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ABSTRACT Finding clusters in datasets with different distributions and sizes is challenging when clusters
are of widely various shapes, sizes, and densities. Based on a similar-to-multiple-point clustering strategy,
a novel and simple clustering algorithm named MulSim is presented to address these issues in this paper.
MulSim first defines a new distance which can automatically adapt different densities when clustering.
Then, the MulSim groups two points together if and only if one point is similar to another point and its
similar neighbors. Our comprehensive experiments on both multi-dimensional and two dimensional datasets
representing different clustering difficulties, show that the MulSim performs better than classical and state-
of-the-art baselines inmost cases. Besides, when increasing the size of datasets,MulSim can still ensure good
clustering quality. In addition, the impact of the two MulSim parameters on clustering quality as well as the
way of the parameter estimation are analyzed. In the end, the practicability and feasibility of the algorithm
are tested through a face recognition example.

INDEX TERMS Clustering algorithm, distance-based clustering, similarity.

I. INTRODUCTION
With the rapid development of the information technology,
many complex datasets have been emerging, which possibly
differ from each other in the number of points and dimensions
or have different data densities or patterns, for example, spa-
cial data [1], image data [2] and air pollution data [3]. How to
mine rich information from these datasets has received much
attention in recent years. Clustering is an explorative way to
investigate underlying structures in datasets, which groups a
set of data by maximizing the similarities within clusters and
minimizing the similarities between two clusters. Serving as
the foundation of further data analysis techniques, clustering
is facing a critical problem, that is to say, how to effectively
detect clusters in these various complex datasets.

Many clustering algorithms are distance-based clustering
methods, of which two or more data points are grouped to
one cluster if they are close enough according to a given dis-
tance. Among them, the most representatives are hierarchical
and partitioning-based clustering methods. However, both of
them have certain defects when facing complex datasets.

Hierarchical clustering [4]–[6] methods are based on the
core idea that points are more related to nearby points than to
points farther away. However, these algorithms do not provide

a unique partition of the dataset, but provide an extensive
hierarchy of clusters that can be merged with each other at
certain distances instead. The distance between two clusters
is hard to canculate [7], and most of the methods cannot
identify non-spherical shaped clusters [8]. Furthermore, most
of the hierarchical clustering methods suffer from a high
computational cost in handling big size datasets. In general
cases, the complexity is O(n3) for agglomerative clustering
and O(n2) for divisive clustering.
The partition-based algorithms decompose a dataset into a

set of disjoint clusters where the number of the clusters is pre-
defined by the users. The most well-known partition-based
algorithms are k-Means and k-Medoids [9]. The k-Means
algorithm uses a single mean vector to represent a cluster
centre, while the k-Medoids chooses a data point which
is the median or an exemplar within a cluster as a cluster
centre. Both of the methods need a fixed k as the number
of clusters, and update the k cluster centres iteratively based
on a distance measure and assign the points to the nearest
cluster centre, such that the sum of the squared distances from
the cluster is minimized. Both can but can only find a local
optimum, and commonly run multiple times with different
random initializations. Due to its efficiency and easy-to-use
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characteristic, a host of variations of k-Means have been pre-
sented to improve the performance, such as k-Means++ and
CLARA. Although most k-Means-type algorithms require
the number of clusters to be specified in advance, they do not
provide any information about how to set the number of clus-
ters, which is considered to be one of the biggest drawbacks of
these algorithms. Moreover, since partition-based algorithms
always assign a point to the nearest cluster centre, they can
only find clusters with approximately similar size, and cannot
detect non-convex clusters.

In this paper, a novel distance-based clustering algorithm,
namedMulSim (clustering by finding MULtiple points being
SIMilar to one point), is devised to discover clusters with arbi-
trary shapes, sizes and densities more effectively on datasets
with different distributions and sizes. MulSim is based on an
interesting observation: two similar points from one cluster
tend to have shared similar neighbors, but two similar points
from different clusters usually have no such feature. Inspired
by this observation, first we define a new distance which can
automatically match diverse densities when clustering. Then
we group two points together if one is similar to another
and its similar neighbors. The clustering strategy of this
novel clustering method is more restrictive by considering
a point being similar to multiple points at the same time,
which ensures to find arbitrary shaped clusters with different
densities effectively. Whereas, traditional similarity-based
clustering methods just group two points into one cluster so
long as the two points are similar to each other. For example,
on the Aggregation dataset shown in Figure 1, if we simply
put two similar points together one by one, the purple bridge
and the yellow bridge will not be disconnected. But if we
adopt the clustering strategy of MulSim, the two bridges will
be disconnected naturally. Apart from the new distance and
the new clustering strategy,MulSim has twomore advantages
compared with traditional similarity-based clustering meth-
ods: first, MulSim has an acceptable time complexity; sec-
ond, the two input parameters of MulSim can be determined
according to the distribution of a dataset.

FIGURE 1. An example dataset with different shaped clusters.

The remaining sections are organized as follows.
We review the related works in Section II. Then, we give
preliminary of MulSim in Section III and elaborate MulSim
algorithm in Section IV. After that, in Section V, we present

the performances of MulSim on both two-dimensional and
multi-dimensional datasets, which show how effective our
method is, compared with state-of-the-art methods. Section V
also provides the way of the parameter estimation, and shows
the practicability and feasibility of the algorithm as well
through a face recognition example. Finally, Section VI
concludes the work.

II. RELATED WORKS
Clustering algorithms can be categorized according to their
clustering models, such as centroid-based, density-based,
distribution-based, the hierarchical, and the spectral cluster-
ing methods. The most appropriate clustering algorithm for a
particular problem often needs to be chosen experimentally.
Unless in terms of the characteristics of a dataset, users may
prefer one specific clustering model to others. The perfor-
mances and limitations of the above clustering models are
discussed in detail as follows.

To begin with, centroid-based clustering methods,
or known as partition-based clustering methods, such as k-
Means [10], [11], k-Medoids [9] and Fuzzy C-Means [12],
have been widely used in many domains, using an iterative
way to determine k clusters for n points by minimizing the
dissimilarities between each point and their corresponding
centres [13]. Thus, centroid-based clustering methods can
only detect spherical-shaped compact clusters and can only
find a local optimum with different random initializations.

Next, density-based clustering methods can find non-
spherical shaped clusters by grouping the data points spread-
ing over a contiguous region of high density together and
taking the points locating in low-density regions as outliers.
For instance, DBSCAN [14] is one of the most well-known
density-based clustering algorithms. By using a density
criterion, i.e., a minimum number of other points within
a radius, DBSCAN connects points to one cluster while
these pioints are density-reachable. If points lie alone in
a low-density regions, DBSCAN marks them as outliers.
Although DBSCAN can discover clusters with different
shapes, it has difficulty in detecting clusters with signifi-
cant differences in densities, because the density cannot be
chosen appropriately for all clusters [15]. OPTICS [16] is
an improved method of DBSCAN, which aims to remove
the need of choosing an appropriate value for the den-
sity criterion. However, it still cannot identify clusters of
varying densities. Another popular density-based method,
DENCLUE [17], also suffers from failures in detecting the
clusters with arbitrary densities, which clusters data points by
attracting them to the density-attractors that are local maxima
of density function.

Then, distribution-based clustering algorithms [18], [19]
are based on formal models and are not largely heuris-
tic. They model clusters using statistical distributions. For
example, multivariate normal distributions are used in
the expectation-maximization algorithm. But most of the
distribution-based clustering methods put an extra burden on
users, that is, users need to choose the best model whose

78226 VOLUME 6, 2018



M. Chen et al.: MulSim: Novel Similar-to-Multiple-Point Clustering Algorithm

parameters need to be iteratively optimized to better fit the
dataset.

Besides, the hierarchical clustering algorithms group data
points in two ways. Either start by regarding each sin-
gle point in the dataset as an individual cluster and then
aggregate them into clusters (agglomerative), or start by
taking the initial dataset as a whole and then divide it
into partitions (divisive). CURE [20] is a classical hier-
archical clustering algorithm, which carries out a hierar-
chical agglomerative clustering after randomly sampling
a set of representative points. CHAMELEON [7] is also
a prominent hierarchical clustering algorithm. It takes a
two-phase approach. First, CHAMELEON uses a graph par-
titionmethod to divide the dataset into a set of individual clus-
ters. Second, it uses an agglomerative hierarchical clustering
to merge the clusters. Both CURE and CHAMELEON can
identify non-spherical shaped clusters. However, they suffer
from high time complexities.

Last but not least, spectral clustering [21], [22] is one of
the most prominent clustering approaches. It makes use of
eigenvalues of the similarity matrix of the data to perform
dimensionality reduction. Then, it constructs clusters only
depending on a similarity graph.Whereas it is highly sensitive
to noisy input data and takes high time cost.

In recent years, considerable efforts have been made to
improve the performance of detecting clusters with arbitrary
shapes, sizes and densities [15]. Such as, ABACUS [23] is a
globbing-based method which identifies the intrinsic clusters
by iteratively globbing points from dense regions and moving
the representative points simultaneously. AnyDBC [24] is a
novel anytime approach to cope with the cost problem for
very large datasets by reducing both the range query and
the label propagation time of DBSCAN. Perch [25] is a new
incremental algorithm for hierarchical clustering to solve
the problem of extreme clustering. BOOL [26] is a novel
hierarchical clustering algorithm, which first discretizes all
points in a dataset and then iteratively merges small clusters
to construct final clusters. Although BOOL can basically
identify the structures of clusters in most cases, it wrongly
identifies a few normal points as outliers. CLASP [27] is
a shrinking-based clustering algorithm and detects clusters
by effectively preserving the shape information of clusters.
SPARCL [28] works in two stages. It first generates many
small representative clusters and then merges these small
clusters to get final clusters. A widely concerned algorithm,
CFDP [29], combines the advantages of both centroid-based
and density-based clustering methods. As a local-density-
based method, it can achieve good performances in most
cases. But as a centroid-based method, it is unable to group
points correctly when a cluster has more than one centres.

III. PRELIMINARY OF MulSim ALGORITHM
In this section, we first prepare the necessary notions about
clustering. Then we present a new distance based on the
nearest-neighbor relationship. We also introduce the cluster-
ing strategy used in MulSim algorithm.

A. NOTION OF CLUSTERING
Clustering is the process of partitioning a set of points into
subsets. A Dataset is denoted as follows,

D = {x1, x2, · · · , xi, · · · , xn} (1)

where xi(1 ≤ i ≤ n) ∈ D is the ith data point.
Clustering methods operate on this dataset and group the

points in D into m(1 ≤ m ≤ n) clusters, C1, · · · ,Cm. Each
subset is a cluster. Thus the points in one cluster are similar
to one another but dissimilar to points in other clusters.

B. A NEW DISTANCE
Clustering is based on ameasure of similarity. Thus, choosing
an appropriate similarity has a critical impact on clustering
quality. The most used dissimilarity measures are absolute
distances, such as Euclidean distance and Manhattan dis-
tance. However, if we choose a similarity-based clustering
method to partition a dataset, we will have to face the problem
that absolute distances cannot adapt to diverse densities.

Intuitively, two similar points in one cluster tend to be the
nearest neighbors to each other. This motivates us to define
a new metric to measure the similarity between two points
based on the nearest-neighbor relationship. First, we give the
notion of the nearest neighbors.

Let x1,x2,..., xn be n points in dataset D. For each xi in
D, the most similar neighbors or the nearest neighbors of xi
are called nearest neighbors (NN) of xi, denoted as N (xi),
N (xi) ⊆ D.
Then, we introduce a new distance to measure the sim-

ilarity of two points. Formally, given two points xi and xj,
we first obtain the sort orders oxi (xj) and oxj (xi), where oxi (xj)
is the sort order of xj in xi’s NN order list getting by sorting
points according to an absolute distance, and so is oxj (xi).
Next, we define a symmetric distance bigger(xi, xj) between
xi and xj,

bigger(xi, xj) = bigger(oxi (xj), oxj (xi)) (2)

For example, if xi is the lth neighbor in the NN order list of
xj, xj is the mth neighbor in the NN order list of xi, and m > l,
then the bigger(xi, xj) is m. The smaller the bigger(xi, xj) is,
the more possible that xi and xj are top neighbors to each
other.

No matter what densities in a dataset are, each point shall
have its nearest neighbors. Therefore, this new distance can
automatically adapt to different densities while the absolute
distances cannot.

C. SIMILARITY MEASUREMENT
In order to construct clusters, we need a criterion to decide
when to assign a point to one of the clusters. This can
potentially be solved by adopting an appropriate threshold.
In MulSim, the threshold is a positive integer k . If

bigger(xi, xj) ≤ k, (3)

then the pair of points are similar. Otherwise, they are
dissimilar.
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D. A SIMILAR-TO-MULTIPLE-POINT CLUSTERING
STRATEGY
When grouping two points into a cluster, MulSim not only
considers the similarity between these two points according
to Eq. 3, but also considers the similarities between one and
the other’s neighbors. If and only if one point is similar to the
other point and its similar neighbors, MulSim groups the two
points into one cluster.

Therefore, MulSim takes a much stricter strategy com-
pared with that of traditional similarity-based clustering
methods. Traditional similarity-based clustering methods
thoughtlessly group two points into one cluster so long as the
two points are similar to each other. This clustering strategy
may wrongly merge two or more different clusters into one
big cluster just because a few points are similar to points
located in the different communities. Whereas the strategy
MulSim takes is pretty similar to the rules in human society.
If two persons are in one community, they both have great
potential to be familiar with each other’s neighbors in the
same community. This phenomenon properly mirrors the sci-
entific nature of our clustering strategy.We call this clustering
strategy the similar-to-multiple-point clustering strategy. It is
owing to the similar-to-multiple-point clustering strategy that
MulSim can detect various shaped clusters.

To reduce the time cost, when clustering, MulSim employs
an equivalent clustering strategy by using the notion of
Mutual k-nearest neighbors. The definition of Mutual
k-nearest neighbors is given as follows,

For two points xi and xj, if and only if bigger(xi, xj) ≤ k ,
we call xi and xj mutual k-nearest neighbors (MkNN). MkNN
of xi is denoted as a set MkNN (xi).
Theorem 1: For a pair of points 〈xi, xj〉 ∈ D, if xj is similar

to xi, the strategy that xj is similar to at least m similar
neighbors of xi, is equivalent to the following equation,

|MkNNxi ∩MkNNxj | ≥ m (4)

where m indicates the required number of similar neighbors
of point xi when clustering, |MkNN (xi) ∩ MkNN (xj)| is the
number of points in the intersection of the set MkNN (xi) and
MkNN (xj).

Proof: Since xj is similar to m similar neighbors of
xi, the m similar neighbors of xi are in the set MkNN (xj).
Besides, them similar neighbors of xi are in the setMkNN (xi).
Thus, the m similar neighbors of xi are in the setMkNN (xi)∩
MkNN (xj). Then, the strategy that xj is similar to at least m
similar neighbors of xi is equivalent to the equation |MkNNxi∩
MkNNxj | ≥ m. �

Following the above conditions, we can also know that xi,
xj and each member in the set MkNN (xi) ∩ MkNN (xj) are
similar to each other.

IV. MulSim ALGORITHM
We introduce the MulSim algorithm in this section. First,
we describe the clustering process of MulSim in detail. Then,
the time complexity of MulSim is analyzed.

A. MulSim CLUSTERING PROCESS
MulSim needs two input parameters, the threshold of the
distance bigger(xi, xj), k , and the required number of similar
neighbors of a point when clustering, m. It starts with a
point that has not been visited. The detailed steps involved
in clustering using MulSim are described as follows.
Step 1 Obtain MkNN List: We calculate the dis-

tance bigger(xi, xj) of any two points by equation 2.
If bigger(xi, xj) ≤ k , we put the two points into each other’s
MkNN list.
Step 2 Clustering: While clustering, as the Theorem 1

proved, if a point xi is similar to another point xl and the
neighbors of xl , we apply the similar-to-multiple-point clus-
tering strategy to group these two points and the points in the
set MkNN (xi) ∩MkNN (xl) into one cluster. If a point has no
nearest neighbors, this point will be detected as an outlier.
To label the outlier and visualize it in the demonstration of
experimental result, we mark the outlier as a single cluster.

Algorithm 1: MulSim
Input: D: a dataset with n data points; k: the threshold

of distance bigger , and m: the required number
of similar neighbors of a point

Output: C : a set of clusters
Step 1: Put the similar points of each point into it’s
MkNN list

1 for i=1 to n do
2 for xj ∈ N (xi) do
3 calculate distance bigger(xi, xj) by Equation 2
4 if bigger(xi, xj) ≤ k then
5 put xi to the set MkNNxj
6 put xj to the set MkNNxi

Step 2: Clustering
1 C ← ∅
2 for i=1 to n do
3 for xl ∈ MkNNxi do
4 if |MkNNxi ∩MkNNxl | ≥ m then
5 if xi or xl is already existed in a cluster then
6 put xi, xl and each point in

MkNN (xi) ∩MkNN (xl) to the cluster
7 else
8 put xi, xl and each point in

MkNN (xi)∩MkNN (xl) to a new cluster c
9 put c into C

10 take the point without label as a single cluster g
11 put g into C

12 Output C

B. TIME COMPLEXITY ANALYSIS
In the first step of MulSim, when searching the nearest neigh-
bors of each point, since we use k-d tree [30], [31], the time
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TABLE 1. Datasets statistics and the corresponding parameters of each method.

complexity is O(n · log n), where n is the number of data
points in the original dataset D. Then MulSim takes O(k · n)
time to obtain the distance bigger(xi, xj), the set MkNNxj
and MkNNxi , where k is the threshold of distance bigger .
Since k � n holds, the time complexity is usually O(n).
In the second step of MulSim, the time complexity is also
O(n · k). Because k � n, the time complexity of the second
step is reduced to O(n). Thus, the overall time complexity of
MulSim is approximate to O(n · log n).

V. EXPERIMENTS AND ANALYSIS
In this section, we first evaluate the clustering performance of
MulSim on two dimensional and multi-dimensional datasets
which contain various shaped clusters with different densi-
ties, by comparing it with several state-of-the-art clustering
algorithms. Then we discuss the way of selecting the param-
eters k and m that are used in MulSim. Finally, we apply
MulSim to the Olivetti Face dataset [32] to demonstrate its
feasibility and practicality.

A. BASELINES AND BENCHMARKS
1) BASELINES
To evaluate the performance of MulSim, we compare it with
several representative state-of-the-art clustering algorithms.
k-Means [10] is the most well-known algorithm as a

partition-based clustering method. The input parameter k is
the number of clusters.
DBSCAN [14] is a classical density-based clustering algo-

rithm. DBSCAN needs two input parameters: ε is the radius
of a neighborhood for each point, and MinPts is the least
number of points within the ε-neighborhood of the points.
OPTICS [16] is another well-known representative

density-based clustering algorithm. The parameter k is the
number of nearest neighbors.
BOOL [26] is a new and very fast hierarchical clustering

algorithm. BOOL has three input parameters: k is the lower
bound on number of clusters, l is the distance parameter, and
o is the outlier parameter.
CLASP [27] is a new clustering algorithm. CLASP has five

input parameters:m is the number of clusters, k is the number
of nearest neighbors, k_for_Lof is the adjusting parameter
according to the size of dataset, d is the dimension reducing

flag, and tmax is the maximal number of iterations for position
adjusting.
CFDP [29] is the current most popular clustering algo-

rithm. CFDP needs two parameters when clustering: k is the
number of nearest neighbors, m is the number of selected
centres.

OPTICS, k-Means and DBSCAN are obtained from scikit-
learn1, which is a Python module for machine learning built
on top of SciPy and distributed under the 3-Clause BSD
license. The source codes of BOOL, CLASP and CFDP are
provided by their authors. MulSim is implemented in Python.

2) BENCHMARKS
We evaluate MulSim and the baselines on a wide
range of datasets including two dimensional datasets and
multi-dimensional datasets. Table 1 lists the description of
all the 12 datasets and the corresponding parameters of each
algorithm, where Points stands for the number of points,
Dim. stands for the number of dimensions of each point,
and Clusters stands for the number of clusters. Among the
two dimensional datasets, Aggregation, Compound, D31,
Spiral, Flame and R15 are obtained from University of
Eastern Finland website2; Toy is made by ourselves, which
contains a cluster with two centres. Compound represents
datasets containing arbitrary shaped clusters with various
densities. Toy represents datasets containing a two-centre
cluster. Spiral represents dataset containing special shaped
clusters, i.e. spiral shaped cluster. R15 represents datasets
containing concave-shaped clusters. Aggregation and Flame
represent datasets containing arbitrary shaped clusters with
uniform density, in which the borders between two clusters
are composed of points with relatively sparse densities.

The multi-dimensional datasets are taken from UCI web-
site, and the dimensions are range from three to forty-four.

3) TUNING AND VALIDATION
For each dataset, we determine the relatively optimal clus-
tering result by tuning their corresponding input parameters.
For BOOL, CLASP and k-Means, we input the right number
of clusters. The appropriate noise parameter o of BOOL on

1 http://scikit-learn.org/stable/index.html
2http://cs.joensuu.fi/sipu/datasets/
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FIGURE 2. A comparison of clustering results on the uniform density datasets with any-shaped clusters.

all the benchmarks is obtained by iteratively running. The
parameters k and tmax of CLASP are set as the authors sug-
gested. For CFDP, the density is determined by the average
distance of 2 percent of neighbors as in the code the authors
provided, and cluster centres are selected manually. When
the exact number of cluster centres on the decision graph
is bigger than the correct cluster number, we select points
with both relatively lager minimum-distances and larger den-
sities as centres of clusters’ according to the ground-truth.
We choose Euclidean distance as the absolute distance for
MulSim.

Since all the 12 datasets already have known clusters,
the performances of MulSim and the six baselines are quan-
titatively measured by two widely used evaluation measures:

Adjusted Rand Index (ARI) and Normalized Mutual Infor-
mation (NMI).

B. TWO DIMENSIONAL BENCHMARK DATASETS
To demonstrate that MulSim can be applied to dataset
containing clusters with widely different shapes, sizes and
varying densities, we select datasets which can represent dif-
ferent clustering instances. The clustering results of the seven
algorithms on the datasets are exhibited from Figure 2 to 6,
and the corresponding parameters for each of the seven algo-
rithms on each of the datasets are given in the bracket respec-
tively. The corresponding ARI and NMI are listed in Table 2.

1) On the Uniform Density Datasets With Any-Shaped
Clusters: We select two representative datasets which
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FIGURE 3. A comparison of clustering results on the various density datasets with any-shaped clusters.

FIGURE 4. A comparison of clustering results on the dataset containing multi-centre cluster.

represent two different difficulties in clustering. Aggregation
is a uniform density dataset containing clusters with different
sizes and shapes. The key to identify this dataset is to discon-
nect the two bridges, i.e., the yellow and the purple bridges
shown in Figure 2(a). The graphical descriptions and the

quantitative comparison of the clustering results are shown
in Figure 2. As illustrated from Figure 2(b) to Figure 2(h),
MulSim and CFDP ideally identify the cluster structures of
Aggregation. OPTICS and BOOL get the basically correct
clustering results except for mistaking very few points for

VOLUME 6, 2018 78231



M. Chen et al.: MulSim: Novel Similar-to-Multiple-Point Clustering Algorithm

FIGURE 5. A comparison of clustering results on the dataset containing the spiral shaped cluster.

TABLE 2. The ARI and NMI of different methods on two dimensional datasets.

outliers. While k-Means roughly partitions the dataset to
seven clusters without finding the correct cluster centres.
DBSCAN cannot disconnect the bridge and is also frustrated
at slightly non-uniform density points, and CLASP only
detects four out of the seven clusters.

Flame is a dataset containing two clusters and two out-
liers. One cluster is convex shaped and the other cluster is
non-convex shaped. Since the density of points between the
upper cluster and the lower cluster is relatively sparse, the key
to identify clusters from Flame is to break the dataset at this
sparse area. Figure 2(i) to 2(p) exhibit the clustering results on
dataset Flame. According to both Figure 2 and Table 2, we can
find that CFDP and MulSim generate the satisfying cluster-
ing results. CFDP gets the best ARI and NMI and MulSim
gets the second best ARI and NMI. OPTICS and DBSCAN
also basically find the upper and the lower clusters except
for regarding some normal points as outliers. Nevertheless,

the other three methods, BOOL, CLASP and k-Means cannot
partition the dataset properly.

Thus,MulSim can find the borders between two clusters on
the uniform density dataset and further partition the dataset
correctly.

2) On the Various Density Dataset With Any-Shaped Clus-
ters: Compound is a very typical dataset which contains a
variety of touchy situations for many clustering algorithms.
As the ground truth shows in Figure 3(a), the two clusters
on the upper left corner represent the situation that densities
in one cluster are various, and the two clusters on the right
represent the situation that densities in different clusters are
various in one dataset, and the outer cluster at the bottom of
left corner represents the situation that there is no clear centre
in a cluster. Hence, identifying the clusters in this dataset is
rather challenging. From Table 2 and Figure 3, we can see
thatMulSim gets the biggest ARI and NMI, and onlyMulSim
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FIGURE 6. A comparison of clustering results on the dataset containing convex shaped clusters.

can basically identify all the clusters except for a few points.
While OPTICS, BOOL and DBSCAN perform not so well
as MulSim when densities vary, and CLASP, k-Means and
CFDP encounter difficulty in determining the cluster centres.

3) On the Dataset Containing Multi-Centre Cluster: As
depicted in Figure 4, MulSim, DBSCAN and CLASP gen-
erate the ideal clustering results. OPTICS identifies the
basically correct shapes. While k-Means and CFDP inappro-
priately partition the dataset according to the two centroids,
and BOOL mistakenly identifies the clusters. Hence, on this
type of dataset, if a method detects clusters purely basing on
centres, it will fail to find the correct cluster structures.

4) On the Dataset Containing the Spiral Shaped Clus-
ter: Figure 5 demonstrates the clustering results on the
Spiral dataset. Among the seven methods, only MulSim,
DBSCAN and CFDP can get the correct results. For Mul-
Sim, the similar-to-multiple-point clustering strategy makes
a big difference to its great performance. DBSCAN per-
forms well because the dataset has uniform density. CFDP
works properly owing to its combination of centre-based and
density-based clustering methods.

5) On the Datasets Containing Convex Shaped Clusters:
From both Figure 6 and Table 2, we can conclude that Mul-
Sim, CFDP, OPTICS and k-Means obtain the preferable clus-
ter structures. Of them, k-Means and CFDP, as centre-based
clustering methods, show the best performance. MulSim gets

the second best ARI and NMI slightly behind the k-Means
and CFDP. While BOOL and DBSCAN basically identify
the structures of clusters, and CLASP only identifies seven
correct clusters out of fifteen.

C. MULTI-DIMENSIONAL BENCHMARK DATASETS
In this section, six widely-used multi-dimensional datasets
which have ground truths are used to demonstrate that Mul-
Sim is capable of clustering multi-dimensional datasets.

Table 3 lists the corresponding ARI and NMI of the cluster-
ing results generated by MulSim, BOOL, CLASP, k-Means,
DBSCAN, CFDP and OPTICS on the six multi-dimensional
datasets respectively. The corresponding parameters of each
method on each dataset are listed in Table 1. Note that on
dataset Wpbc and Spectef, DBSCAN cannot get valid par-
tition, because it regards each single point as an individual
cluster. OPTICS also gets invalid partition on dataset User.
Figure 7 shows a quantitative comparison of clustering results
of different methods on the 6 multi-dimensional datasets.
On each dataset, MulSim obtains the best ARI, as shown in
both Table 3 and Figure 7. In addition, on Elico, MulSim
shows the second best NMI, and k-Means shows the best NMI
while its ARI is the sixth best. On Haberman, MulSim gets
the third biggest NMI, and OPTICS gets the biggest NMI and
the second best ARI. On Iris, MulSim shows the third biggest
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TABLE 3. The ARI and NMI of different methods on multi-dimensional datasets.

FIGURE 7. A quantitative comparison of clustering results of different methods on the 6 multi-dimensional datasets.

NMI, and DBSCAN shows the biggest NMI and the third best
ARI. On Wpbc, only MulSim, BOOL, k-Means and CFDP
get positive values in ARI and NMI. On Spectef, MulSim gets
the biggest ARI and NMI, and the performances of the other
algorithms are far behind that of MulSim’s. On User, MulSim
gets the second biggest NMI, and DBSCAN gets the biggest
NMI and the third best ARI.

In most cases, on these multi-dimensional datasets, just
like the performances on the two-dimensional datasets,
clustering results of MulSim outperform that of the other
six algorithms. Therefore, MulSim is capable of clustering
multi-dimensional datasets.

D. COMPREHENSIVE ASSESSMENT
To comprehensively analyze the performances of MulSim
and the baselines, in this section, we use box plot as a
descriptive statistics means. Figure 8(a)is the box plot of
ARI on two dimensional datasets. MulSim shows the best
performance by a landslide in quartile, median, minimum
and maximum of the ARI respectively. Figure 8(b) is the box
plot of ARI on multi-dimensional datasets, and Figure 8(c)
is the box plot of ARI on all these benchmarks includ-
ing the six two dimensional and the six multi-dimensional

FIGURE 8. Three box plots of ARIs on two dimensional,
multi-dimensional and all the 12 datasets.

datasets. From Figure 8(b), we can see that DBSCAN gets
the best ARI in the upper quartiles, median and minimum.
From Figure 8(c), we can see that DBSCAN gets the best
ARI in the lower quartiles, median and minimum. The main
reason is that DBSCAN has two missing values of ARI on
datasets Wpbc and Spectef. For a data group containing a few
members, the missing values can greatly affect the statistical
performance of the group. Therefore, taking these factors into
account, MulSim shows the best statistics performance of
ARI.

According to all the above experiments, we analyze and
compare the characteristics of different algorithms respec-
tively. Among them, k-Means can only find the convex clus-
ters. It can not effectively identify non-convex clusters as
in datasets Aggregation, Compound, Toy, Flame and Spiral.
DBSCAN runs well on the dataset with uniform density,
but it detects the normal points with relatively low density
as outliers on the dataset with various densities. Even on
uniform density dataset, if there are no clear borders of clus-
ters, it will mistakenly connect two clusters together. That is
why DBSCAN cannot correctly detect the cluster structures
on Compound and Aggregation. The centre-based clustering
strategy leads to the failure of CFDP on Compound and Toy
which contain clusters with two centres. That is the reason
why CFDP does not show obvious advantages in the plot
boxes, although it shows good performance on the other
datasets containing the cluster with only one centre. OPTICS,
as an improved algorithm of DBSCAN, generates relatively
good clustering results on the datasets except on Spiral, but it
still suffers the pain in dealing with various density datasets.
BOOL regards a few normal points as outliers on some
datasets, and its clustering results are especially not satisfying
on Flame, Toy, and Spiral. CLASP has poor performances on
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Flame and Spiral. As for MulSim, not only can it find cluster
structures correctly but also it can obtain the best clustering
results on most of the datasets, except for a few flaws on
Compound.

Therefore, MulSim is an effective clustering method in
mining clusters with arbitrary shapes and various densities on
datasets with different dimensions and cluster numbers. The
reason for the excellent performance of MulSim is that both
the new distance and the similar-to-multiple-point clustering
strategy are used.

E. STABILITY OF CLUSTERING QUALITY AS DATASET
SIZES CHANGE
Modern clustering applications require algorithms run grace-
fully with different dataset sizes, especially on datasets with
large number of data points. In this section, we have gen-
erated synthetic datasets as the way illustrated in Figure 9.
We can see that the main shapes of the three clusters stay still
while their densities are changing from sparse to dense. By
extending the dataset size within a 5K interval from 0 to 100k,
we have generated 20 datasets. Figure 10 demonstrates the
quantitative clustering results of MulSim when varying the
size of the datasets. As can be seen, the ARI and NMI ofMul-
Sim always stay the best value on all the synthetic datasets.
On account of this, we say MulSim can adapt to varying
dataset size, and keep fine stability of clustering quality as the
size of dataset increases. Besides, from Section IV-B, we can
know the time complexity of MulSim is O(n · log n). Thus,
we can draw the conclusion that MulSim has the ability to
cope with large datasets.

FIGURE 9. Demonstration of the process of generating different size
datasets.

FIGURE 10. Quantitative results of MulSim on different size datasets.

F. PARAMETER ESTIMATION
In this section, we evaluate MulSim in terms of its sensitivity
to the regularization parameter k and m. The dataset used is
the above synthetic dataset with 20K points. Figure 11 shows
the clustering ARI and NMI with varying k and m. B is a
figure of 3D view of the variation tendency of ARI, in which
k is [1,500] and m is [1,10]. A is a part of profile of B on how
m affects the clustering results, in whichwe use threem values

to show three representative situations. C is a part of profile
of B on how k affects the clustering results, in which we use
three k values to show three representative situations. We can
observe that MulSim always keeps the best clustering result
with a long range of both k and m, in other words, MulSim
is robust to the two input parameters. The bigger the m is,
thewider range of k is. To reduce time cost, we suggest setting
m to [1,5] in real applications.
Next, since CV(coefficient of variation) is a standardized

measure of dispersion of a probability distribution for a
dataset, we use CV to suggest the range of input k in real
applications. CV is defined as the ratio of the standard devia-
tion σ to the mean µ. In this paper, µ is the average distance
between any point and its first nearest neighbor.

To be more feasible, we have performed experiments on
the 23 datasets we used above, including the six two dimen-
sional, the six multi-dimensional datasets, as well as the
eleven synthetic datasets. As shown in Figure 12, there is an
approximately linear relationship between the right k and CV,

k = 23CV + 5 (5)

Note that the k in Figure 12 is one of the ks set in MulSim
when ARI ranges from its maximum to 0.9 times of the
maximum on each dataset respectively.

Therefore, we suggest finding the right input k near the line
(Eq. 5).

G. AN APPLICATION ON FACE RECOGNITION
In this section, we group the faces of the same person into a
cluster on the Olivetti Face dataset [32]. Olivetti Face dataset
is one of the popular face datasets, which is widespreadly
used as a benchmark for machine learning algorithms. There
are ten different images for each of 40 distinct persons in the
Olivetti Face dataset. Each face is treated as a long vector
of 10304 features. As in [29], the similarity between two
images is calculated by [33].

In Figure 13, we show the clustering results performed
by MulSim of the first ten persons in the dataset, where the
images of the same color correspond to one cluster, and the
gray images mean outliers which are not assigned to any
cluster. As shown in Figure 13, except for the third and the
fourth persons who are assigned into one cluster, each of
the other eight persons are approximately identified, which
shows that the MulSim can essentially identify 8 persons
out of ten, and the ARI is 0.5531. If we take CFDP [29]
into consideration, where the ARI is 0.3244, the performance
of MulSim is even more impressive. Therefore, MulSim is
applicable on face recognition.

H. THE CONTRIBUTIONS OF MulSim
From the above comprehensive studies and experiments,
we can conclude thatMulSim has the following contributions.

(1) MulSim is a new clustering algorithm which can detect
clusters with various densities, shapes and sizes from differ-
ent dimensional datasets.
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FIGURE 11. Parameter sensitivity evaluation.

FIGURE 12. k estimation.

FIGURE 13. Cluster analysis of the first 100 images in the Olivetti Face
dataset.

(2) MulSim defines a new distance which differs from the
absolute distances. Our new distance can adaptively change
along with the change of densities when clustering.

(3) MulSim adopts a similar-to-multiple-point clustering
strategy, which makes discovering arbitrary shaped clusters

more effective compared with the traditional similarity-based
clustering algorithms.

(4) MulSim can keep fine stability of clustering quality as
the size of dataset increases.

(5) MulSim is robust to the input parameters, and we have
suggested the way to estimate the input parameters.

(6) Comprehensive experiments on various datasets have
been conducted to evaluate the effectiveness of MulSim.

VI. CONCLUSION
In this paper, to mine clusters with widely different shapes,
sizes and densities, we have presented an effective and effi-
cient algorithm known as MulSim. The algorithm defines
a novel distance based on nearest neighbor relationship,
which can automatically adapt to different densities when
clustering. More remarkable, MulSim adopts a similar-to-
multiple-point clustering strategy to group points together.
Extensive experiments further demonstrate that MulSim is
capable of finding clusters on both two-dimensional and
multi-dimensional datasets with high quality, and it also
shows attractive superiorities comparing with several state-
of-the-art methods. In future work, we will develop our
method to be more adaptable to large size datasets.
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