using a point-to-line iterative clos-
est point approach, to match successive environmental data

collected by the laser scanner, with which the relative pose
transformations of the robot were estimated. A further sensor
fusion technique, in [3], proposed a 3D mobile pose esti-
mation system for indoor application, based on the cooper-
ative sensor fusion of radar, ultrasonic, and odometrical data,
using an extended Kalman Filter, determining a position error
of 15¢m. Similar work was performed in [4], this time using
an Ultra-Wideband (UWB), Indoor Positioning System (IPS)
and an Inertial Navigation System (INS) achieving real-time
indoor navigation and tracking of automated guided vehi-
cles (AGVs) and mobile robots in factories and warehouses.
The sensor fusion algorithm developed in this contribution
consisted of delayed compensation, based on the position
estimation from the IPS, and a multi-rate extended Kalman
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Filter that combined the delay-compensated position from
the IPS and the measurements from the INS. The UWB
was used to validate the sensor fusion approach, achieving
a position error standard deviation of 3.7c¢m for linear move-
ments and 1.7 degrees for rotational movements. A confer-
ence paper reported a further work that described a sensor
fusion system using odometry and magnetic sensor data for
an indoor localization system [5] with the odometry based
on the Ackerman steering geometry, and directly calculated
from encoder information on two rear wheels and a third
wheel for steering. The sensor data fusion was performed
with an Unscented Kalman Filter, so that the mean and covari-
ance of the nonlinear system function could be estimated
by the Unscented Transformation. A very recent study has
been developed in [6], which proposes a geometric feature-
based method to solve a Simultaneous Localization And
Mapping (SLAM) problem in an unknown structured envi-
ronment using a Kinect sensor for short range and low Field
of View (FoV) measurement. The RANSAC algorithm and a
fast SLAM were used for detection and mapping, resulting in
an uncertainty reduction of the robot pose in the prediction
step that improved pose accuracy where data on geometric
features were available. Other work performed by [7] using a
Kinect and two other sensors achieved good results by using
the WiFi signal for large open areas, and the depth camera and
laser for corridors and offices. Reference [8] fused sonar with
odometry and the use of particle filter for final localization.
Studies in external environments also perform a sensor fusion
like in [9] fusing the information provided by a GPS with
odometry through an EkKF.

Studies by the Intelligent Control Group of the Centre of
Automation and Robotics of the UPM-CSIC were performed
on sensor fusion, such as [10], which solves the SLAM
problem by using the extended Kalman Filter to describe the
problems and to find solutions for mapping large environ-
ments with excellent results. The same author proposed an
efficient geometric approach for Simultaneous Localization
And Mapping (SLAM) based on an extended Kalman Filter
in [11], where maps are built using orthogonal shape con-
straints to process inconsistent estimations.

Some years later, the FastSlam, an upgrade to the SLAM
problem, was presented in [12] and successfully applied to the
construction of feature-based maps in indoor environments.
In the same year, [13] used B-Splines as a modeling tool and
the set of control points defining their shapes was used to form
a complete and compact description of the environment, mak-
ing it feasible to use an extended Kalman-Filter-based SLAM
algorithm. Other SLAM research was performed in [14],
by introducing a priori knowledge on the latent structure of
the environment in SLAM, which can improve the quality
and consistency of results and their solutions. It described a
general framework for detection, evaluation, incorporation,
and removal of structural constraints into a graph formulation
of SLAM. The study explained how the inclusion of different
kinds and levels of features in a hierarchical order permits the
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system to discover new structures easily and explains why it
makes more sense than other possible representations.

Localization based on Wireless Networks is attributed
high importance in recent research, among which the most
common system is Radio Frequency Identification (RFID).
Different approaches have been developed, such as [15]
that introduces a positioning algorithm for RFID tags using
two mobile readers that process passive or active tags with
randomly distributed known locations. The location was esti-
mated using multilateration with the landmarks and a prob-
abilistic RFID map-based technique with Kalman Filtering.
Another study was developed by [16], which examines Direc-
tion Of Arrival (DOA) estimation methods and their appli-
cation to localization and tracking problems of RFID tags.
A subsequent RFID positioning system was implemented
by [17], based on an object carrying an RFID reader module
that reads low-cost passive tags installed next to the object
path and that uses a Kalman Filter, the measurements of
which are the backscattered signal power propagated from
the nearest RFID tag and a tag-path position database. The
algorithm is used to produce an estimate of the location of
the reader, neglecting tag-reader angle-path loss, where it is
compensated by the signal strength information measurement
that is received.

The study presented by [18] described the fusion between
an RFID System and an ultrasonic sensor that removed the
uncertainties of the RFID system. Reference [19] and that
was designed to achieve a fast and robust environment for
RFID distance estimation by using phase and Received Signal
Strength Indicator (RSSI) measurement to estimate distance.
More recent research performed in [20] proposed a hybrid
multi-sensor fusion strategy for positioning in tunnels where
an RFID system was used to achieve a preliminary position,
by using the RSSI to estimate distances between the reader
and the tags. It then used a Least Mean Square (LMS) fed-
erated filter for subsequent global fusion. In [21], a particle
filter, laser-based clustering, and an RFID system were used
to improve the localization of moving objects by achieving
an accuracy of up to 25cm.

The main aim of this research is to provide Doris, the social
robot, with a multi-sensor architecture based on Laser Range
Finder LMS-200, an omnidirectional camera Mobotix C25,
and a RFID system Speedway Revolution 220 by Impinj,
to complement the internal odometry of the robot. The robot
also has an Extended Kalman Filter that will achieve depend-
able localization with the sensor fusion in built environments
such as museums. To that end, Doris will be provided with
a semantic map to inform it of the basic structure of the
building around which it will move. This map is constructed
in XML containing some semantic information and the loca-
tions of the sensor detectable landmarks. These landmarks
were strategically located in the areas where the robot cir-
culated. Three types of landmarks were considered: the first
type was detected by LRF, the second type are the markers
that will be seen and decoded by the omnidirectional camera,
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and the the tags represent the third type that will be detected
by the RFID System.

The benefits and disadvantages of each sensor will be
discussed and a procedure will be explained for the estimation
of the standard deviation for each variable of each sensor
and its integration in the EKF to achieve good convergence.
A primary study was done at [22] where the tests were per-
formed in a simple environment with no people and no objects
around. This study makes deeper exploration in the technique
used by describing a procedure to obtain a good approxima-
tion of covariances matrices involved (process and sensors).
This work also adds a new sensor and explains why RFID
System is not very useful for localization tasks comparing it
to the UltraWide Band System and a new test is developed
in a much complex environment with presence of objects
and people moving around. The structure of the paper is as
follows. In section II a brief explanation of Doris’ architecture
will be explained, detailing how the modules are connected to
each other, to perform several tasks. Section III will explain
how distance or angular information is obtained from each
sensor, so that the estimation error can be also calculated in
section I'V. In section V, the fusion of sensor information with
the EKF will be explained through an example, and finally,
in section VI, the performance of the robot will be detailed in
evaluation tests at the Higher Technical School of Industrial
Engineering of Madrid.

Il. DORIS, THE SOCIAL ROBOT GIRL
Doris is a mobile robot conceived to work in a dynamic indoor
environments for interacting with people. It builds on the
upgrading of Blacky and Urbano, the two previous robots that
the group at CAR has been developing over recent years at the
Universidad Politécnica de Madrid.

As stated, Doris is expected to work in a system where she
interacts with people in public buildings such as museums,
theaters, conferences, trade fairs, etc

A. HARDWARE ARCHITECTURE
The hardware consists of three parts:

. The platform, designed by Adept MobileRobots,
is a differential steer mobile robot, which has built-
in sensors (bumpers, sonars, and laser), all con-
nected to the serial port of the internal computer.
This computer has USB ports, ethernet and a WIFI
connection. Figure 1a shows the platform.

° The skeleton, attached to the mobile platform, made
of methacrylate, holds up speakers, the RFID anten-
nas, a USB HUB, a PoE switch and the robotic
head. The torso, is designed to represent a human
appearance. In the future, an arm will be attached
to develop pick and place tasks.

° The robot user can select different expressions that
the head, attached to the skeleton, with 20 DoF
will show. The robot is also speech capable and
its mouth will synchronize with the sound that is
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FIGURE 1. Doris hardware overview. (a) Platform. (b) Body. (c) Face.

FIGURE 2. Software architecture of Doris.

emitted; a combination known as viseme-based
acoustic speech, that is shown in figure 1c
The information gathered from all sensors, is used for indoor
localization. The joint sensor operation will be detailed in
section II-B and in section V-C.

B. SOFTWARE ARCHITECTURE

The software works as a Client-Server application, enabling
direct communication between Doris (server) and the (client)
that controls it. Nowadays, there are three different types
of client applications for Doris: Web, Desktop, and Mobile
devices. The server application is divided into four layers
detailed in figure 2. Each block on the figure details a task,
that is asynchronously under execution on a different thread,
which means that in the higher level of the architecture, there
is a task handler.

« Hardware Layer: starts connections with different
devices installed on the platform (encoders, bumpers,
sonars, cameras, laser, etc), as well as with USB and eth-
ernet devices, at a level with permissions for read/write
data provided by superior levels. e.g. the robot position,
the speed at which the robot must move, etc.

o Logic Layer: at this level, data sent from first layer
are processed, for later use by the immediate superior
layer, e.g. data from encoders is translated into differen-
tial polar coordinates [Ap (k) A¢ (k)]T for odometry,
and then by using the state space equation 27 can be
converted into an oriented position [x (k) y (k) 6 (k)]”.
All of the modules in this layer are threads that are
launched since the application is executed, for example:
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R-Marker is a thread dedicated to detect the reflective
landmarks, the V-Markers is other thread detecting the
visual markers, and the RF-Tag detection, is a thread for
detecting the RFID tags.

It also turns on the server communications with a net-
worked camera and an RF device.

o Link Layer: instructions for robotic movements are
generated at this level of Doris’ programming. The local-
ization task that takes place on this layer processes data
from the logic layer, by using odometrical information
and data from sensor detector tasks. Emotion and expres-
sive tasks are also performed, where they can command
the face and/or the arm. A movement monitor is also
included to supervise which actions Doris must perform
depending on the localization.

o User Layer: Client communications are performed at
the user layer along with database loading and the nav-
igational commands are inputted by the user. Doris can
manage up to ten users at the same time, but only one
can have full access to perform tasks.

IIl. OBTAINING SENSOR INFORMATION

As shown in section I, there are several studies in which reli-
able accuracy of robot localization is achieved using different
types of sensors, searching for less expensive ones that can
perform rapid detection. Three different types of sensor are
installed in Doris. The RFID System, the omnidirectional
camera, and the laser range finder.

In this section, the method of obtaining data from the
sensors, by detecting their respective landmarks and their
location by either distance or angle from the robot, are pre-
sented.

A. RFID DETECTION

With regard to pose estimation using RFID, the most common
method is based on triangulation with the received signal
strength indicator (RSSI) as explained in [23], due to its low
cost and ubiquity, although those advantages do not imply
that it is the best approach to locate objects. RSSI measure-
ments involve high uncertainty margins, according to [24]
achieving a mean error from 2.9m to 4.3m on a floor area
of 980m?2. The most notable contribution was made by [25]
in which a tag position error of 1.08m was achieved within a
limited space.

Other application can be found in [26] which places each
the RFID tag on the floor in a fixed and constant distance
respect to each other creating a tag matrix and places the
reader beneath the robot in order to detect each tag and this
fixes the robot position in X (k) and Y (k) and the robot
orientation is fixed by using a camera and detecting QR
codes.

The applications on guiding robots using RFID systems
in narrow areas (through hallways or negotiating a door) are
really low, so a certain degree of precision is needed that is
not provided by this type of system, but it can be useful for
other localization tasks as global positioning.
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FIGURE 3. RFID System installed on Doris. (a) Antenna. (b) Impinj
R220 Reader. (c) RFID tag dogbone.

The RFID Impinj R220 reader system (figure 3a) installed
in Doris has two right circular polarity antenna S8658PR (fig-
ure 3b), from which three different measures can be obtained:

1) RSSI: Received Signal Strength Indicator, which pro-
vides an estimate of the tag backscatter signal power
received Pg in Watts with an RFID reader [27] by using
the Friis equation:

G%*)ﬂ*a
= — %k
(4xm)3 « R4

Pr Pr (H
where:
Pr is the reader transmitter power at the transmit
antenna input (Watts).
Gr is the reader antenna gain.
A is the carrier wavelength (m), which can be estimated
as: A = fg where, c is the speed of the electromagnetic
wave and f is the operational frequency of the antenna.
o is the Tag Radar Cross Section (m?), computed as
Gf:f, where G, is the antenna receiver gain.
R is the distance between reader and tag (m).
2) RF phase angle: represents the phase rotation angle
over distance [27], which the reader obtains by using
the following formula:

o =

2%R
9=2*n*(T>+9T—|—9R+9TAG )

where, 07, Og, O14c are the phase angle rotations of
the transmitter circuit, the receiver circuit, and the tag
reflection characteristic, respectively.

As the phase is a periodic function with a period of 2
radians, the values will repeat at distances separated by
multipliers of half a wavelength: R, = % where, n =
0,1,2,..

3) Doppler Frequency: is the shift of the received signal
at the reader, due to relative motion between the reader
and the tag. This feature is helpful for determining the
tags that are in motion. This feature will be used for
future applications.

Both, RSSI and RF Phase provide information on the distance
by computing the equation based on the information from the
reader obtained from both (1) and (2):

J Gr*22x0
R=, |——————xPr 3)
(4 xm)” * Pp
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TABLE 1. OpenRTLS UWB price.

Quantity Description Price Unit (€) Subtotal (€)
1 Master anchor 220 220
10 Anchors 220 2200
1 Tag 65 65
1 SDK 100 100
1 Switch 80 80
100 Wiring 3 300
Total: 2965

where, the antenna operates at a frequency of 865.9 MHz,
resulting in a wavelength of A = 0.3464m and the transmitter
and receiver gain are also fixed values.

R=(0 —06rr) %

4xm @
where, 677 is the total phase rotation of 61 + 6g + 674G to be
determined in section IV-B.

The Ultra Wide-Band range measurement (UWB) is a
radio technology similar to the RFID system which operates
at higher frequencies. Nevertheless, it was not considered
during the selection process due to the high price it has when
compared to the RFID System. Although it is well known
that it has a good accuracy for tags position estimation and
this could be useful for localization of the robots, some issues
must be considered:

1) Three anchors (antennas) minimum in each room are
needed to achieve a good tag localization.

2) As stated, Doris is intended to work in a complex
environment like a museum as a tour-guide, and it will
be very difficult to install UWB anchors at these places.

3) Supposing that museums are in the will to install the
anchors, another problem may arise because the radio
frequency wave of the anchors can penetrate thin walls
and some museum have very thick walls and depending
on the area of the room, extra anchors might be needed.

4) Costs increase when more anchors are added and a
whole UWB system would be very expensive. Table 1
shows the costs of installing an UWB network.

This table shows the price of an UWB network provided by
OpenRTLS and using 11 anchors in an area of 10mx10m,
with the purpose to achieve a precise localization of the
robot. Compared to the RFID system where antennas can be
installed on the robot and tags can be sticked to the walls,
the cost of the UWB System is a lot higher.

B. VISUAL DETECTION

Visual detection has been used in mobile robots like used
in [28] and [29] which uses a set of QR codes creating a
matrix and covering the entire floor to achieve the robot
orientation and [30] which is similar to the previous but the
camera points to the ceiling instead. The sensor installed on
the robot platform is an omnidirectional camera and the fidu-
cial markers are placed on the walls with certain distribution
along the room where the robot is going to perform. The
reason for installing this type of camera is to provide Doris
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FIGURE 4. Omnidirectional camera C25 by Mobotix.

FIGURE 5. Example of a visual landmark.

with a 360 degree field of view, so it can see the whole room
and can pick up markers from all directions; for example,
in a museum with halls of different sizes. The model used is
the Mobotix C25 hemispheric camera, as shown in figure 4.
This is an indoor ceiling camera with a diameter of 12cm
and a weight of 200g. It includes a light-sensitive 6MP day
and night sensor and is powered and communicates via the
ethernet.

The camera offers different types of display modes of
different quality and resolution. In this case, only the full view
is used at a resolution of 1280x 960 pixels.

The main goal is to recognize and to estimate the angle
of the visual markers. These markers are a QR binary code
containing information represented in a 5 x 5 matrix. This
information contains the landmark orientation as well as the
map, sector and landmark Id’s. The appearance of the marker
is in figure 5, printed over an A3 paper size. This code is
robust against rotation and perspective views. The markers
are located over the wall at 2.5 m above ground level, consid-
ering the height of the robot that is +1.45 m.

So the problem of locating the robot by using visual land-
marks in large areas concerns only the determination of its
angle from the center of the camera lens to the center of the
marker. This problem can be solved by using OpenCYV library,
following the steps listed below:

1) Capture a frame from the scene, as shown in figure 6a.
2) The captured frame is converted to grayscale, as in
figure 6b.

78951



IEEE Access

B. P. E. Alvarado Vasquez et al.: Sensor Fusion for Tour-Guide Robot Localization

(a) (b)

© (d)

(e)

FIGURE 6. Images obtained in the treatment process. (a) Full color scene.
(b) Captured scene converted to grayscale. (c) Grayscale thresholded
according to environment. (d) Contours detected matching criteria.

(e) Markers detected.

3) Image binarization. Due to different light conditions,
the adaptive threshold is chosen for a fixed image so
that it is homogenous, which requires two different
values: a pixel size, which is invariant between images,
and an index obtained by analyzing the histogram with
which the mean intensity value is set.

4) Contour detection. The binary image is submitted to
find all available contours by retrieving a vector of
points. This contour is stored in another vector of con-
tours, only if the contour size is higher or equal than a
predefined number of points, which in this case is set
at 50 points. This value is used for contours that might
be too small to be studied and are considered as noise.
Figure 6d shows the contours detected in the scene.

5) Possible marker detection. Consisting of selecting only
those contours which are a convex polygon with only
4 sides and discarding everything else. At this point,
a list of possible markers is created and refined by
keeping only those that match a square or a rectangle.

6) Real marker selection and decoding. As the algorithm
must be robust for rotations and transformations of the
possible marker that is detected, the perspective trans-
form must be calculated for each one. A transformation
that is done by using four pairs of the corresponding
points in a real scene. Once the perspective transforma-
tional matrix is estimated, a perspective transformation
to the image is applied, and the resulting image is sent
for decoding.

As the image contains only black and white cells of
a known size, the decoding first consists of building
a bitmap based on the information obtained by the
image. As it is a binary image, the non-zero counting
for each cell is performed to establish every bit, and
by applying the Hamming distance, the marker can

78952

FIGURE 7. Reflective landmark designed by the group.

be recognized and the associated information can be
obtained. After the perspective correction, the image
can be in 4 positions and the Hamming distance of each
one is tested. The zero distance will be chosen as the
winning rotation, obtaining a code from the marker, and
searching for it in a database that yields a reference for
global positioning.

7) Angle estimation. Considering that the camera offers a
circular (somewhat similar to fish-eye) image, the angle
estimation is done through only one calculation:

YlmageCenler — YMarkerCenter ) v

—1
¢ = tan ( R ®))
XImageCenler - XMarkerCenter 2

As the figure 6e shows, after applying the previous
steps, the markers are detected. As the camera is con-
nected to other computer where the image processing
is executed, processing 20 frames per seconds. Then
the data is transmitted to the onboard computer every
10 ms via UDP socket.

C. REFLECTIVE LANDMARKS DETECTION

Laser technology is widely used in robotics, especially for
map design using the SLAM algorithm. It is only used for
landmark detection in this study with some specifications.
These landmarks have a circular shaped reflective cover and
were designed ad hoc.

One function of the laser is to add certain properties to
each measurement; for example, the reflection intensity when
the beam strikes a reflective surface. Taking advantage of
this property, each landmark was provided with its respective
reflective material.

The reason for their circular shape is because a planar
landmark with the same reflective material in earlier tests
could only be detected by the laser when the beam struck right
in front of the landmark, otherwise, the beam would bounce
to another direction and would not return to the laser. Figure 7
shows the prototype of the landmark design. Landmarks are
designed to be positioned next to walls, hence their limitation
to only 180 degrees.

It is assumed that the center of the reflective landmark may
be located with maximum precision where it is a perfect cylin-
der of a known radius (r = 0.045m). The SICK laser adds
a reflective intensity to each of the 361 measurements and
identifies the landmarks. More than one intensity can belong
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(@) (b)

FIGURE 8. Measurement representation obtained by the laser. (a) Ideal
laser behavior. (b) Real laser behavior.

to the same landmark. Hence, a classification condition must
be implemented, in order to obtain the number of landmarks
detected by the laser. First, only those measurements are
selected that are of a higher intensity than zero. The condition
for classification with the resulting vector of indices is as
follows:

1 [i] — I [i + 1] < Threshold ©6)

where, II is the intensity index, meaning that the difference
between two consecutive indices is lower than the threshold
it will classify as the same landmark. Once the set of points
associated for each landmark is obtained, the aim is then to
obtain the landmark center. This point can be estimated by
applying the Law of Sines and an iterative minimum squared
error estimation for the error correction. So the aforemen-
tioned Law of Sines is used as an observation model.

Each measurement obtained by the laser contains the dis-
tance and the angle to the point represented as [p(k) ¢(k)]T,
and a set of these consecutive points represents a single
landmark, so that for the i-th landmark, there are n points that
represent its circumference, where n > 2.

G

#1 (k)

py (k)
¢} (k) )

B (k)
| ¢, (k)
and the resulting mean with the radius added to the distance,
for each landmark is expressed as:

pik) + ri|
o 8

[ F(k) ®
The Law of Sines is used as the observational model for the

iterative minimum squared error estimation that is expressed
as:

r R ON (k) + 1)
sin(i(k) — gi(k))  sine) ~ sin(r — o — Gi(k) + (k)
©)
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FIGURE 9. Estimation model for landmark center.

Therefore, the distance estimation measured by the laser, for
each j-th measure, is defined by:

hj, p'(k), ¢'(K)) -
= pj(k) = 5'(k) - cos(@' (k) — ¢j(k))

e
—7-cos (sin_1 (@ -sin(@'(k) — ¢;(k)))) (10
Figure 9 explains the notation of equation 10, showing the
correspondence of each variable involved. So, the value p}(k)
given by laser should be the sum of the estimation plus a
random error w(k), which will be considered with zero mean
and R(k) as variance, which reduces the observation model
to:

pj(k) = pj(k) + w(k) = h(j, p'(k), ' (k)) + w(k) (11)

Using equation 10, the Jacobian matrix is computed as
shown in equations 12, 13 and 14:

Higy = | 2B O 12
©=[5 ) (2
dh Zi i ~j Zi i 2
5y = SO0 — 400 + 50 (cos(@k) - ¢ik)
» I
-r (13)
k) (cos(@i—4j)
-2 T
doh ~i < i ~i\2 vt
Gg = ~P0 - Sin@E) = 9J(0) + (B -sin(@ (k)
— ¢i(k))cos(¢' (k) — (k)
. ! (14)
i) (cos@i—4j)
1— e — J

By applying these equations to each j-th of the n measure-
ment obtained by the laser, a least square method is applied
for final correction. Two matrices are used to the achieve a
good solution, one of them is the P/(k), which indicates the
truthfulness of the estimation and a gain matrix Wi(k), which
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is a estimated by using the laser covariance R (k), the position
covariance P! (k), and the H' (k).

As previously mentioned, the laser error must be inserted,
to build the gain Matrix W'(k), which generates a diagonal
matrix R(k), x, with the typical deviation given by the laser
provider: equal to 0.0032.

0.0032 0 e 0
0 0.0032
R(k) = (15)
0 e 0 0.0032

This result yields a covariance matrix of the observations that
is estimated as:

S'(k)=H (k) -P' (k) -H (k)" + R (k) (16)
Having the following gain matrix:
W (k) =P (k) -H ()" -S" (k)" (17)

And naming innovation array v'(k), as the difference between
measurements obtained by the laser and those obtained by the
observation model:

i (k)] P} (k)
; p;(k) (k)
vi(k) = : - . (18)
AT I AT
The final correction is expressed by:
PR _[A®T | winn i
|:q3i(k)] = |:q3i(k)_ + W'(k) - v'(k) (19)

This procedure allows to obtain up to 6 landmarks each 10 ms.

IV. SENSORS ERROR ESTIMATION

The measurement error must first be computed, before start-
ing to work with the inner odometry of the robot, the RFIDs,
the laser, and the camera. This error, present in every single
measurement, is denoted as white noise, and is time variant.
The aim of these experiments is to achieve a Gaussian distri-
bution from all sensors for each variable, both in distance and
in angle; in other words, the uncertainty of each measurement
will be computed.

A. ODOMETRY STANDARD DEVIATION
The robot drive system uses high-speed, high-torque, brush-
less reversible-DC motors. Each drive motor includes a high-
resolution optical quadrature shaft encoder that provides
195 ticks per millimeter of wheel rotation for precise posi-
tion and speed sensing and advanced dead-reckoning [31].
Although this system might imply reliable robot odometry,
it still fails to yield the position estimation error, which has to
be used in the Kalman Filter as the process error Q (k).

This error term needs to be estimated, in order to be repre-
sented as a covariance matrix, where its principal diagonal
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TABLE 2. Process noise standard deviation.

Distance (m)
0.029444

Angle (rad)
0.04019

TABLE 3. Standard deviation of RSSI and RF Phase.

Description Min Max  Unit
RSSI 1 dB
RF Phase -0.1 0.1 rads

are the variances of the error in distance and yaw angle
(heading, 0) of the robot.

2
_( %ar 0
ow=(7 )

Doris was intended to move forward and backwards in any
direction and to spin in circles, to obtain the values of ajr
and Uezr- Every position reported by the robotic encoders was
registered in a file and the difference between the position
provided by the encoders versus the distance and angle mea-
sured with external sensors is taken as the error. When the
robot is moving forward or backwards it tends to lean to
the right, due to wheel pressure differences, adding a bias.
One thing to be considered is that the robot receives linear
and angular speed commands as inputs and the model in use
is referenced in drive and steer increments as inputs, so the
robots always moves at the same speed. The results are shown
in the table below:

(20)

0.000867
Q)= (—0.00049

B. RFID STANDARD DEVIATION

The RFID system can be powerful for many applications,
such as identifying people, logistic and supply chain visibil-
ity, race timing, access control, among others, yet it is not
very powerful for the purposes of localization. Designing a
Real-Time Location System (RTLS) using RFIDs is no easy
job. Environment and other effects assume an important place
when the reader estimates RSSI and phase angles. Propa-
gation effects such as absorption and scattering can reduce
the power observed at the reader receiver, as well as multi-
path propagation and undesired signals in the environment,
as mobile networks and Wi-Fi can combine with primary
backscatter, increasing or decreasing the RSSI value.

Phase angle is estimated by using the RSSI as a function
of the Signal to Noise Ratio (SNR), so the more noise energy
within the receiver bandwidth, the greater the phase standard
deviation. In addition, the reader receives signal processing
that introduces & radian ambiguity, so that the reported phase
can be the true phase (6) or the true phase plus & radians
O + 7).

According to [27], the standard deviation of the RSSI
System is:

These values were obtained from mean value over
1000 tags in an anechoic chamber. However, the robot will not

—0.00049> @

0.001616
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TABLE 4. Values of RSSI and distance in a complex environment.

Real RSSI Distance RSSI Distance
distance (m) Orad (dB) Orad(m) 7 rad(dB) 7 rad(m)
1.00 -37 0.929964 -47.5 1.702025
1.50 -46 1.561227 -53.5 2.404175
2.00 -40 1.965468 -59.5 3.395987
2.50 -43 1.351967 -53 2.335963
3.00 -56 2.776298 -64 4.400135
3.50 -56 2.776298 -61 3.702253
4.00 -63 4.275295 -57 2.940804

TABLE 5. RFID standard deviation.

Distance error @ % rad (dB)

0.892177

Distance error @ 0 rad(m)
0.496876

move around in anechoic spaces. The typical surroundings
will be, for example, in a museum where several people will
interact with Doris at different times. Moreover, objects from
a museum like sculptures will represent obstacles for the
robot, affecting every measurement taken by the RFID sys-
tem. The following table shows how this system works in an
indoor environment where the robot will perform, calculating
the distance from antenna to tag by using equation (1). Due
phase is a periodical function and given the great difficulty in
determining the distance from tag to reader by using only one
phase, the phase equation method was discarded:

Table 4 shows the real distance from the antenna to the tag
in the first column, the reported RSSI with the tag in front of
the antenna in the second column, where the phase is around
0 rads, and the RSSI value converted to distance in the third
column. Columns 4 and 5 are the same as the two previous
ones, but with the tag placed at 45 degrees from the antenna.
The results show that if the tag is placed right in front of
the antenna (Line of Sight), then the distance will be more
feasible, but with a small deviation from the center, the reader
will report a higher RSST and the distance will be erroneous.

As can be seen in previous table, the error is too high, added
to which the EKF will lead to undesired results and the phase
will be useless, because it will depend on the RSSI value.
Hence, the RFID system will be excluded from the localiza-
tion system and will not be used for future implementations.

C. LASER STANDARD DEVIATION

In section III-C, the operation of the laser range device was
briefly explained. However, its behavior tends to add uncer-
tainty to the measurement, for which reason a procedure was
followed to obtain the mean and variance values for distance
and angular uncertainty.

1) The robot was placed in an area where the landmarks
can be freely moved.

2) The area is approximately 1.6m wide and 4.0m heigh
and was divided into small areas of 0.16m>

3) A measurement was taken in four different orientations,
in order to estimate the distance and angle and to com-
pare them with the real measurements
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TABLE 6. Reflective landmark real position vs estimated position.

Real Real Estimated Estimated
distance (m) angle (rad) distance (m) angle (rad)
0.8944 0.4636 0.8957 0.4916
0.8000 0.0000 0.7948 -0.0038
0.8944 -0.4636 0.8844 -0.4886
1.2649 0.3217 1.2656 0.3272
1.2000 0.0000 1.1872 0.0002

TABLE 7. Reflective landmark errors at different distances.

Error Error
distance (m)  angle (rad)
-0.0013 -0.0279
0.0051 0.0038
0.0099 0.0250
-0.0007 -0.0054

0.0127 -0.0002

FIGURE 10. Real vs estimated position of reflective landmarks.

4) This procedure was repeated 25 times for each orienta-
tion.

A sample iteration is shown in the following table:

where, columns 1 and 2 are the real distance and angle
from the sensor to the landmark, columns 3 and 4 are the
estimated distance and angle provided by the laser. In table
7 columns 1 and 2 are the error between the real and the
estimated values. In figure 10 can be seen the previous table.
This experiment was performed up to Sm in x-coordinate and
Sm in y-coordinate, but only few results are shown in the
tables and the respective figure.

Where the green ‘0’ is the location of the robot, the red ‘x’
represent the real position of the landmark (columns 1 and
2 of table 6) and the blue ‘4’ the position estimated and fixed
by the detector explained in section III-C (columns 3 and 4 of
table 6).

as can be seen in table 7, the error is a random value. The
standard deviations for the resultant distance and angle are
shown in table 8:

0.000083 0 ) 22)

RG&+1) = < 0 0.000027
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TABLE 8. Reflective landmark standard deviation.

Distance (m)
0.00911

Angle (rad)
0.005196

FIGURE 11. Visual marker placed at zero degrees.

TABLE 9. Angle error at different distances.

Distance (cm) 0(rad) 7 (rad) 7 (rad) 37” (rad)
20 0.06088
40 0.06776  0.03297
60 0.05457  0.03258  0.07663  0.13908
80 0.05994  0.03031 0.07577  0.10758
100 0.0595  0.02915  0.05832  0.09835
120 0.06258  0.03183  0.07348  0.07687
140 0.06045  0.03431  0.06854  0.08102
160 0.06138  0.04255 0.05873  0.07578
180 0.06005 0.04744  0.06511 0.06926
200 0.05909  0.04658 0.06011  0.06911

The covariance between laser distance and angle is
around 10~7, which is practically negligible.

D. CAMERA STANDARD DEVIATION

Using a similar procedure as in IV-C, a marker that is 2.5m
above ground level (shown in figure 11) was placed at dif-
ferent positions and distances from the robot. The error of
different angles from the camera at different distances is
shown in the following table.

As can be seen in table 9, the error is higher when the
landmark is closer to the camera, which makes sense because
the closest marker to the camera has more pixel variations.
The standard deviations for each angle are shown in table 10
where the highest deviation for the EKF filter is selected by
the following equation:

Rk + 1) = (0.000457ad?) (23)
V. KALMAN FILTER AND INTEGRATION
Each sensor described above appears to work quite well
alone, but one of the main purposes of this research is to
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TABLE 10. Angle standard deviation.

0 (rad)
0.00339

% (rad)
0.00954

7 (rad)
0.00740

3T (rad)
0.02122

ensure that they all work in synergy with the odometry of the
robot by means of sensor fusion. One way to achieve this aim
is by using the Kalman Filter. As stated, the position of the
state vector of the robot is defined as:

x (k)

y (k)
0 (k)

x (k) = (24

The main idea is to minimize the odometrical error that can
be caused by cumulative errors in encoders, slippery wheels,
etc. An adaptation of the Kalman Filter can achieve this goal.

A. KALMAN FILTER

Proposed by [32], the filter consists of a set of mathematical
equations to arrive at an effective solution for the least squares
problem, making it robust and powerful, due to the fact that
it is based on past, present, and future data. It is summarized
in the form of a recursive least square algorithm for dynamic
systems.

The algorithm approaches the problem for state estimation
of a discrete lineal process through data sets which can have
noisy values. Based on this filter, other versions for nonlinear
systems are the Unscented Kalman Filter (UKF) and the
Extended Kalman Filter (EKF). The latter has been chosen
to be used in this research due to the computational cost
of the UKF. Although it is better for strong nonlinearities,
previous works in robot localization showed similar results
in practice [33], [34]. Regarding the use of the EKF instead
of a particle filter, the main reason for this choice is that the
designed landmarks are highly distinctive and data associa-
tion errors are not very likely.

The first step for the EKF is the prediction model:

x (k + 1k) = £k, x (k|k) ,u (k) + v (k))
X (k + 11k) = £ (k, X (k|k) , u (k))

(25)
(26)

Based on this equation, Doris uses the following values for
the prediction:

% (k + 1]k) % (kIK)
Fk+110) | = | 7kl
6k + 11k) 8 (klk)

Ap (k) cos <§ (klk) + A¢2(k)

+

Ap (k) sin (é (klk) +
A¢ (k)

Ag (k)>
2

27)

where, [Ap (k) A¢ (k)]T is the system input defined as
the drive Ap (k) and the incremental values of the steering
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encoders A¢ (k). And for upgrading the position uncertainty,
the following is used:
P(k+ 1k) = A ()P (k) AT (k) + G (k) Q (k) G” (k)
(28)
where, P (k|k) is the current state covariance matrix and Q (k)

is the process covariance matrix. A (k) and G (k) are the
Jacobian matrices that are computed as:

A (k) = Vi G k) = Vi (29)

yielding (30) and (31), as shown at the top of the next page:
The prediction of the observations and their covariance
matrix have to be computed:

z(k+1) =h(k+1,X(k+ 1]k)) (32)
Sk+1)=HMk+DPE+1KHH k+1)+Rk+1)

(33)
where, R(k + 1) is the measurement covariance matrix,

where every landmark is inputted with its Cartesian coordi-
nates in a database:
X
X7 = L
YL

so the observation is the relative position of the landmark with
respect to the robot, in other words, the model used in this case
is:

Z(k+1)
| pk+1
Tl k+1)
O = F K+ 110 + 0 — 5 (k + 116)°

= yL—y(k+1|k))_~
fan (u—xw+4m) o110

the matrix H (k 4+ 1) is the Jacobian matrix computed as
follows:

(34)

H(k + 1) = Vhggi1p

which is computed for each landmark in the database, result-
ing in (37), as shown at the top of the next page:

And the W (k + 1) which is the gain of the Kalman Filter,
is computed as:

Wk+D)=Pk+1J0H k+DS'k+1) (38)

(36)

The next step is to obtain every observation from every
sensor:

z(k+1) (39)

Then the matching between every observation is per-
formed. For reflective landmarks, an Euclidean distance
between the polar coordinates of each landmark stored in the
database p} = (,o’L ¢’L) and the observation py = (o, ¢;) is
computed by using:

A (p1.p2) = \/0F + P2 — 2% pr % pocos (9 — §)  (40)
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where a distances set is obtained and the smallest distance of
that set is chosen as the matching landmark observation.

With regard to the visual markers, it is easier to perform
the matching, because it is a QR code containing information.
As itis a 5 x 5 matrix, the first and the last row are used for
orientation, and the 3 middle rows are used to identify the
map (2" row), the sector (3" row), and the landmark (4
row). The first two rows will be used in the future for general
localization, not implemented in this research, but the other
row of the visual marker will be used to perform the matching
between the observation and the database.

Once the landmarks have been matched, the measurement
innovation is obtained:

vik+ D) =zk+1)—z2k+1) 41)

but this innovation can be deleted, if the landmark does not
satisfy the Mahalanobis distance acceptance test, computed
as:

vk+1)

Os

d;, = (42)
where, oy is the standard deviation of the sensor. If the di,
is lower than a maximum Mahalanobis distance, then the
measurement innovation is accepted, otherwise it is rejected.
The final position corrected by the EKF is computed as:

Xtk+1lk+1)=xk+ 1) +W(k+Dvk+1) (43

And the uncertainty P (k 4 1|k 4 1) is calculated as:

Ph+1k+1)=[—-Wk+ DHE+ DIP K&+ 1[k)
(44)

B. SEMANTIC MAP DEFINITION

The world where Doris is going to perform actions needs to
be represented. An XML file is a common solution for world
description. This world is represented by some important
items as features (tables, chairs, doors, chargers, objects...),
sites where the robot needs to go to, and the ways to arrive
to those sites and the landmarks located on each room which
help Doris with locatilization.

In listing 1 there is sample of one of the locations where
doris is intended to move around, remarking the set of land-
marks, features, sites and ways. This map is built with a priori
knowledge of the user.

Features, sites and landmarks locations are referenced in
the map. Sites have a description indicating if the site is
connected to a “DOOR”, belongs to a “WAY” or the site
is connected with an important item as a “FRAME”. Also
the landmarks contain the type of beacon placed on the room,
indicating if it is “laser” or “‘camera’ type.

C. INTEGRATING SENSORS

At this point, all sensors must be fused into the EKF, in order
for the odometrical system to achieve better positioning of
the robot. This operation is achieved by modifying some
equations in the filter where sensor fusion takes place. In one
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10 —Apk)sin(6 &Ik + A¢2(k)

AW =10 1 Apcos (9 (k[k) + A¢2(k)> (30)
0 1
cos (0 (klk) + A¢2(k) —0.5% Ap (k) sin | 0 (k|k) + A¢2(k)

CO=1 Gn <9 Kl + 2 k)) 0.5 % Ap (k) cos (9 (k|k) + A¢>2(k)> GD

1
B xt — % (k + 1K) B i — 5+ 11k) .
Heo — | Vor -5+ 100 400 -5k + 167 Jer—Fk+ 1007 + e — 5k + 116 a7
yr —y (k+1]k) xp — X (k + 1]k)

(xp — % (k + 11k)* + (v — 5 (k + 1]k))?

G — F (k10 + (v — 5 (k + 1K)

of them, (35), every observation must be computed and every
landmark position must be read from the database and ref-
erenced to the robot position. This operation will result in
a matrix 2 x rl + vm, where rl is the number of reflective
landmarks and vm is the number of visual markers in the
room, which is the result of the information given by each
sensor (distance and angle to the landmark by the laser and
angle to the marker by the camera).

The sensor type is very important, as it will set the order
in which each sensor is taken into account in the filter. The
main reason is to set an order for all matrices. The established
order is:

1) Laser Range Finder (1).

2) Omnidirectional Camera (vm).

Example: Suppose the robot in a certain position has the
two sensors enabled and the room where it is located has three
reflective landmarks and two visual markers. The predicted
position is:

3 5.2152
X (k+1lk) = | 2.3489 (45)
3.1054
and the observation matrix z (k + 1) will be:
Cpr | [ 29530 7
¢rll 0.6492
Pri2 1.5731
. _ | 2 | _ | 0.7242
zk+1)= oz | | 0.8512 (46)
D3 —1.5767
Pvml 0.0793
| vz | | —1.04385 |

The camera is not located at the exact center for the robot,
so the deviation must be added to the observation, for it to be
correctly computed.
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Once the order in the matrices is defined, the other equation
which is affected by the sensor fusion is (33); the R (k + 1)
is a square diagonal matrix, with the covariance values of
every sensor that is enabled. This will result in the following
covariance matrix (47), as shown at the bottom of the next
page: where, the values of ozﬂ, O’(%rl and a(j%vm are constant
and were obtained along with each error term in a large-scale
trial.

And, finally, the matching step plays an important role,
because the vector from equation (41) can be correctly built
according to the match. The Mahalanobis distance estimates
achieved correct matching. Although it was used for every
sensor, the matching for the visual markers can be easily
performed by matching the visual code identified by the
camera.

VI. TESTS AND RESULTS

Some tests were performed after programming the filter and
the detectors in each task. These tests were performed in a
sector located at the Higher Technical School of Industrial
Engineering in Madrid as depicted in figure 12. This opera-
tional area has an approximate width and height of 25.66m
x 5.85m, with a hallway that accesses other rooms that it is
about 1.73m high.

For the initial position, the robot was placed near one
door of the hallway, at the position [1.4m, 3.9m, Orad]T,
and the covariance matrix for the initial position P (0)
was:

0.000567 0 0
P(0) = 0 0.000567 0 (48)
0 0 0.010417

These covariances matrices, P (0) and Q (k 4+ 1), should
adapted to reality, otherwise the EKF will take a higher
amount of time to converge.
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FIGURE 12. Distribution of visual and reflective landmarks.

A. LASER TESTS

Landmarks were placed in the hallway which was used for
the experiment, at a distance of 275 cm from each other.
The reason for this distance was due to the classification
landmarks algorithm. If two consecutive landmarks are too
close, this algorithm might recognize and classify both as one
single landmark. Neither can the landmarks be too far from
the LRF, otherwise it will not perceive them, and although
the laser can reach up to 32m, reflectiveness is lost over
distances. Figure 12 represents how the reflective landmarks
are distributed along the corridor.

After several tests developed in a narrow hallway with this
configuration of landmarks, so that the filter can converge
with only the laser readings the following covariance matrix
R (k 4 1) might represent a good approximation:

Rk+1)
0.000083 0 0 0
0 0.000027 0 0
= : . . : (49)
0 0 0.000083 0
0 0 0 0.000027

Then, using this variance for each measure, the Mahalanobis
distance will reject all those measures which are over 0.02m
for the distance and 0.01rad in case of the angle. In case both
measures given by laser are above this tolerance threshold,
the measures will be rejected and the filter will not be used
for correction.

The operation of the filer is shown in figure 13. The
behavior of the EKF shows how it has converged. One line
represents the real odometry provided by the robot, and the
other line represents the real pose of the robot provided
by the EKF. Figure 14 shows the evolution of the position
covariance matrix at each step, where each line represents

FIGURE 13. Odometrical position of the robot vs. EKF using only LMS-200.

R
Px(c 1K)
—Pxfke 1+ 1)

9000

9000

Pth(c+1[K)
~Pth(k+1k+1)

100 9000

FIGURE 14. Estimated position covariance of the robot using only
LMS-200.

the evolution of the prediction P (k + 1|k)and the correction
P (k + 1|k + 1). It can be seen that there are some points
where the filter increments the uncertainty, which happens
because the observations are provided from one to zero
landmarks that are not accurate enough for the EKF, while
the robot keeps moving forward. Despite this inconvenience,
the filter manages to converge rapidly when a new landmark
is seen.

Supposing that the landmarks might not be seen at any one
time, in crowded places where people are walking around the
robot, the laser will not be very useful. Hence the need to add
a further sensor that can register other landmarks at all times,
which explains the need for a camera.

oy, 0 0 0 0 0 0 0
0 o5, O 0 0 0 0 0
0 0 o, O 0 0 0 0
Ret+1) = 0 0 0 o5, O 0 0 0 @
0 0 0 0 o, O 0 0
0 0 0 0 0 o5y O 0
0 0 0 0 0 0| ogw O
0 0 0 0 0 0 0 T |
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1 <sector id="1" name="Computer Vision" width="
1030" height="1146" reference="2" polygon="m
0010 1146 1 1030 0 1 0 —1146 z"
adjacency="0,2,7,8">

2 <landmarks>

3 <landmark id="0" type="laser" x="33" y="30" z

="0"/>

4 <landmark id="1" type="laser" x="52" y="230"
z="0"/>

5 <landmark id="2" type="laser" x="200" y="110"
z="0"/>

6 <landmark id="3" type="laser" x="200" y="390"
z="0"/>

7 <landmark id="4" type="laser" x="360" y="110"
z="0"/>

8 <landmark id="11" type="camera" x="0" y="713"
z="275"/>

9 <landmark id="12" type="camera" x="0" y="985"
z="275"/>

10 <landmark id="0" type="camera" x="90" y="1146
" z="275"/>

1 <landmark id="1" type="camera" x="464" y="

1146" z="275"/>
12 </landmarks>
13 <features>

14 <feature id="0" name="armario 1" width="60"
height="670" x="0" y="300"/>

15 <feature id="1" name="mesa 1" width="80"
height="179" x="160" y="778"/>

16 <feature id="2" name="mesa 2" width="80"
height="179" x="160" y="957"/>

17 <feature id="3" name="mesa 3" width="80"
height="179" x="323" y="778"/>

18 <feature id="4" name="door" width="137"
height="10" x="10" y="1146"/>

19 <feature id="5" name="door" width="137"
height="10" x="80" y="0"/>

20 <feature id="6" name="door" width="137"
height="10" x="0" y="65"/>

21 </features>

2 <sites sequence="5.,3,2,0">

23 <site id="0" name="door" x="115" y="1174"
linked —sector—id="0" xcoord="18" ycoord="
—1146" />

24 <site id="1" name="way" x="115" y="713"/>

25 <site id="2" name="way" x="464" y="713"/>

26 <site id="3" name="frame" x="115" y="209"/>

27 <site id="4" name="door" x="0" y="209" linked
—sector—id="7" xcoord="—18" ycoord="1180"
/>

28 <site id="5" name="way" x="115" y="80"/>

29 <site id="6" name="door" x="0" y="80" linked—
sector—id="8" xcoord="—18" ycoord="1180"/
>

30 <site id="7" name="door" x="115" y="0" linked

—sector—id="2" xcoord="0" ycoord="1059"/>
31 </sites>
32 <ways>

33 <way st="0" adjacency="1"/>
34 <way st="1" adjacency="0,2.,3"/>
35 <way st="2" adjacency="1"/>
36 <way st="3" adjacency="1.,4.,5"/>
37 <way st="4" adjacency="3"/>
38 <way st="5" adjacency="3.6,7"/>
39 <way st="6" adjacency="5"/>
40 <way st="7" adjacency="5"/>

41 </ways>
2 </sector>

Listing 1. Semantic map sample

B. CAMERA TESTS
Visual markers were placed at the same position above

the reflective landmarks, in order to compare the results
provided by the EKF working only with laser LMS-200 in
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FIGURE 15. Odometrical position of the robot v. EKF using only the
Mobotix Camera.

“Pxler)
—Pxlt1lke1)

Py(keilk)
—Py(k+1lks1)

Pth{kc1[k)
~Pthlk+1]ks 1)

2500

FIGURE 16. Estimated position covariance of the robot using only the
Mobotix Camera.

section VI-A. On this occasion, the EKF was only func-
tioning with the camera. This sensor had to be connected
to another computer in order for the image processing to
function as quickly as the laser.

Several tests were performed with these markers and the
following covariance matrix R (k 4+ 1) represents a good
approximation of the filter only converging with the camera:

Rk +1)
0.000045 0 0 e 0
0 0.000045 0 . 0
= : - - - : (50)
0 . 0 0.000045 0
0 . 0 0 0.000045

Comparing the covariances matrices (49) of the laser and (50)
the camera, it can be seen that the variance error of the camera
angle was lower than the variance error of the laser angle. This
arrangement yielded a better EKF performance that may be
seen in figure 15.

Comparing the results obtained in section VI-A, it can be
seen that the camera, which has minor marker estimation
errors and a 360 degree field of view, can register more
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FIGURE 17. Odometrical position of the robot versus EKF using both
LMS-200 and the Mobotix Camera.

markers than the laser sensor. While the laser can see at least
2 landmarks, the camera can see 5 or more markers.

When peaks appear in the uncertainty graphs in figure 16,
it means that no marker is received in the CPU of the robot,
due to communication problems (cable, wifi, etc) or a mal-
function of the detector where there is too much light, result-
ing in noise for the adaptive threshold. The most notorious
example is the peak between the samples 1000 and 1500,
where the robot did not received any visual landmark in a
long period.

C. LASER AND CAMERA

Figure 17 shows how the EKF works much better when both
sensors are combined. The uncertainty achieved with both
sensors is lower than the uncertainty achieved with only the
laser or only the camera. The uncertainty achieved by each
sensor is shown in figures 14 and 16, where the laser sensor
showed a mean uncertainty in positions at around 0.06m> and
at an orientation of 0.04 rad?, and the camera presented a
mean uncertainty at a position of 0.004m> and at an orienta-
tion of 0.01rad?, underlining the superior performance of the
camera compared to the laser. A combination of the results
of both sensors in figure 18 showed a mean uncertainty in
positions around 0.02m? and at an orientation of 0.02rad?.
Comparing the results, better operational performance was
achieved with only the camera, although the laser can help at
certain times, when visual markers are unavailable. For this
reason the robot will work with both sensors for positioning.

D. ANOTHER EXPERIMENT WITH PEOPLE MOVING
AROUND

A new experiment with obstacles and people passing by was
developed in the Center of Automation and Robotics located
at Universidad Politécnica de Madrid. The trajectory is shown
in figure 19.

The robot goes from the charging station located at
[2m 16.7m — 1.57rad ]T, it moves backwards, then spins
90 degrees and keeps moving backwards to the point
[3.65m 17.6m — 3.14rad]”. A reactive controller is used to
follow the trajectory while people is passing around the robot.
This trajectory consists on a set of three points that the robot

VOLUME 6, 2018

FIGURE 18. Estimated position covariance using both LMS-200 and the
Mobotix Camera.

FIGURE 19. Odometrical vs EKF trajectory of the robot using both sensors.

must pass through. The controller moves the robot from the
current position to the point [1.25m 17.6m — 3.14rad]” and
then the controller tries to keep the robot in a straight line
until it reaches the second point [1.25m 11.0m — 1.57rad]”
and then the controller moves the robot up to the final point
[1.0m 2.3m — 1.57rad]”.

In the same figure, the boxes represent objects placed along
the environment where the tests are being performed.

This experiment has important issues to highlight. The first
one is the landmarks visibility. In the largest area there is no
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FIGURE 20. Odometrical covariance position using both sensors.

TABLE 11. Ground truth Robot position vs. Real Position.

Xreal Yreal ereal Xest Yest eest

(m) (m) (rad) (m) (m) (rad)
2 16.7 -1.57 19469 16.6882  -1.5571
3.65 17.60  -3.14  3.6231 17.4974  -3.0939
1.25 17.60  -3.14 13018 17.5492  -3.1081
1.25 11.00 -1.57 1.2396  11.0382 -1.4213
1.05 1049  -1.57 1.1407 10.5053  -1.5887
1.00 2.30 -1.57  1.0140 2.5391 -1.5149

space enough to put some reflective landmarks on the ground,
so the first part of the experiment only uses seven visual
markers placed on the walls. Then in the hallway located next,
there are fewer objects placed on the ground, therefore, five
reflective landmarks and five visual markers can be placed.
The second issue is that there are static objects and people
walking in front of the robot.

The evolution of the covariance matrix of the position is
shown in figure 20 and the benefits of having both types of
landmarks instead of having only one can be seen. The first
15000 samples shown in the X(m?) subgraph the variance
of the position with the help of the visual markers. A good
localization is achieved but the variance of the estimation is
increased. On the other hand, the next samples show the vari-
ance when the reflective landmarks are detected improving a
lot the localization of the robot.

While executing the trajectory, one of the reflective land-
marks was suddenly occluded, so the localization was only
based on the visual landmarks, as can be seen in the same
figure from the sample 25000, where the variances of the state
is increasing until the last point is reached.

Next table shows a comparison between each point given
by the trajectory and the position obtained by the EKF:

As it can be observed in the table 11 the first three columns
are the points where the robot must pass through, the next
three columns are the position provided by the Kalman Filter
and in table 12 the columns are the errors between real
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TABLE 12. Ground truth error.

Error X(m) ErrorY (m) Error 6 (rad)
0.0531 0.0118 0.0129
0.0269 0.1026 -0.0461
-0.0518 0.0508 -0.0319
0.0104 -0.0382 -0.1487
-0.0907 -0.0153 0.0189
-0.0140 -0.2391 -0.0551
TABLE 13. Sensor list prices.
Quantity Description Price Unit (€) Subtotal (€)
1 LRF SICK LMS-200 2276 2276
1 Omnidirectional Camera 428 428
1 RFID System 1773.81 1773.81
Total: 4477.81

and estimated position. Marks were located on the ground
to ensure the robot pass over these points. In the fourth
row, a significant deviation of the robot can be observed.
This is due to people passing in front of the robot and it
started to deviate, trying to arrive at the desired position from
other point. The same behavior is presented when robot is
in the hallway between y-coordinates 6.00 and 8.00 shown
in figure 19. It deviates a little but it instantly returns to the
trajectory.

VII. CONCLUSIONS

Indoor position estimation is extremely useful for guiding a
robot in museums and trade fairs. The robot in this study has
shown that its position can be established, especially when
interacting with people, by using laser, camera, and RFID
sensors. The first step when working with a laser range finder
was to build the reflective landmarks; a complicated process
requiring expensive materials. The process of finding the best
place to locate the reflective landmark was important, so that
the classification algorithm could detect different landmarks,
despite which it is a good method to achieve localization
without mapping the whole environment.

An omnidirectional camera is a very powerful sensor,
because it provides a 360 degree field of view of the built
environment and it achieves reliable angle estimations. The
visual landmarks, however, had to be printed on an A3 size
paper, so that it could be easily detected by the camera at
long distances (5 — 6m). An A4 size marker was used at
first, achieving only a detection range of 0 — 3m. One big
disadvantage of working with an omnidirectional camera is
that a high resolution image is needed for detection that
requires a fast processing speed. At present, Doris is not
equipped with sufficient processing capacity and the image
processing has to be performed by another computer.

The RFID system cannot be used for localization due to the
high uncertainty that it presents. This is essentially caused
by the low operating frequency of RFID. Ultra Wide Band
systems work at very high frequencies that increase the effi-
ciency of the performance. However, RFID can be used for
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other purposes such as general localization, quality naviga-
tion or objects which can provide some semantic information.

Regarding the cost of each sensor, the following table
portraits a balance of the prices of each one:

A procedure to obtain the standard deviation for each
sensor has been presented that processes an initial estimation
for each one. Once integrated with the EKF some adjustments
have successfully been applied for faster convergence of the
EKF.

Experiments demonstrate that in even with obsta-
cles or people passing by, or even the absence of one type
of the landmarks, a good localization is achieved. It can be
achieved by using only the omnidirectional camera, but can
be refined by including the reflective landmarks.
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