
Received October 31, 2018, accepted November 29, 2018, date of publication December 10, 2018,
date of current version December 31, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2885705

Automatic Inference of Task Parallelism in
Task-Graph-Based Actor Models
ABU NASER MASUD , BJÖRN LISPER , AND FEDERICO CICCOZZI , (Member, IEEE)
Mälardalen Real-Time Research Center, School of Innovation, Design and Engineering, Mälardalen University, 722 20 Västerås, Sweden

Corresponding author: Federico Ciccozzi (federico.ciccozzi@mdh.se)

This work was supported by the Knowledge Foundation through the SPACES1 (rn. 20140165) and MOMENTUM2 (rn. 20160153)
Projects led by Mälardalen University, and run in cooperation with Ericsson AB, Evidente East AB, Alten Sweden AB, and SAAB AB.

ABSTRACT Automatic inference of task level parallelism is fundamental for ensuring many kinds of
safety and liveness properties of parallel applications. For example, two tasks running in parallel may be
involved in data races when they have conflicting memory accesses, or one is affecting the termination of
another by updating shared variables. In this paper, we have considered a task-graph-based actor model,
used in signal processing applications (e.g., baseband processing in wireless communication, LTE uplink
processing) that are deployed on many-core platforms, in which the actors, task-graphs, and tasks are the
active entities running in parallel. The actors invoke task graphs, which in turn invoke tasks, and they
communicate through message passing, thus creating different kinds of dependencies and parallelism in the
application. We introduce a novelMay Happen in Parallel (MHP) analysis for complex parallel applications
based on our computational model. TheMHP analysis consists of (i) data-flow analysis applicable to parallel
control-flow structures inferring MHP facts representing pairs of tasks running in parallel, (ii) identification
of all direct and indirect communication by generating a context-free grammar and enumerating valid strings
representing parallelism and dependencies among active entities, and (iii) inferringMHP facts whenmultiple
task-graphs communicate. Our analysis is applicable to other computational models (e.g. Cilk or X10) too.
We have fully implemented our analysis and evaluated it on signal processing applications consisting of a
maximum of 36.57 million lines of code representing 232 different tasks. The analysis took approximately
7 minutes to identify all communication information and 10.5 minutes to identify 12052 executable parallel
task-pairs (to analyse for concurrency bugs) proving that our analysis is scalable for industrial-sized code-
bases.

INDEX TERMS May happen in parallel, data flow analysis, actor model, parallel task graph, graph
reachability, UML profile.

I. INTRODUCTION
Software running on modern systems, from smartphones to
autonomous vehicles, is becoming extremely complex and
performance-demanding at a daunting pace. Parallel hard-
ware, in terms of the so-called multiple core3 processors,
has been introduced to meet demands for performance while
keeping power consumption under control. The computa-
tional increments brought by multiple core chips moved the
performance quest from hardware to software. To exploit the

1http://www.es.mdh.se/projects/411-Static_Program_Analysis_for
_Complex_Embedded_systems

2www.es.mdh.se/projects/458-MOMENTUM
3Note that we use ‘multiple core’ as a generic term for both many-core

and multi-core.

physical parallelism of multiple core chips at its uttermost,
we need in fact efficient parallel software. Along with effi-
ciency, other crucial safety, liveness and security aspects such
as data race freedom, atomicity, deadlock freedom, starvation
freedom, to mention a few, are at least as important in many
applications.

To design software able to fully leverage the computational
power given by multi-core processors while keeping other
aspects of parallel computation in balance is still a huge
challenge in the software industry. The reason is that parallel
programming is by nature more complex than sequential pro-
gramming, which has shaped the mind-set of software devel-
opers throughout the years. Moreover, analysing, debugging,
and testing parallel software is also more challenging than
their sequential counterparts due to the enormous amount of

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

78965

https://orcid.org/0000-0002-4872-1208
https://orcid.org/0000-0001-5297-6548
https://orcid.org/0000-0002-0401-1036

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

information produced during the interleaved, nondeterminis-
tic execution of parallel processes.

Methodological aids are essential in the early development
of parallel software for tuning performance and meeting
correctness requirements. Understanding the inherent paral-
lelism of a software application is essential for discovering
many concurrency issues including data races, atomicity vio-
lations, deadlocks, livelocks, starvation, to mention a few.
For example, in order to detect data races in an application,
we need to identify two instances of program instructions,
running in parallel, that have conflicting memory accesses.
Historically, the analysis discovering parallelism of a given
software is theMay Happen in Parallel (MHP) analysis. The
MHP problem aims at determining the set of pairs of program
instructions whose instances can run in parallel during the
execution of a given software system.

It is hard to find precise solutions to the MHP prob-
lem for many classes of programs. For instance, it becomes
NP-complete when concurrent programs use rendezvous-
like mechanisms for synchronous communication [1], and
even undecidable when procedure calls are introduced [2].
Existing tractable solutions of the MHP problem target vari-
ous concurrent computational models and languages such as
the fork-join parallelism of Cilk [3], the async-finish paral-
lelism of X10 [4]–[6], the rendezvous-like synchronisation
of Ada [1], the concurrent object model of ABS [7], and the
Java concurrency model [8], [9].

However, parallelism is not only brought along by software
code, but can be hidden beneath high-level functional models
as well as the complex distributed build and deployment pro-
cesses. When it comes to modern complex software systems,
such as telecom applications which we experimented with,
existing solutions for MHP analysis are not applicable since
these systems are described in terms of high-level functional
models combined with code. Thus, in order to discover par-
allelism from different layers of complex software systems,
we need an analysis targeting both the high-level models and
the code.

In this paper, we provide a novel static MHP analysis
for highly parallel software systems developed according to
a task-graph-based actor model. This computational model is
a variation of the actor-based concurrency model introduced
by Agha et al. [10], [11]. In this model, a number of actors
can run in parallel. Actors are lightweight processes without
shared states; any actor may invoke instances of task-graphs
describing execution scenarios for tasks on multi-core pro-
cessors. More specifically, task-graphs are directed acyclic
graphs representing the synchronisation of tasks via barriers.
Task schedulers dispatch tasks on processors according to
the precedence specified by the graphs. Tasks are basically
sequential C or DSP C code possibly containing instructions
to send asynchronous messages to actors or task-graphs.

Detecting all pairs of program instructions that can possi-
bly run in parallel is a control-flow problem which requires
first detecting and then navigating the (parallel) control-
flow structure of the program. The kind of synchronisation

primitives, together with other constructs such as pointers,
used in programs decide the degree of complexity of detect-
ing parallel control-flow structures. Once a parallel control-
flow is detected, iterative data-flow-based techniques can be
applied to collect parallel program instructions.

Inferring precise task-parallelism is a challenging problem
that needs to take into account both the order of task invoca-
tion and dependencies among tasks created through message
passing.

A. CONTRIBUTIONS
In contrast to existing solutions for MHP analysis, which
are performed on software code having specific kinds of
concurrency constructs, our contribution provides a novel
MHP analysis performed on a task-graph-based actor model.
This model can be obtained by leveraging high-level software
functional models to infer the parallel control-flow of tasks in
combination with the code implementing those tasks.We pro-
vide six contributions.
Contribution 1:We develop a data-flow analysis technique

applicable to parallel control-flow structures such as task-
graphs to infer task-level parallelism. We validated the analy-
sis by experimenting on parallel task-graphs obtained from
C code. However, the method is generic and applicable to
parallel task-graphs obtained from other programming lan-
guages, for inferring properties not only limited toMHP facts.
To show that, we illustrate by examples how to derive, from
X10 parallel code, parallel task-graphs on which the analysis
is directly applicable.
Contribution 2: In our computational model, it is possible

that multiple parallel task-graphs are involved in direct or
indirect communication by sending and receiving messages
which restrict the task-level parallelism but increase the flow
of information among task-graphs. We extend the data-flow
analysis mentioned in Contribution 1 to obtain precise task-
level parallelism from multiple parallel task-graphs involved
in direct communication. We provide methods based on this
data-flow analysis to infer non-concurrency among tasks
invoked from a task-graph which is used to obtain precise
task-parallelism from multiple task-graphs involved in indi-
rect communication.
Contribution 3:We provide a mechanism based on gener-

ating context-free grammar (CFG) and a string enumeration
technique from the CFG to automatically obtain all forms
of communication to be used by the data-flow analysis tech-
nique, which is essential to infer all task-parallelism from the
given system.
Contribution 4: We provide the theoretical worst-case

asymptotic complexity of all algorithms provided by
Contributions 1-3.
Contribution 5: We implemented the algorithms for the

MHP analysis using SWI-Prolog. Methods to obtain commu-
nication information from a given system are implemented
in the Racer tool. The Racer tool is implemented in the
Clang/LLVM framework to obtain data race information
from code (written in C or DSP C) executing in parallel.

78966 VOLUME 6, 2018

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

We evaluated our implementation on signal processing appli-
cations obtained from communication-heavy telecom indus-
try [12]. Our evaluation systems consisted of a maximum
of 36.57 million lines of code representing 232 tasks.
Contribution 6:We define our task-graph models in terms

of the Unified Modeling Language (UML).4 More specifi-
cally, we designed and implemented a UML profile for MHP
analysis (MHPp), which allows the intensional modelling of
task-graph-based actor models and the back-propagation5 of
MHP analysis results to them for enhanced understandability.

B. ORGANIZATION OF THE ARTICLE
The remainder of this article is organized as follows.
Section II describes the details of the task-graph-based actor
model (computational model). Here, we formally define the
parallel task-graph (PTG), and its relation with actors and
tasks. We depict also the dependencies and parallelism that
can arise due to interactions during the execution among
actors, PTGs and tasks.

Section III describes the UML profile MHPp for MHP
analysis and back-propagation of analysis results, and how
we used it for describing our PTG running example.

In Section IV, we explain the semantics of the computa-
tional model. We define the program states and provide the
operational semantics for PTGs. We have not provided the
rules for actors and tasks because their individual execution
is sequential in nature, which we consider intuitive.

Our MHP analysis is explained in all its details in
Section V. Section VI explains the implementation of the
entire approach, and Section VII evaluates the implemen-
tation on signal processing applications and analyses the
experimental results. In Section VIII, we show how to trans-
late code from the X10 parallel programming language into
PTGs in order to illustrate the applicability analysis to other
languages through PTGs.

Section IX gives an overview of the existing literature on
MHP analysis and Section X concludes the paper.

II. COMPUTATIONAL MODEL
The computational model that we consider is used in signal
processing applications (e.g., baseband processing inwireless
communication, LTE uplink processing) that are deployed
on many-core platforms [12], [14]. These applications are
developed using a variant of the actor-based concurrency
model, where an application consists of a number of actors.

Actors are lightweight processes without shared states
and have mailboxes to buffer incoming messages. An actor
selectively retrieves messages (one at a time) from its mail-
box and either creates new actors, sends messages to other
actors, or invokes different kinds of task-graphs based on
the pattern of the retrieved message. Fig. 1(a) illustrates the
relation among actors, task graphs and tasks.

4http://www.uml.org/
5Note that we have introduced the notion of back-propagation for model

investigation and optimization in [13].

Task-graphs describe possible scenarios in which tasks can
be executed onmultiple core processors. A task-graph is basi-
cally a directed acyclic graphwhere the nodes represent tasks,
barriers to which some tasks must synchronise, or other graph
instructions such as conditional if-then-else. Edges represent
the order of execution and dependencies among tasks. Each
task executes on a dedicated core.

Fig. 1(b) illustrates the skeleton of a simple task-graph
where horizontal rectangular nodes represent tasks to be exe-
cuted, horizontal bars represent barrier nodes where tasks and
data are to be synchronised, diamond-shaped node represents
conditional instruction, and vertical rectangular nodes repre-
sent join nodes in which several task nodes are joined in order
to be connected with a barrier node. The edges are directed,
and arrows represent the direction of the data-flow.

In the telecom application used for our experiment, tasks
are written in a proprietary dialect of the C language, and
consist of application-specific functions that copy global data
into core memory at the start and write back into the global
memory at the end of the execution. The tasks themselves
are sequential, but they may send asynchronous messages
to actors or task-graphs. Individual tasks are independent
meaning that the execution of tasks is neither interrupted by
nor dependent upon other tasks. Once activated from a task-
graph, tasks are dynamically scheduled to run on different
cores by task schedulers.

Usually a graph engine, also called a basic operating
system (BOS) [12], is designed to execute task-graphs; the
BOS has usually a small footprint due to limited memory
resources. The BOS operates in one or more cores and
can receive graphs from outside the chip. Once a graph is
received, it is preprocessed and stored as a condensed collec-
tion of linked lists. The BOS then starts the graph execution
by finding a core supporting the execution of the first task,
moving the required input data into the core’s memory, and
finally triggering it to start executing the task. As soon as
the task finishes its execution, control and output data are
moved back to the BOS. Data-flow between tasks may be
synchronised through barriers, or tasksmay run to completion
without any synchronisation.

A number of task-graph instancesmay be executed in every
time frame as shown in Fig. 1(c). The instances may originate
from the same actor or different actors and are supposed to
operate on different data areas.

There are several levels of parallelism in this model:
(i) a single task-graph may invoke several tasks to be exe-
cuted in parallel on different cores (i.e., intra-graph task-
parallelism), (ii) several task-graphs running in parallel may
invoke multiple tasks to be executed in parallel on different
cores (i.e., inter-graph task-parallelism), and (iii) different
actors running in parallel may invoke different task-graphs
to run in parallel.

The semantics is provided at the level of task-graphs. The
formal definition of a task-graph is as follows:
Definition 1 (Parallel Task-Graph (PTG)): A Parallel

task-graph (PTG) is defined as a directed graph g = (N ,E)

VOLUME 6, 2018 78967

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

FIGURE 1. (a) Actors invoke PTGs which in turn invoke tasks and tasks may send messages to actors or task graphs, (b) a single task-graph
where horizontal rectangles represent task nodes, horizontal bars represent barrier nodes, vertical rectangles represent join nodes and
diamond-shaped nodes represent conditional nodes, and (c) multiple task-graphs running in parallel [12].

where

1) N is a set of nodes, E ⊆ N ×N is a relation describing
the possible parallel flow of execution in the graph, and
any n1 → n2 such that (n1, n2) ∈ E describes the
direction of the flow.

2) Nodes in N can be of one of the following types:

• a conditional node n representing a condition c
(denoted by [c]n),

• an assignment node,
• a special entry node,

78968 VOLUME 6, 2018

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

• a special exit node,
• a barrier node for possible synchronisation,
• a task node invoking the execution of an asyn-
chronous task,

• a msg-receiver node to receive a message,
• a join node in which execution of multiple nodes
join before connecting with a barrier node.

Task nodes can be further classified as single-task
nodes invoking an instance of a task, or multi-task
nodes invoking multiple instances of the same task
(possibly operating on different global data).

3) The entry and the msgReceiver node have no prede-
cessors and the exit node no successors. A conditional
node has exactly two successors (labeled true and false,
respectively), barrier nodes may have multiple succes-
sors, join nodes may have multiple predecessors, and
all other nodes have exactly one successor and/or one
predecessor.

We use the following denotation for the nodes of a PTG.
The entry, the exit, any join and barrier nodes are repre-
sented by ne, nx , njoin, and nb. We sometimes write n : T
to represent the condition that n is a node of type T where
T ∈ {join, barrier, task, single-task,multi-task}. [x := e]n

represents that the value of expression e is assigned to the
variable x at node n. A single task node n is represented by
[m(ē)]n (or [m(ē)]n1) that executes the function m with actual
arguments ē = e1, . . . , ei when invoked. m is the initial
function of the task node n that may have nested calls to other
functions. [m(ē)]nk represents that k ≥ 1 instances of the task
starting with the m function will be executed. An example of
a PTG is shown in Fig. 3.

III. MHPP UML PROFILE AND RUNNING EXAMPLE
From the myriad of general-purpose and domain-specific
modelling languages (DSMLs) that have been defined to date,
UML has established itself for industrial modelling [15].

UML is general-purpose, but it provides powerful profiling
mechanisms to constrain and extend the language to achieve
DSMLs, so called UML profiles. Through UML and profiles,
the developer can fully describe software functionalities.
Among the others, state-machine and activity diagrams are
the most used when it comes to model behaviours of soft-
ware systems with UML. In this work, we focus on activity
diagrams since they represent the way task-graph-based actor
models are modelled in practice. In the remainder of this
section, we describe and show how we leveraged this mech-
anism to extend UML activity diagrams for (i) intensional
modelling of task-graph-based actor models and (ii) back-
propagation of analysis results to them, in terms of the MHPp
profile.

A core activity of the creation of a UML profile is the def-
inition of stereotypes. A stereotype represents a profile class
which describes how an existing UML metaclass is extended
by the profile. Stereotypes in the MHPp profile enable the
use of MHP analysis specific terminology in place of the
original one of the extended metaclasses. Stereotypes defined

FIGURE 2. MHPp profile.

in theMHPp profile are shown in Fig. 2. More specifically we
can see the following stereotypes (denoted in the figure as
elements of type «Stereotype»):
• Task: it extends the UMLmetaclass OpaqueAction,
representing nodes of a UML activity diagram, in order
to introduce the concept of task. The stereotype owns a
property, MHP_facts, representing an unordered and
unbounded list of elements of type Task. This property
allows to back-propagate MHP analysis results to the
UML model (as shown in Section V). This stereotype
is defined as abstract, and further specialised into:
– SingleTask: it represents the concept of a task

with a single instance;
– MultiTask: it represents the concept of a task

with possibly multiple instances. The number of
instances is represented by an Integer value in the
property instances.

• Barrier: it extends the ForkNode UML metaclass
in order to introduce the concept of the barrier.

• ReceiveMessage: it extends the AcceptEvent
ActionUMLmetaclass to introduce the concept of the
incoming message for the task-graph to be triggered by
external task-graphs.

In Fig. 3 we depict a task-graph model described in terms
of a UML activity diagram profiled with MHPp; note that we
use this model in the remainder of the paper to explain our
analysis. In the diagram, activities (denoted as t_x and stereo-
typed as «SingleTask», like t_0, or «MultiTask», like t_2)
represent task nodes. Note that t_x represents a so called
atom, which carries the information of the related node (n_x
in the Figure). Note that in the case of «MultiTask» elements,

VOLUME 6, 2018 78969

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

FIGURE 3. UML activity diagram describing task-parallelism in a
single PTG.

the number of instances is specified too (e.g., 5 in t_2).
Forks (denoted as b_y and stereotyped as «Barrier») represent
barrier nodes. Joins (denoted as join_z) represent join nodes.
Additionally, we have an entry node (Entry_and_assign),
which represents the starting point of the overall activity. The
flow can terminate in exit nodes (denoted as flow_end if a
single flow terminates and Exit if the overall activity termi-
nates). Condition represents a conditional node. We do not
explicitly model assignment operations through assignment
nodes since they can be embedded in other nodes (e.g., entry
node Entry_and_assign).

In our computational model, we entail the possibility for
running tasks to send messages to actors or task-graphs. Note
that in the application type that we consider, message sending
is not explicitly defined at graph level, but rather coded in the
functionality carried by the individual task. Thereby, in our
activity, we only model message receiving (inMsg, stereo-
typed as «ReceiveMessage») nodes. The activity diagram
is complemented with task-specific algorithmic behaviors
described for each task in terms of DSP C code.6

Note that the use of the MHPp profile and in general
UML is not a requirement for our approach to be applicable.
PTGs can, in fact, be described using other modelling
formalisms.

IV. OPERATIONAL SEMANTICS
In this section, we provide the operational semantics for
our computational model, i.e. task-graphs. We do not give
the semantics for the sequential part, as it is standard and
moreover not needed to support the MHP analysis. Further-
more, we abstract away actors for the sake of brevity, since
actors are stateless and generate task-graphs sequentially. The

6Note that the modelling language and the MHPp profile do not enforce
any specific language for the definition of behaviours.

operation of task schedulers and the BOS’ activities are not
included into the semantics either, since we prefer to base the
MHP analysis on a semantic model that captures the inherent
parallelism in the task-graphs rather than being dependent
on a particular implementation of the underlying run-time
system.

We define the semantics of our computational model in
terms of program states. A program state is a tuple (G,T, µ)
consisting of:
• a set of task-graph states G,
• a set of task states T for all tasks invoked by the graphs,
and

• a mapping function µ that maps global variables to their
values (a global store).

Each task-graph state in G is a triple 〈id, µl,N 〉 consisting
of:
• the graph identifier id uniquely identifying the graph,
• a mapping function µl that maps graph-local and some
auxiliary variables to their values (a graph-local store),
and

• N , the set of PTG nodes that are ready to be executed,
possibly in parallel.

Each task state in T is a tuple 〈tid, id, µt , I〉 where
• tid is a task id that uniquely identifies the task,
• id is the identifier of the PTG that invoked this task,
• µt is the mapping function that maps task local variables
to their values (a task-local store), and

• I is the sequence of the remaining task instructions to be
executed.

The notation a : A is shorthand for A ∪ {a}, i.I is the
sequence of instructions I preceded by the single instruction i,
ε represents the empty sequence, and JeKµ denotes the result
of evaluating the expression e with values of variables given
by the mapping functionµ. The functionµ[x ← v] is defined
by µ[x ← v](x) = v, and µ[x ← v](y) = µ(y) when
y 6= x. exec(i, µ, µG), where i is an instruction and µ, µG
are stores, is a store with the same domain as µ. Intuitively,
this is the store µ updated with the effects of executing i in an
environment where variable values are given by µG.

The following functions simplify the presentation of the
operational semantic rules in Fig. 4:
• newtasks(id,m(e1, . . . , el), µ, k): creates k ≥ 1
new task states T tid1 , . . . ,T tidk where T tidi =

(tidi, id, µt , body(m)) for 1 ≤ i ≤ k , tidi is the fresh
unique task identifier of the newly created task, id is
the identifier of the PTG that invokes the task, µt is the
initial store of the task consisting of values JejKµ for the
j-th formal argument ofm for all 1 ≤ j ≤ l, and body(m)
contains the sequence of instructions of the m function
to be executed.

• succ(n) and pred(n) denote the sets of successor and
predecessor nodes of n.

• tsucc(n) and fsucc(n) denote the (singleton) set of suc-
cessors in the true and in the false branch of the condi-
tional node n.

78970 VOLUME 6, 2018

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

FIGURE 4. Operational semantics.

• add(e,l) is the list l after inserting the element e, and
elem(e,l) is the list l after removing the element e.

Suppose 〈id, µl,N 〉 is the graph state of a PTG. The
domain of function µl consists of graph-local variables and
some auxiliary variables representing the execution status of
some PTG nodes. Auxiliary variables include stid1 , . . . , stidk
for a task node creating k ≥ 0 task states T tid1 , . . . ,T tidk , and
rn for a msg-receiver node n. These auxiliary variables take
values from the set {t◦, t•,⊥,>} where t• (or t◦) represents
that the execution of the PTG task node that the auxiliary
variable represents finishes (resp. is yet to finish), ⊥ repre-
sents that the execution of the corresponding task node is
not yet started or the msg-receiver node is yet to receive a
message, and rn = > represents that node n has received
a message. If a PTG task node n invokes a task with task
state T tid , then stid is the global variable to the newly created
task, but a local variable to the PTG. Given any node n, Sn
represents the set of auxiliary variables related to node n.
Sn = ∅ if n is not a task or a msg-receiver node. Any global

store µ contains a buffer buff for the incoming messages of
PTGs such thatµ(buff) is the possibly empty list of incoming
messages of the program. For any (id, n,msg) ∈ µ(buff),
the PTG having the identifier id contains the msg-receiver
node n to receive the message msg. Note that this buffer is
different from the actor mailboxes which we do not model in
the semantics for brevity. We assume that there is no naming
conflict among global, graph-local, and task-local variables
for simplicity. Global variables can be shared and updated
by all the entities (i.e. PTGs and tasks), graph-local variables
are visible only in the local PTG nodes and can be updated
using the values of variables local to the same graph, and of
global variables. Task-local variables, finally, are visible (and
updatable) only within their respective tasks, using task-local
and global variable values.

We assume that the program starts its execution from a
non-empty set of PTGs having the graph state G, no tasks
have started their execution yet (i.e. T = ∅), and µ0 is the
initial mapping of the global shared memory. Thus, the initial

VOLUME 6, 2018 78971

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

program state is σ0 = (G,∅, µ0). For any graph state
〈id, µl,N 〉 ∈ G, µl(s) = ⊥ for all auxiliary variables s.
As the program executes, there are nondeterministic changes
of state from σ to σ ′, i.e. σ σ ′. Nondeterminism comes
from the task scheduler, which decides which tasks are exe-
cuted on which cores, the concurrent execution of parallel
task-graphs, and the invocation of new graphs by actors run-
ning in parallel.

Intuitively, the semantic rules in Fig. 4 represent execution
as follows:
• startGraph: the graph 〈id, µl, {ne}〉 is nondeterministi-
cally chosen and the execution continues to the succes-
sor node(s) of ne.

• condTrue: the graph state 〈id, µl, [c]n : N 〉 is selected,
c is evaluated to be truewith respect to the local store µl
and the global store µ, and the successor node of n in
the true branch will be executed next together with the
nodes in N .

• condFalse: the graph state 〈id, µl, [c]n : N 〉 is selected,
c is evaluated to be falsewith respect to the local storeµl
and the global store µ, and the successor node of n in
the false branch will be executed next together with the
nodes in N .

• assign: given the graph state 〈id, µl, [x := e]n : N 〉,
the execution updates the local store µl by evaluating e
with respect to µl and µ and assigning it to x. The
successor node of n will be executed simultaneously
with the nodes in N .

• task: this rule is applicable when n is a single-task or a
multi-task node. k ≥ 1 new tasks with task states
T tid1 , . . . ,T tidk are created, the value of auxiliary vari-
ables stid1 , . . . , stidk are updated to t◦, and all successor
nodes of n will be executed simultaneously with the
nodes in N .

• join-sync: execution reaches the join node njoin. For any
n ∈ pred(njoin), Sn = ∅ if n is not a task node or a
a msg-receiver node (usually a barrier node). For all
n ∈ pred(njoin) such that n is a task or a a msg-receiver
node, if µl(s) ∈ {t•,>} for all s ∈ Sn then all preceding
tasks have finished their execution ormsg-receiver node
received messages. The barrier node that immediately
succeeds njoin will be executed simultaneously with the
nodes in N .

• barrier : execution reaches the barrier node nb from a
node n which might be a join, task, another barrier, or a
msg-receiver node. If nb is reached from a task node n,
then µl(s) = t• for all s ∈ Sn. If the execution
passes the join node, all preceding tasks supposed to syn-
chronise with the barrier have finished their execution
(see join-sync rule). Sn = ∅ if n is not a task node.
Thus, all successor nodes of nb (usually creating multi-
ple parallel tasks) will be executed simultaneously with
the nodes in N .

• msgReceive: the msg-receiver node n has received a
message (i.e. µl(rn) = >). Thus, the successor node of
n will be executed simultaneously with the nodes in N .

We reset µl to µl[rn←⊥] such that nmay be triggered
again by receiving new messages.

• seqExecution: this rule states how that statement i of the
task with the task state 〈tid, id, µt , i.I 〉 executes. The
task local mapping µt and the global mapping function
µ are updated to µ′t and µ

′ due to executing i when i is
not a message send instruction.

• msgSend : the task with the task state 〈tid, id, µt , i.I 〉
executes amessage send instruction i = send(msg, id, n)
that sends the message msg to the msg-receiver node n
in PTG id . This updates the buffer µ(buff) in the global
store µ by including the element (id, n,msg).

• msgTrigger : the buffer buff in the global store contains a
message to themsg-receiver node n in PTG id . Node n is
added to the set of parallel executing nodesN , the status
variable rn is set to > in the graph-local store µl and
the message (id, n,msg) is removed from buff in the
global store µ. This is the preprocessing step to proceed
execution by node n.

• endTask: the task 〈tid, id, µt , ε〉 has finished its exe-
cution. ε represents that no more task instructions are
remaining to be executed. Thus, the auxiliary variable
stid in the graph state (〈id, µl,N 〉 is upgraded to t•.

• endGraph: the graph 〈id, µl, {ne}〉 is nondeterministi-
cally chosen and the execution of this graph terminates
as the exit node nx is reached.

V. OUR MHP ANALYSIS
This section describes our MHP analysis tailored for pro-
grams written according to the computational model intro-
duced in Sec. II. The analysis is formulated in several stages
with increasing complexity. First, we describe how to perform
the analysis over a single task-graph that may invoke multiple
parallel tasks. Next, we show how to extend the previous
analysis to several graphs being executed in parallel, followed
by a whole program analysis.

A. TASK-PARALLELISM IN A SINGLE TASK-GRAPH
We define a forward data-flow analysis [16] that infers task-
parallelism from a single task-graph. Note that there exist
previous works to infer MHP information [7], [8], [17]
by data-flow analysis. Our technique differs from these by
the graph representation of the program and the domain
in which the data-flow operations are performed. The
analysis infers task-parallelism from a single PTG, and
it is extended to deal with multiple PTG’s in Sec. V-B
and V-C. The final whole program analysis in Section V-D
is not a data flow analysis, but is based on context-free
grammars.

The data-flow analysis is performed on a PTG and can
determine precisely the tasks that may execute in parallel
once invoked from the PTG. Let us use the following notation:

• G is the set of all PTGs,
• g (possibly subscripted) denotes a single PTG,
• N is the set of all PTG nodes,

78972 VOLUME 6, 2018

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

• T is the set of all tasks, and
• B is the set of all barriers.

We shall use the letters t , and b (possibly subscripted) to
denote a single task, and barrier respectively, andt(n) denotes
the type of node n (see Definition 1).
The MHP analysis on a PTG can be expressed by the

instance (L,F , g, I , ι, κ) of the monotone data-flow frame-
work [16], where:

• L is the data-flow domain (aka property space),
• F is the function space for the transfer functions,
• g = (N ,E) is the PTG,
• I = {entry} is the set of so called extremal labels from
which the analysis starts,

• ι = ∅ is the initial data-flow value for the nodes in I ,
• and the mapping function κ : N → F selects the appro-
priate transfer function fn for the node n ∈ N .

The choice of the data-flow domain and the transfer functions
are explained as follows. The set TA contains all the MHP
facts (called ‘‘atoms’’) of the following forms:
• an atom t representing an instance of a task in T that is
not synchronised by any barrier,

• an atom t+ representing multiple instances of a task in
T that is not synchronised by any barrier,

• an atom b representing an instance of a barrier in B,
• an atom d representing a conditional node in the PTG,
• an atom t F b (or t+ F b) denoting an instance (or
multiple instances) of a task in T that t represents which
is synchronised at an instance of a barrier in B that b
represents,

• an atom t F d (or t+ F d) representing that the task(s)
represented by the atom t (or t+) is followed by the
conditional node in PTG that d represents,

• atoms px, px Fy such that x ∈ {t, t+} and y ∈ {b, d} rep-
resenting the fact that the corresponding atoms without
the p-tag are originated in a parallel branch,

• a special atom ε such that εx = x and S ∪ {ε} = S for
any atom x and a set of atoms S.

Note that the above kinds of facts illustrate the origin of the
generated facts and their synchronisation pattern, which will
help to decide theMHP pairs of tasks after the data-flow anal-
ysis. For any generated fact t F d , the task node represented
by t may have different types of synchronisation in the two
different branches of the conditional node represented by d .
For example, in Fig. 5(a), the fact t Fd is generated for node n
before the conditional node, which is evaluated to t , in the
true branch, and t F b, in the false branch. We sometimes use
variables x, y to hold atom values of the above types.

If the execution of a task node n ∈ N ends at a bar-
rier represented by the barrier atom b or is followed by a
conditional node represented by the atom d , then Bn denotes
the singleton set b or {d}. Bn is empty for all other cases.
For any task or barrier node n, B←n denotes the set of all
barrier atoms b such that n is reachable from the barrier nodes
generating atom b. We also consider the set Jn consisting of
all task nodes from which the join node n is reachable. For

FIGURE 5. Synchronisation pattern of task nodes in the PTG segment:
node n runs to completion in the true branch and synchronises with the
barrier b in the false branch of the conditional node represented
by d in Fig. (a), and synchronises with the barrier b4 in Fig. (b).

example, Bn = {b4} and B←n = {b1, b2, b3} in Fig. 5(b),
and Jjoin1 = {n1, n2} in Fig. 3. Bn is used to decide the
synchronisation of n, B←n is used to discard relevant facts
propagated due to parallel branching from the ancestor nodes,
and Jn decides if an atom should be present as a parallel
atom or not at a join node (explanation follows). The set TB
consists of all the barrier atoms.

The property space of the analysis is L = P(TA), and
(P(TA),⊆) forms a complete lattice. Note that the set TA is
finite as T , B, and the number of conditional nodes in the
PTG are finite. F contains transfer functions updating the
data-flow values. Given the set A of data-flow facts for any
n ∈ N , the transfer function fn ∈ F where fn : L → L is
defined as follows:

fn(A) = (A \ kill(n)) ∪ gen(n) (1)

The definitions of kill and gen sets are as follows:

kill(n) =

{x F b : b∈B←n , x=a(m),m∈N } if n : barrier
{px : X (x) = a(m),m ∈ Jn} if n : join
∅ otherwise

gen(n) =

{a(n)} if (n : task or n : barrier),

Bn = ∅
{a(n) F y} if n : task, y ∈ Bn
∅ otherwise

In the definitions of kill and gen, a(n) stands for the
fixed atom for node n if n is a single-task , multi-task ,
barrier , or conditional node. The X function as defined in
Eq. (6) extracts task atoms only. For example, X (pt F b) = t .
Intuitively, the kill set of a barrier node n consists of all
atoms x F b such that the atom x is generated at some node
m ∈ N by the a function (i.e. x = a(m)) and is supposed
to synchronise at a barrier represented by the barrier atom b,
and hence b ∈ B←n . Usually, the atom x F b is present in
the dataflow setA due to the fact that a task is invoked earlier
from the PTG. It should already have terminated its execution
at n represented by the barrier atom b, and thus the atom x Fb
gets killed at the barrier node n due to the kill(n) set in Eq. (1).

VOLUME 6, 2018 78973

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

If n is a join node, then kill(n) includes all parallel atoms px
such that the constituent task atom X (x) of px originates
from some node m (i.e. X (x) = a(m)) and n is reachable
from m. If there is a path from m to n, then we have either
one of the following two cases. The generated atom at n (i.e.
X (x) possibly synchronized with a barrier atom) may flow
to n. So, we have both x and px atoms at n, and x can no
more be a parallel atom after the join node n. Alternatively,
the generated atom atmmay be killed before reaching n. If we
choose px not to be killed at n, it would be killed at the barrier
node n′ immediately after n because of the first case of the kill
function. However, kill(n) does not include all other parallel
atoms px ′ such that x ′ is generated at m′ and there is no path
from m′ to n. If we do not include px into the kill set of n,
we shall potentially transfer px beyond n and will result in
incorrect parallelism.

The gen set for a single-task , multi-task , or barrier node
n contains the atom a(n) unless the execution of n ends at
the barrier represented by b or n is followed by a con-
ditional node represented by the atom d , in which case
the gen set contains the atom x F y and y = b or y =
d . The kill and gen sets are empty for all other kinds of
nodes.

MHP facts are collected into the sets A◦(n) and A•(n),
which are valid at the entry and exit of node n ∈ N .
Equations (2)–(6), as shown at the bottom of this page, are
formulated for the forward dataflow analysis that collects the
MHP facts for each node n ∈ N . A•(n) can be obtained
by simply applying the transfer function fn. The set A◦(n)
is constructed by combining the Flow(n) and Effect(n) sets:
Flow(n) collects all dataflow facts from the predecessor nodes
of n, and Effect(n) set contains all dataflow facts due to facts
present in the parallel branches of n. In obtaining Flow(n),
we apply the functions fc to A◦(n′) if the predecessor node
n′ of n is a conditional node; otherwise, A◦(n) contains ele-
ments of A•(n′). The fc function either removes or modifies
some specific types of atoms from A◦(n′), and is defined as

follows:

fc(n, n′,T) = (T \ {x F d : d = a(n′)}) ∪ D(n, n′,T)

where

D(n, n′,T)

=

{
{x : x F d ∈ T , d = a(n′)} if Bn=∅
{x F b : x F d ∈ T , d=a(n′), b ∈ Bn} if Bn 6=∅

So, this function returns a set of facts containing elements of
T but removing any fact x F d ∈ T when n′ is a conditional
node represented by d , and instead, either x F b or x is
included depending on the set Bn. Applying the function fc
toA•(n′) in Eq. (2) provides more precise synchronisation to
the MHP atoms. Moreover, Effect accumulates facts from the
set gen(k) such that node k is in the parallel branch of node n.
Eq. (4) models this update, which is explained later in this
section. We thus get a system of equations where the least
solution can be obtained by fixpoint iteration.
MHP Analysis for PTG:Algorithm 1 performs the fixpoint

computations for the MHP analysis of a single PTG. It is
a variation of the standard worklist algorithm [16], which
collects MHP facts for every node of the graph according
to Eq. (2). Initially, the worklist W contains the edge from
the entry node, A◦ and A• are empty sets. Bn, B←n and Jn
are computed by applying Algorithm 2, described later in
this section. During the fixpoint iteration of the algorithm,
an edge (n,m) (i.e., a worklist element) of the given PTG is
removed from the worklist, andA•(m) is updated by applying
the transfer function computing MHP facts (line 5). Next,
depending on the types of nodes n and m, the facts may
be propagated through (i) the successor edges (line 7-8),
(ii) other parallel branches connected to n when n is a barrier
node (line 9-13), and (iii) distant parallel branches identified
by the facts px ∈ A•(n) (line 14-20).
For each selected edge (n,m) from the worklist W during

the fixpoint iteration, Algorithm 1 performs the following

A•(n) = fn(A◦(n))
A◦(n) = Flow(n) ∪ Effect(n) (2)

where

Flow(n) =

∅ if n : entry⋃

n′∈pred(n)

{
fc(n, n′,A•(n′)) if n′ : cond
A•(n′) otherwise

(3)

Effect(n) =
⋃

k∈Parallel(n)

{px : x ∈ gen(k),∀y, d .x 6∈ {y F d}} (4)

Parallel(n) =

{
{k : (n′, k) ∈ E, k 6= n} if (n′, n) ∈ E ∧ n′ : barrier
{k : px ∈ A•(k), k ∈ N ,X (x) = a(n)} otherwise

(5)

X (x) =

{
t if x is of the form t, t+, t F y, t+ F y, pt F y, pt+ F y
ε otherwise

(6)

78974 VOLUME 6, 2018

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

Algorithm 1: MHPAnalysisOfPTG

/* Initialization */
1 forall (n ∈ N) do A◦(n) := A•(n) := ∅
2 W := {(entry, n) : (entry, n) ∈ E}
3 Compute-BnJn-and-B←n () /* Apply Alg. 2 */
4 while (W 6= ∅) do /* Fixpoint iteration */
5 W := W \ {(n,m) : (n,m) = select(W)}

/* apply transfer function */
6 A•(m) := fm(A◦(m))
7 forall ((m, p) ∈ E) do
8 updateWListandPropagateFacts(m, p,A•(m))

/* propagate facts to the parallel
branches of the barrier node */

9 if (n : barrier ∧A•(m) \A◦(m) 6= ∅) then
10 S := A•(m) \A◦(m)
11 T := {px : x ∈ S, ∃b, y, d .x 6∈ {b, y F d}}
12 forall ((n,m′) ∈ E where m′ 6= m) do
13 updateWListandPropagateFacts(n,m′,T)

/* propagate facts to the distant
parallel branches */

14 if (m : single-task ∨ m : multi-task) then
15 Npar := {k : px ∈ A•(m),X (x) = a(k)}
16 Tpar := {px : px ∈ A•(m)}
17 Tself := {px : x ∈ A•(m) \ Tpar , ∃b, y, d .x 6∈

{b, y F d})}
18 forall (k ∈ Npar where Tself 6⊆ A◦(k)) do
19 A◦(k) := A◦(k) ∪ Tself
20 W := W ∪ {(k ′, k) : (k ′, k) ∈ E}

21 Function updateWListandPropagateFacts(m, p,T)
22 if (m : cond) then
23 T := fc(p,m,T)
24 if (T 6⊆ A◦(p)) then
25 W := W ∪ {(m, p)}
26 A◦(p) := A◦(p) ∪ T

steps:

• Propagating facts to successors: For each successor
node p ofm, updateWListandPropagateFacts function is
called to possibly propagate facts from A•(m) to A◦(p)
and update the worklist W . In updateWListandPropa-
gateFacts, T (i.e.A•(m)) is possibly modified by apply-
ing the function fc ifm is a conditional node. Finally, if T
contains facts not present in A◦(p), they are copied to
A◦(p) and the edge (m, p) is included into the worklistW
in order to process the facts in A◦(p) in the successive
iterations.

• Propagating facts to immediate parallel branches
of barrier nodes: Since parallel branches should have
symmetric information, copying the MHP facts in rel-
evant parallel branches is required for the soundness
of the analysis. If n is a barrier node and applying

Algorithm 2: Compute-BnJn-and-B←n
/* Initialization */
forall (n ∈ N) do

A(n) := ∅, J (n) := ∅,Bn := ∅,B←n := ∅
W := {(entry, n) : (entry, n) ∈ E}
/* Visiting each edge exactly once */
while (W 6= ∅) do

(n,m) := select(W)
W := W \ {(n,m)}
if (n : barrier) then

K := {x : x ∈ A(n), ∃n′ : task. x = a(n′)}
A(m) := A(m) ∪ A(n) \ K

else
A(m) := A(m) ∪ A(n)

J (m) := J (m) ∪ J (n)
Gen := {x : x = a(m)}
if (A(m) ∪ Gen) 6⊆ A(m) then

A(m) := A(m) ∪ Gen
J (m) := J (m) ∪ Gen
W :=W∪{(m, p) : (m, p) ∈ E}

forall (n ∈ N) do
if (n : task ∨ n : barrier) then

B←n := {b : b ∈ A(n), ∃p : barrier . b = a(p)}

if (n : join) then
Jn := {m ∈ N : m : task, ∃x ∈ J (n).X (x) =
a(m)}

if (n : barrier ∨ n : cond) then
forall (p : task ∈ N where a(p) ∈ A(n)) do

Bp := {a(n)}

transfer function fm to the set A◦(m) generates new
facts (i.e. A•(m) \ A◦(m) 6= ∅), then facts originated
at m are copied to other parallel branches connected
to n. In doing so, a temporary set T is obtained from
the set A•(m) \ A◦(m), but adding a p-tag to denote
that the atom comes from the relevant parallel branches.
However, facts like single barrier atoms or atoms whose
synchronisation is not yet decided, such as those syn-
chronised to d atoms (e.g. xFd), are not included into T ,
as propagating these facts in parallel branches would not
generate any valid MHP information. Next, the data-
flow information in A◦(m′) is possibly updated from
T and the worklist W may include the parallel edge
(n,m′), different from (n,m), by calling the function
updateWListandPropagateFacts described above. Thus,
theMHP facts created atm are copied into the setA◦(m′)
such thatm′ is in the immediate parallel branch ofm, and
(n,m′) is added to the worklist so that the new facts are
propagated through that branch. This is the application
of the Effect(n) function in Eq. (4) that updates the set
A◦(m′) due to changes in A•(m).

VOLUME 6, 2018 78975

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

• Propagating facts to distant parallel branches: If m
is a single or multi-task node that creates a new fact x,
but also receives fact py (with a p-tag), then the node k
representing fact y is a distant parallel node to m. Thus,
A◦(k) should receive the fact px due to symmetry, and
lines 14-20 in Algorithm 1 perform this task. Npar con-
tains the nodes k parallel to m. The set Tself contains all
atoms tagged with p originated in this branch excluding
lone barrier atoms, and atoms whose synchronisation is
not yet evaluated (e.g. y F d). Next, for each node k ∈
Npar placed at a parallel branch of m, if Tself contains
more elements than A◦(k) (i.e. Tself 6⊆ A◦(k)), Tself is
copied into A◦(k) and the parallel edge (k ′, k) ∈ E is
added into the worklistW to propagate this information
through this branch. This is another application of the
Effect(n) function in Eq. (4) that updates the set A◦(k)
due to changes in A•(m).

Algorithm 1 terminates when the fixpoint is reached, and
the sets A◦ and A• cannot get any new fact. Obtaining the
kill and gen sets require computing the Bn, Jn, and B←n sets.
Algorithm 2 computes these sets as follows:
• it uses the worklist W to traverse the edges of the PTG
in the forward direction.

• we maintain the sets A(n) and J (n) for each node
n ∈ N that might contain atoms of barrier nodes, task
nodes, or decision nodes.

• while visiting an edge (n,m) ∈ W , first, we transfer the
contents of A(n) to A(m) and J (n) to J (m). If n is a barrier
node, everything except task atoms is transferred toA(m)
as the tasks are to be synchronized with this barrier.
Next, we update A(m) and J (m) by including the atoms
generated from the node m, and schedule all successors
of m to W if the updated A(m) contains more facts than
the old A(m).

• We reach a fixpoint when W is empty. For each n ∈ N ,
B←n includes all the barrier atoms from A(n). For each
barrier or conditional node n, generating an atom x such
that A(n) includes the task atom t of node p, we then get
Bp = {x}. If n is a join node then, for all task nodes m of
Jn, the atom t of m is included in the J (n) set indicating
that n is reachable from m.

Now, one can get answers to the following queries from the
solution space.
Query 1. What are the tasks that may run in parallel with
the given task invoked from the given task-graph?

Assume that n ∈ N is single- or multi-task PTG node
invoking one or more tasks (i.e. gen(n) 6= ∅). The task atom in
gen(n) represents the task(s) that originates from n. All task
atoms (possibly synchronized with barrier atoms) in A•(n)
represent the tasks that are still active in this context, and thus
may run in parallel with the task(s) of n.Mn, the set of all pairs
of tasks invoked by n, and tasks that may run in parallel with
these, is defined by the following equation:

Mn = {(t1, t2) : t1∈S• \ S, t2∈S} ∪ {(t, t) : t+ ∈ S} (7)

where

S• = X (A•(n))
S = X (gen(n))

X (A) =
⋃
a∈A

{X (a)}

Query 2. What are the pairs of tasks invoked from a given
task-graph that may run in parallel?

All MHP facts for the PTG g = (N ,E) can be obtained as
follows:

Mg =

⋃
n∈N , n:task

Mn (8)

Example 1: Let us consider the PTG in Fig. 3. Let the
tasks Ti, and barriers Bi be represented by the t-atoms ti,
and b-atoms bi, respectively, for 1 ≤ i ≤ 5. The data-flow
analysis as explained above provides the followingMHP facts
(after removing the lonely b-atom and the symbol F for sim-
plification), as part of the sets A◦(n) and A•(n) respectively,
for all task nodes once the fixpoint is reached.
Node n A◦(n) gen(n)
n0 pt1b3, pt

+

2 b3, pt3b4, pt
+

4 t0b4
n1 pt0b4, pt

+

2 b3, pt3b4 t1b3
n2 pt0b4, pt1b3, pt3b4 t+2 b3
n3 pt0b4, pt1b3, pt

+

2 b3 t3b4
n4 pt0b4, pt5 t+4
n5 pt+4 t5
Node n A•(n)
n0 t0b4, pt1b3, pt

+

2 b3, pt3b4, pt
+

4
n1 pt0b4, t1b3, pt

+

2 b3, pt3b4
n2 pt0b4, pt1b3, t

+

2 b3, pt3b4
n3 pt0b4, pt1b3, pt

+

2 b3, t3b4
n4 pt0b4, t

+

4 , pt5
n5 pt+4 , t5
The following MHP facts are obtained from (7), and (8):

Mn0 = {(t1, t0), (t2, t0), (t3, t0), (t4, t0)}

Mn1 = {(t0, t1), (t2, t1), (t3, t1)}

Mn2 = {(t0, t2), (t1, t2), (t3, t2), (t2, t2)}

Mn3 = {(t0, t3), (t1, t3), (t2, t3)}

Mn4 = {(t0, t4), (t5, t4), (t4, t4)}

Mn5 = {(t4, t5)}

Mg = {(t0, t1), (t0, t2), (t0, t3), (t0, t4), (t1, t2),

(t1, t3), (t2, t3), (t5, t4), (t2, t2), (t4, t4)}

In Fig. 6 we can see how the MHP facts are reported back
to the UML model to allow the developer to grasp at a glance
the analysis results in relation to the task model (e.g., Mn0 is
represented in the figure by ’M_n_0’).
Worst-Case Asymptotic Complexity: Algorithm 1 per-

forms the data-flow analysis of a PTG which is a directed
acyclic graph. A PTG edge (n,m) is visited in each
iteration of the while-loop. For each successor p of m,
an edge is included into the worklist W by calling the

78976 VOLUME 6, 2018

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

FIGURE 6. MHP analysis results back-propagated to UML model.

updateWListandPropagateFacts function at line 8 if A◦(p)
does not contain all facts derived from A•(m). The two if
instructions at lines 9 and 14 cause some edges (in parallel
branches) to be visited more than once; the MHP facts are
copied into the relevant parallel branches if the facts are not
there yet, and parallel edges are stored into the worklist W
in order to visit them later. Thus, the number of times an
edge can be visited is controlled by the number of MHP facts
that can be present in its A set. Any such set may contain
task atoms, barrier and conditional atoms, and atoms due to
synchronisation between tasks and barriers.

Consider the PTG (N ,E) in which there are at most
t single-task ormulti-task nodes, and b barrier or conditional
nodes. AnA set can contain at most t task atoms, b barrier and
conditional atoms, and t task atoms synchronised with barrier
atoms by the operator F since a single task can synchronise
its execution with at most one barrier. This implies that the
maximum cardinality of anyA set is 2 ∗ t+ b. Thus, it holds
that |A| ≤ 2 · |N | since 2 ∗ t + b ≤ 2 ∗ |N |. Furthermore,
2·|E|·|N | is an upper bound on the number of times that edges
of the given PTG are visited by the algorithm. By choosing a
suitable data structure all set operations and transfer functions
can be computed in time O(|A|). So, O(|E| · |N |2) is the
worst-case asymptotic time complexity of the while-loop in
Algorithm 1.

Algorithm 1 calls Algorithm 2 to compute the B←n , Bn and
Jn sets. The complexity of Algorithm 2 is dominated by the
while-loop and the second for-loop. In the while-loop, the

A sets collect task, barrier or conditional atoms. The maxi-
mum size of any A set is t+b ≤ |N | and the set operations in
each iteration of the while loop thus take at most O(|N |) time
if choosing a suitable data structure for the sets. Moreover,
any particular edge can be visited at most |N | times due to
changes in the A set. Thus, the while loop of Algorithm 2 has
O(|E| · |N |) worst-case asymptotic time complexity. The sec-
ond for-loop iterates at most |N | times, computing B←n from
A(n) requires at most |N | operations, and the inner for-
loop iterates at most |N | times. Thus, the asymptotic worst-
case time complexity of the second for-loop is O(|E| · |N |),
and Algorithm 2 is O(|E| · |N |) by assuming |E| ≥ |N | in the
worst-case. Thus, the complexity of Algorithm 1 is dominated
by the while-loop which is O(|E| · |N |2).
Equations (7) and (8) are used to compute MHP facts after

completing the data-flow analysis. 2 · |N | is the upper bound
of the size of any A• set, and any gen set has at most one
element. Thus (7) requiresO(|N |) operations, and (8) requires
O(|N |2) operations.

B. COMMUNICATION AMONG TASK-GRAPHS
In this section, we consider scenarios in which PTGs may
communicate with each other. A task originated from one
PTGmay send a message to another PTG immediately before
finishing execution. Upon receiving the message, the second
PTG may invoke a task to execute. In Fig. 7 (a) and (b),
tasks are invoked from nodes n2 and n4 in PTGs g1 and g2

VOLUME 6, 2018 78977

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

FIGURE 7. Direct communication between PTGs g1 and g2: node n5 in PTG g2 sends a message to g1 which should be captured at m1. Dataflow analysis
in Algorithm 1 can be performed over the combined PTG in Fig. (c). (a) PTG g1. (b) PTG g2. (c) A PTG obtained by combining g1 and g2.

upon receiving messages m1 and m2 respectively. The MHP
analysis in Section V-A is only able to compute MHP facts
from individual PTGs and does not consider the implicit
dependencies created due to message transfers among PTG
nodes of different PTGs. Thus, applying Algorithm 1 on
communicating PTGs will only give us partial results. For
example, consider the PTGs g1 and g2 in Fig. 7. The previous
MHP analysis will completely miss any MHP facts involving
node n2 as the edge from n2 to the join1 node will never
be included into the worklist during the fixpoint iteration.
Similarly, node n4 of PTG g2 will also not be taken into
account in the MHP analysis results. Moreover, any inter-
PTG parallelism (i.e. MHP facts involving tasks originated at
different PTGs) between g1 and g2 will also not be generated.
Our solution to this scenario is to (i) combine the communi-

cating PTGs into a single PTG by connecting the relevant task
and barrier nodes such that the semantics of message send and
receive is retained, and (ii) perform the analysis specified in
Section V-A. For this, we need to identify the tasks that send
messages and their destinations. These message send options
are not explicitly modelled in the PTGs, but rather carried by
the behavioural DSP C code of the related tasks; therefore,
we need to syntactically analyse the code. We detect the mes-
sage senders and receivers by traversing the abstract syntax
tree of the C code and look for the particular commands
sending messages. After analysing the C code, we obtain a
set of pairs of PTG nodes such that each pair (n,m) consists
of a task node n sending a message (i.e. the task invoked from
n sends a message before its termination) which is received
by the node m.

Suppose we have two PTGs g1 = (N1,E1) and g2 =
(N2,E2), and the set {(n1,m1), . . . , (nk ,mk)} of message
senders and receivers. We also assume the set of mes-
sage receiving nodes {mk+1, . . . ,mk+j} ⊂ N1 ∪ N2 for
which no message senders are either obtained due to lack
of information, or outside the scope of graphs g1 and g2.
We then connect these PTGs according to the following
definition:

Definition 2 (Combining PTGs): We obtain the combined
PTG (N ,E) as follows:
1) N = (N1 ∪ N2) \ {e1, e2,mk+1, . . . ,mk+j} ∪
{e, q, q1, . . . , qk}where e1, e2 are the entry nodes of g1
and g2, e is the new entry node of the combined PTG,
and q, q1, . . . , qk are k + 1 new barrier nodes,

2) E is the least set of edges satisfying the following:
a) (E1 ∪ E2) \ E ′ ⊆ E where E ′ = {(e1, b1),

(e2, b2), (m1, l1), . . . , (mk+j, lk+j)}, b1, b2 are the
successors of the entry nodes e1, e2, and li is the
successor node of message receiving node mi for
i = 1, . . . , k + j,

b) {(e, q), (q, b1), (q, b2), (q1, l1), . . . , (qk , lk)} ⊂ E ,
where q, q1, . . . , qk are new barrier nodes,

c) {(n1, q1), . . . , (nk , qk)} ⊂ E , that is: each mes-
sage sending node ni is connected to the barrier
node qi,

d) for any (ni, n′i) ∈ E1 ∪ E2 holds that (qi, n
′
i) ∈ E ,

e) finally {(q, lk+1), . . . , (q, lk+j)} ⊂ E , connecting
the barrier node q, which is connected with the
new entry node, to all nodes connected with the
message receiving nodes for which no message
senders are known.

Intuitively, for each task node ni ∈ N1 ∪ N2 sending a
message received by mi ∈ N1 ∪ N2, we:
(i) introduce a new barrier node qi ∈ N and an edge

(ni, qi) ∈ E ,
(ii) remove the edge (ni, n′i) ∈ E1 ∪ E2, if any, and add the

edge (qi, n′i) ∈ E , and
(iii) remove the edge (mi,m′i) ∈ E1 ∪ E2 but add the edge

(qi,m′i) ∈ E .
For example, in Fig. 7(a) (b), assume that the task originated
from node n5 in g2 sends a message which is supposed to be
received by m1 in g1. In Fig. 7(c), we include a new barrier
node n6 and the edges (n5, n6), (n6, n1), and (n6, join2) but
remove the edges (n5, join2), and (m1, n1).Moreover, for each
message receiving node mi for which no message sender is

78978 VOLUME 6, 2018

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

known, we remove the edge (mi,m′i) but add an edge (q,m′i)
where q is the new barrier node connected with the new entry
node. The reason for this connection is to assume the worst-
case scenario that the message has arrived at the beginning.
For example, in Fig. 7(b), the message sender for m2 is not
known; we thus introduce the edge from the new barrier
node n7 to n3 which was connected with m2.
If we have multiple communicating PTGs, we connect

them in a pairwise fashion according to Definition 2, and
finally, perform the analysis in Section V-A to get the MHP
results.

C. TASK-PARALLELISM IN MULTIPLE TASK-GRAPHS
Here, we consider PTGs that may run in parallel but do
not communicate explicitly via messages among themselves.
Rather, one graph may send a message to an actor that
may invoke another graph and run in parallel. So, even
though there is no explicit connection between them, there
are implicit dependencies that should be taken into account
in order to be precise. Let us consider two PTGs g1 and g2
being executed in parallel. Two tasks invoked from two differ-
ent PTGs running in parallel do not synchronise their actions
with any barrier, as barriers are task-local. If there are no
other means of synchronisation, any task invoked from the
first graph may run in parallel with another task invoked from
the second graph. Suppose T1 and T2 are the sets of task atoms
generated from the PTGs g1 and g2. One may be tempted to
compute the MHP facts for g1 and g2 as follows:

Mg1‖g2 =Mg1 ∪Mg2 ∪ T1 × T2 (9)

where T1 × T2 = {(t1, t2) : t1 ∈ T1, t2 ∈ T2}.
There are two potential problems in applying Eq. (9) to

compute all MHP facts from a parallel application. Even
though tasks invoked by two different PTGs running in par-
allel do not synchronise their actions explicitly via barriers,
there may still be implicit dependencies and Eq. (9) may pro-
vide imprecise results in such cases. A running task may send
a message to an actor, which in turn can invoke a new task-
graph. Clearly, all tasks that are invoked by the first graph,
and have finished their execution before the message is sent,
will not execute in parallel with the tasks invoked by the new
task-graph. The second potential problem is the generaliza-
tion of the previous computation for n > 2 PTGs. Thus,
we need a more precise method to compute the MHP facts
of n task-graphs running in parallel.

To achieve a more precise analysis, we need a prece-
dence or exclusion relation � among tasks invoked from a
PTG based on the task invocation and completion order, and
the mutual exclusion property of task invocation. t � t ′ will
hold if either t has finished execution before t ′ starts, or only
one of t or t ′ can be invoked from the originating PTG.
If t � t ′, where the PTG g is invoked by the task t ′ (i.e. t ′

sends a message by to an actor), then we know that any task
invoked from g can never run in parallel with t; including
this information will give us more precise results. t � t ′ also
implies that t and t ′ cannot run in parallel. The analysis to

determine if two tasks cannot execute together is historically
called Cannot-Happen-Together (CHT), or non-concurrency
analysis [18]. The CHT problem is the inverse of the MHP
problem. A task pair (t1, t2) is in the solution of the CHT
problem iff it is not in the solution of the MHP problem.
However, just by knowing that (t1, t2) is in the solution of
the CHT problem, we cannot tell whether t1 � t2 or t2 � t1
is true. Thus, the relation � carries more information about
the possible order of task executions than the MHP facts
computed by the MHP analysis in Section V-A.
Definition 3 (Precedence or Exclusion (POE) Rela-

tion �): The POE relation � is the union of the strict
precedence relation G and the mutual exclusion relation O
(i.e. �= G ∪ O), where G and O are defined as follows:

• t G t ′ holds iff t has finished execution before t ′ starts,
and

• tOt ′ holds iff either t or t ′ (but not both) can be invoked
from the originating PTG.

Note that G is transitive, andO is symmetric. We can obtain
an under-approximation of the strict precedence relation G
from the following static properties of PTGs:
tGt ′ holds iff there exists a path from a task node generating

atom t to the task node generating t ′ and the path includes a
barrier node in-between.

The existence of the barrier node in between ensures that
t has finished running before t ′ starts. Thus, the relation G
among tasks invoked from PTG g can be obtained by solving
the graph reachability problem. In particular, we perform the
following graph reachability problem after completing the
data-flow analysis illustrated in Section V-A.

We navigate the PTG g forward from all barrier nodes.
Suppose n is a barrier node, and A◦(n) contains the MHP
facts valid immediately before node n. Then, X (kill(n) ∩
A◦(n)) contains all task atoms representing the tasks invoked
from g and that have completed their execution. During the
navigation of the PTG g from node n, we consider all reach-
able single- or multi-task nodes m. As m is reachable from n,
we thus infer t � t ′ for all t ∈ X (kill(n) ∩ A◦(n)) and
t ′ ∈ gen(m).
The mutual exclusion relation tOt ′ holds if t and t ′ are

originated at mutually exclusive branches. Intuitively, if t is
originated in the true branch, then t ′ is originated in the false
branch of a cond node, or vice versa. Nodes n1 and n2 are at
the mutually exclusive branches of a PTG g iff there exists a
cond node m such that m has two sucessor nodes m1 and m2,
there exist paths [m1..n1] and [m2..n2] and there does not
exist paths [m1..n2], and [m2..n1]. However, we can obtain
the relation O from the solution of the MHP problem and the
relation G by considering the following facts:

• the CHT problem is the inverse of theMHP problem (i.e.
CHT = MHP).

• the CHT solution includes the relation G and O (that is,
CHT = O ∪ {(t1, t2), (t2, t1) : t1 G t2}), and

• O is symmetric.

VOLUME 6, 2018 78979

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

Thus, we obtain O according to the following equation:

O = MHP \ (G ∪ {(t1, t2) : (t2, t1) ∈ G}) (10)

Algorithm 3 describes how the analysis infers the POE
relation � from the PTG g = (N ,E). The while loop
(lines 4-15) computes the strict precedence relation G and line
16 computes the final POE relation � from the equation 10.
Note that all task pairs (t1, t2) 6∈ Mg that are not computed
by the while loop in Algorithm 3 must be in the mutually
exclusive branches of the graph g. We included all such pairs
(t1, t2) and (t2, t1) in thePOF relation. The expressionV [n←
true] denotes an array for which V [n← true][m] = V [m] if
n 6= m, and V [n← true][n] = true.

Algorithm 3: PrecedenceOrExclusionRelation

/* Initialization */
1 forall (n ∈ N) do V [n] := false
2 W := {(n,F,V ′) : F = X (kill(n) ∩A◦(n)), n ∈
N ,F 6= ∅,V ′ = V }

3 PO := ∅
4 while (W 6= ∅) do
5 W := W \ {(n,F,V) : (n,F,V) = select(W)}

/* Remove from W */
6 forall ((n,m) ∈ E where V [m] = false) do
7 if (n : task) then
8 PO := PO∪{(t, t ′) : t ∈ F, t ′ ∈ X (gen(m))}
9 F ′ := F ∪ {t : t ′ ∈ X (gen(m))}

10 W := W ∪ {(m,F ′,V [n← true])}
11 else
12 W := W ∪ {(m,F,V [n← true])}
13 end
14 endfor
15 end
16 POF := PO ∪ {(t1, t2), (t2, t1) : (t1, t2) 6∈Mg, (t1, t2) 6∈
PO, (t2, t1) 6∈ PO}

17 return POF

Example 2: Consider the MHP facts generated in
Example 1, and the barrier node b3 in the PTG in Fig. 3.
The set of tasks that have completed their execution after
node b3 is X (kill(b3)∩A◦(b3)) = {t1, t2}. Next, we navigate
the PTG in the forward direction and reach the single-task
node t5 such that gen(t5) = {t5}. Thus, we infer the relations
t1 � t5 and t2 � t5.
Let us consider two parallel PTGs g1 and g2 such that

a task t invoked from the PTG g1 sends a message to an
actor invoking g2. Suppose that we have computed the POE
relation � among tasks referred in g1. Next, we filter out all
task atoms from T1 that have completed their execution before
task t started, and compute the set T �t1 as:

T �t1 = {t
′
: t ′ ∈ T1, t ′ 6� t, t ′ 6= t}

The following equation defines the set of pairs of tasks
invoked from PTGs g1 and g2 that may run in parallel, and

provides more precise results than equation 9:

Mg1‖g2 =Mg1 ∪Mg2 ∪ (T
�t
1 × T2) (11)

In order to generalize (11) for more than two PTGs,
we need contextual information of PTGs that should indicate
if one is originated due to the action of another PTG. Let us
consider that, for every PTG g, we have a unique context
C(g) = 〈t, g′〉 denoting that g is originated due to sending
a message from the task t invoked by the PTG g′. If g is
not originated due to the action of another PTG, then its
contextual information is set to C(g) = ⊥. On one hand,
the uniqueness constraint of contextual information forbids
two different PTGs being present in the same PTG context.
On the other hand, it allows the same PTG to be present in
the context of two different PTGs, meaning that two different
PTGs can originate due to the actions of a single graph.More-
over, we forbid creating cycles of context information of the
form C(g1) = 〈t1, g2〉,C(g2) = 〈t2, g3〉, . . .C(gk) = 〈tk , g1〉
as it does not make any sense that gk is originated due to the
action of g1 which in turn invokes g1. We also extend the POE
relation � among the inter-PTG tasks such that t ′′ � t ′ holds
for all t ′ ∈ Ti, t ′′ ∈ Tj but either t ′′ � t or t ′′ = t for the
context C(gi) = 〈t, gj〉. Clearly, all tasks t ′′ of Tj has finished
execution before Ti is invoked. Algorithm 4 describes how
to compute the MHP facts for n PTGs in the presence of
contextual information.

Algorithm 4:MayHappenParallelTasks(T = (V ,R),C)

1 Mg1‖...‖gη :=
⋃

i=1...nMgi

2 ∀1 ≤ i ≤ η.Facts[i] := ∅
3 while (R 6= ∅) do
4 Selectgi→ gj ∈ R such that ¬∃gk .gk → gi ∈ R

(t, gi)← C(gj)
5 Tprev := {t ′ : (t ′, t ′′) ∈ Facts[i], t ′ 6� t, t ′ 6∈ Ti}
6 T �ti := {t

′
: t ′ ∈ Ti, t ′ 6� t, t 6= t ′}

7 Facts[j] := Facts[j] ∪ T �ti × Tj ∪ Tprev × Tj
8 if ¬∃(gi→ gk ∈ R ∧ j 6= k) then V := V \ {gi}
9 R := R \ {gi→ gj}

10 Mg1‖...‖gη :=Mg1‖...‖gη ∪ Facts[j]
11 end
12 while (gi, gj ∈ V ∧ i 6= j) do
13 Facts[i] := Facts[i]× Facts[j]
14 Mg1‖...‖gη :=Mg1‖...‖gη ∪ Facts[i]
15 V := V \ {gj}
16 end
17 returnMg1‖...‖gη

Suppose that we have η parallel PTGs g1, . . . , gη, and
C(gi) is the context information of gi for all i = 1, . . . , η.
A graph of PTGs T = (V ,R) can be constructed from the
contextual information where V = {g1, . . . , gη} is the set
of vertices, and R = {gi → gj : C(gj) = 〈t, gi〉, 1 ≤
i, j ≤ η} is the set of edges. T must be a forest (i.e. multiple
disjoint trees) due to the possible disjointness of edges and
the unique context information. Note that the unique context

78980 VOLUME 6, 2018

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

FIGURE 8. Tree structure of PTGs processed by Algorithm 4. Thick edges are the edges currently being processed.

constraints and the prohibition of forming cycles of contex-
tual information make T an acyclic graph. For any gk ∈ V ,
and gi → gj ∈ E , it may be the case that gi is the only
parent of gj, and gk is not connected with either gi or gj.
Intuitively, Algorithm 4 computes global MHP facts as
follows:
• The global MHP facts Mg1‖...‖gη include all local MHP
facts Mgi obtained from the data-flow analysis for each
graph gi for i = 1, . . . , η (line 1).

• Next, we consider all edges gi → gj ∈ R such that gi
is the current root node of a tree in T. MHP facts of
two combined PTGs gi and gj are computed by applying
part of Eq. (11) (line 7). Tprev contains all tasks that
are active when the PTG gj is invoked and may run in
parallel with the tasks invoked from gj. If vertex gi has
only one successor, then it is removed from V (line 8)
as Facts[j] contains the MHP facts for the two combined
PTGs. The edge gi → gj is removed from E as well,
and the computed facts are stored into the global MHP
facts Mg1‖...‖gη . This process is repeated (lines 3-11)
until there are no edges in T, and Fig. 8 illustrates this
process.

• T now consists of the set V of isolated vertices, and for
any gi ∈ V , Facts[i] contains combined MHP facts for
all PTGs connected with gi. The final facts are computed
by repeatedly applying the operator × over Facts[i] and
Facts[j] such that gi, gj ∈ V , and are stored into the
global MHP facts (lines 12-15). We define the operation
Facts[i]× Facts[j] as follows:

Facts[i]× Facts[j] =
⋃

k,l∈{1,2}

T(i,k)×T(j,l)

where,
– Tp,1 = {t : ∃t ′.(t, t ′) ∈ Facts[p]},
– Tp,2 = {t : ∃t ′.(t ′, t) ∈ Facts[p]}, and
– p ∈ {i, j}.

Worst-Case Asymptotic Complexity: Algorithm 3 com-
putes the POE relation after the data-flow analysis and
its complexity is dominated by the while-loop. Initially,
the worklist contains information of all barrier nodes. For
each barrier node, all reachable nodes from the barrier node
are visited exactly once. Thus, the loop iterates at most b · |N |
times (let b be the maximum number of barrier nodes in any
PTG). All operations in the while-loop require constant time
except the computation of the PO set that requires linear time
with respect to the size of the F set. The size of F is bounded

by the upper bound 2 · |N | on the size of the A set. Line 16
computes the final partial orders in POF set which can be
computed by at most |N |2 iterations. Thus, the complexity of
Algorithm 3 can be expressed by O(b · |N |2).
Let us consider the PTGs (Ni,Ei), for any 1 ≤ i ≤ η,

and Algorithm 4, which computes MHP facts for η PTGs.
We break the complexity analysis of this algorithm into the
following stages:

• The complexity of line 1, which combines Algorithm 1,
with complexity O(|Ei| · |Ni|2), and Equation 8, with
complexityO(|Ni|2) to η PTGs (Ni,Ei) for i = 1, . . . , η,
can be expressed by O(η · |E| · |N |2) where |E| =
max(|E1|, . . . , |Eη|) and |N | = max(|N1|, . . . , |Nη|).

• The complexity of the algorithm is further dominated by
the × operations at line 6 and 12.

• Line 6 requires computing the POE relations for the
PTGs with complexity O(b · |N |2). The total com-
plexity of computing the POE relations for η PTGs is
O(η · b · |N |2).

• Let us assume that the maximum number of pairs of
tasks in the Facts[i] set is k for all 1 ≤ i ≤ η. Com-
puting the set Facts[i]�t requires computing the partial
order relation with complexity O(b · |N |2) followed by
the set operations with linear complexity with respect
to the size of the set Facts[i] which is proportional
to k . Facts[i]�t may contain at most k elements. The
instruction Facts[i]×Facts[j] will compute k2 elements
with complexity O(k2). The two while-loops control
the maximum number of × operations. The first while-
loop will iterate at most the number of edges of the
forest T, and the second while-loop will iterate at most
the number of isolated vertices after removing all edges
in the first loop. If the forest T is a tree, the second
loop will not iterate at all, and if T does not have any
edge, the first loop will not iterate at all. Since each PTG
has a unique context T can have at most η − 1 edges,
and the maximum number of times the × operation can
be applied is η − 1. Thus, since the cost of each ×
operation isO(k2) and each operation produces elements
in a multiplicative manner, the complexity of the two
while-loops is O(kη).

• Themaximal number of elements in anyFact[i] set k can
be proportional to |N |2 (at initialization) even though it
is much less in practice. Thus, the worst-case complexity
of the two while-loops is O(|N |2η), which is also the
worst-case complexity of Algorithm 4.

VOLUME 6, 2018 78981

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

D. WHOLE SYSTEM ANALYSIS
In Sec. V-C, we assume that we have η parallel PTGs gi =
(Ni,Ei) and their contextual information C(gi) for 1 ≤ i ≤ η.
In this section we define a method to systematically identify
an overapproximation of all those PTGs gi that may run in
parallel, and their contextual informationC(gi). These results
can be used by Algorithm 4 to compute the global MHP facts.
We focus on a system that starts its execution by creating a
number of actors. We are interested in those actor behaviors
that either invoke PTGs or create other actors based on the
type of the received message. Intuitively, we perform the
whole system analysis in the following steps:
• First, we define a generic context-free grammar (CFG)
that captures various kinds of code parallelism and
dependencies in any actor-based system developed
according to the computational model in Sec. II.

• Next, we scan the related code and generate an instance
of the previously defined CFG. The generated instance
of the CFG captures parallelism and dependencies spe-
cific to the given system.

• The parallelism in the system is detected by analysing
the strings that are generated by the instantiated
grammar.

1) DEFINING THE GENERIC CFG
We assume a unique nonterminal symbol for each kind of
actor, multiple actors of the same kind, actor receiving a
specific kind of message, and PTG. We also assume a unique
terminal symbol (atom) for each task and PTG. Fig. 9(a)
illustrates the generic CFG that we defined for capturing
various code dependencies and parallelism, and we would
like to generate an instance of it. In the following, we discuss
the production rules of the CFG.

FIGURE 9. (a) Generic CFG capturing parallelism and dependencies
among actors, PTGs, and tasks. (b) An instance of (a) having two actors
receiving three different types of messages and invoking three PTGs.

S is the initial nonterminal symbol of the grammar. The
right-hand side of the ActInit rule contains nonterminals rep-
resenting the various kinds of actors created initially. We do
not keep information of all actors of the same kind as they
will have similar behaviors (i.e create similar PTGs or similar
actors) and there may be infinitely many such actors. Rather,
if several actors of the same kind are created, we create
the nonterminal (say A) representing one of the actors and
another nonterminal (say A∗) representing other actors of that
kind running in parallel with the actor that A represents. This
abstraction is sound, since it creates an overapproximation
of all MHP facts. The third production rule (Actor) states
that each actor may receive different types of message and
dispatch them one by one, or have no observable behavior
(ε). We assume that the message type can be determined
statically and this reflects our benchmark application code.
Each actor receiving a specific kind of message is represented
by a unique nonterminal symbol in the grammar. The fourth
rule (ActMsg) states that, on receipt of the message, the actor
may create a new actor, invoke a PTG, or simply ignore the
message. The fifth rule (TaskGraph) is applicable when a
PTG is invoked by an actor and it generates a unique graph
atom (from GAtom) for the PTG (e.g. g representing that
PTG) followed by a nonterminal representing one or more
kinds of tasks invoked by the graph. The final rule either gen-
erates an empty string, or a string, e.g.

t
−→, where the terminal

symbol t represents the Task generated by the TaskAtom,
followed by the nonterminal ActMsg representing an actor
receiving a specific kind of message. This grammar captures
parallelism of both actors and PTGs, as well as dependencies
like actors creating other actors, or invoking PTGs due to a
task action (i.e. sending messages).

2) GENERATING AN INSTANCE OF THE GENERIC CFG
Let us now describe the step-by-step procedure to create an
instance of this generic CFG. The input to this procedure is
the abstract syntax tree (AST) of the corresponding system
and the PTGs. We start by navigating the ASTs of the system
initialization procedure and the actor code. The steps are the
following:

1) First, we get a list of actors created during system ini-
tialization and create the nonterminals Ai (i ≥ 1) for the
created actors. If there are multiple actors of the same
kind, we create two nonterminals Ai and Ai+1: Ai is the
unique actor and Ai+1 represents the remaining actors.
Two production rules, ActInit → par(A1, . . . ,An) and
S → ActInit , are created, where n is the number of
representative actors. Suppose Actors is the set of all
actors contained in the right side of the ActInit rule.
Next, we perform steps 2-6 for each actor in Actors.

2) For each actor Ai in Actors that is not yet processed,
we navigate the AST of the corresponding actor code,
statically determine the different types of messages
being handled by an instance of this actor, and mark
Ai as processed.

78982 VOLUME 6, 2018

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

3) We create a unique nonterminal AMj (j ≥ 1) for each
type of message being handled by Ai and create the
production rule Ai → AMj. If no such message is
found, we create the production rule Ai→ ε.

4) We navigate the AST of the message handler for each
type of actor message AMj created in the previous step.
We create the production rule AMj→ A if the message
handler creates a new actor, where, the unique nonter-
minal A represents the created actor. A is created afresh
if Actors does not contain an actor representing either
the type of A, or multiple actor instances of type A.
If A is created anew, then it is included into the Actors
set. However, if the message handler invokes a PTG,
then we produce AMj → TG, where TG represents the
PTG being invoked.

5) For each created PTG TG in the previous step, we visit
the nodes of the PTG and obtain the set Tsk of tasks
invoked from the graph.We create the rules Tasks→ T
for each T ∈ Tsk , and the rule TG→ g Tasks where g
is the fresh atom representing the PTG TG.

6) We visit the AST of each task T invoked in the pre-
vious step and identify the message send instructions
(if any) in T . We create the rule T

t
−→ AM for each

such message send instruction, where t represents the
unique terminal symbol for task T , and AM represents
a specific type of actor receiving an specific kind of
message created in step 3. However, we create the rule
T → ε if no such message send instruction exists in
the AST of T .

Example 3: Fig. 9(b) shows an example of the CFG gen-
erated from code containing two different actors A1 and A2.
Actor A1 may receive messages of type AM11 and AM12.
Similarly, AM21 is the type of the message that actor A2
may receive. Note that A1 and A2 are the abstract represen-
tation of the created actors overapproximating their behavior.
A1 (and A2) invokes PTGs of type TG1 and TG2 (TG3). PTG
TG3 invokes a task sending a message of type AM12 to A1.
The set of terminal symbols in this CFG is {g1, g2, g3, t}.

3) ANALYSIS OF THE GENERATED STRINGS
Once the grammar is obtained, the next step is to build
valid sentences stating which PTGs to be invoked in parallel.
There are efficient techniques to infer all sentences of a
given length from a CFG (see e.g., [19], [20]). Note that
the language of the generated CFG may be infinite, but
it is sufficient to infer finite sentences capturing all MHP
behaviors. This is because the MHP computation problem
infers all pairs of program instructions that possibly execute
in parallel, and there is only a finite number of program
instructions.

We generate all valid strings of the form par(T1, . . . ,Tk),
where Ti is a tree whose nodes are PTG atoms. Edges have
the form

t
−→ and t indicates a task atom. Let us assume the

production S → par(A1, . . . ,Ak), and that the code contains
n > 0 different types of PTGs. Next, we shall apply a string

enumeration technique to generate all valid strings from each
nonterminal Ai containing at most 2n PTG atoms such that
there does not exist more than two atoms representing the
same kind of PTG. We record the generation of the PTG
atoms during the string enumeration procedure in order to
keep track of the maximal number of generated atoms of the
same kind. Thus, for instance, if two strings g1

t2
−→ g2 and

g1
t3
−→ g3 are generated, we get a tree with g1 as the root

node, and the two branches g1
t2
−→ g2 and g1

t3
−→ g3. For

any generated string g1
t2
−→ g2 (for example), we obtain the

contextual information C(g2) = 〈t2, g1〉.
Many techniques are available to enumerate strings of a

fixed length from a given CFG. For the completeness of this
paper, we present an iterative algorithm to generate fixed
length strings according to [19], which is based on the stan-
dard inductive concatenation scheme. Suppose P is the set of
productions, N is the finite set of nonterminal symbols, and
6 is the finite set of terminal symbols of the given grammar.
We generate the grammar according to Fig. 9(a) and convert
it to Chomsky Normal Form (CNF) [21], that does not have
any ε-productions, and all productions are in the following
form:

Nonterminal production: A→ BC, with B,C ∈ N
Terminal production: A→ a, with a ∈ 6

Suppose P contains the productions in CNF form. Let Ai

denote the set of all strings generated by the nonterminal A
in iterations 0 to i. For each nonterminal A ∈ N , we compute
the following set of strings iteratively:

A0 = {a ∈ 6|A→ a ∈ P}
Ai+1 = A0 ∪ {u.v | ∃B,C ∈ N : A→ BC ∈ P ∧ u ∈

Bi ∧ v ∈ C i
}

Thus, for the production S → par(A1, . . . ,Ak) ∈ P , we gen-
erate all strings of length at most 2n for each nonterminal Ai
by using the above iterative method. More details can be
found in [22].
Example 4: Let us consider the CFG in Fig. 9(b). The

CNF of this grammar without ε-production and including the
first production is as follows:

S → par(A1,A2)

A1 → g1 | g2
A2 → GA3 T3

GA2 → g2
GA3 → g3
T3 → TA GA2

TA →
t
−→

We obtain the results presented in Table 1 by applying the
string enumeration technique explained above.

VOLUME 6, 2018 78983

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

TABLE 1. String enumeration steps on the CNF grammar.

Thus, the enumeration algorithm generates the following
valid sentences:

par(g1, g3
t
−→ g2), par(g2, g3

t
−→ g2)

Thereby, we have two scenarios. In the first one g1 and g3
may run in parallel, and at some point g3 invokes a task
that introduces g2 to run in parallel with both g1 and g3.
The second scenario is similar, except for the fact that g1 is
replaced by g2.
Worst-Case Asymptotic Complexity: The steps in generat-

ing a CFG from an actor-based system can be optimized so
that the ASTs and the PTGs are not visited more than a fixed
number of times. Thus, the complexity of generating a CFG
is linear with respect to the size of the system. Enumerating
finite-length strings from the CFG by the presented iterative
algorithm takes lower degree polynomial time with respect to
the size of the generated string [22].

E. INSTRUCTION-LEVEL PARALLELISM
Our analyses are able to infer all task-level parallelism
invoked from the PTGs. However, it may be required to
infer instruction-level parallelism of the parallel program-
ming code used by the actor systems. We infer instruction-
level parallelism as follows. Suppose M contains the global
task-level MHP facts. Given any task t , assume that ins(t)
denotes the set of all instructions belonging to the task t . The
following equation infers instruction-level MHP facts from
the results in M:

iM = {(p, q) : p ∈ ins(t), q ∈ ins(t ′), (t, t ′) ∈M}

VI. IMPLEMENTATION AND EXPERIMENTAL SETUP
We targeted telecom systems in which the behaviour of
actors is implemented with pthreads, PTGs are represented
by XML-based graphs, and tasks are written in DSP C. The
systems include components such as uplink, downlink, and
scheduling. Each of the components has its own actor model,
a different set of PTGs and tasks. For the implementation we
used SWI-Prolog7 to implement Algorithms 1-4. We chose
SWI-Prolog mainly to use (i) the logical inference engine
provided by the language, and (ii) the XML library since
PTGs are described in an XML-based format. After parsing
the XML files, we store the PTGs as Prolog predicates and
perform the data-flow and MHP analysis on those predicates.
For each single- or multi-task node, the XML file specifies

7http://www.swi-prolog.org/

the name of the initial function and the location of the code to
invoke that task. The relevant code of each task is distributed
over multiple files. The application is written in DSP C.

We developed a tool called Racer to detect data races in the
Clang/LLVM framework.8 Tasks send and receive messages
by invoking special functions. We generate the AST of the
code in Clang and traverse it to detect functions sending and
receiving messages. The AST traversal algorithm is imple-
mented in the Racer tool by using the Clang AST matcher
library.

Even though the source code of each task is distributed over
many files, we are only aware of the location of the initial
function from which the task starts execution. The XML file
also provides the name of the directories containing C files;
while some of C files belong to a given task, some others do
not. The message transfer events of each given task may be
located in a function, deep into the call hierarchy from the
initial function. So, we generate the call graph of each task
and perform a reachability check of functions sending and
receiving messages from the initial function. The reachability
check confirms the owner of the message transfer events,
i.e., the specific task. The DSP C code includes function
pointers, thus we implemented Steensgaard’s pointer anal-
ysis [23] to resolve function calls through pointers that are
used during the call graph construction. We used this sound
(but less precise) analysis since it scales to millions of lines
of code. Our MHP analysis tool also builds the compilation
database of all C files for all tasks. This compilation database
is used by the Racer tool to parse the C files and generate
the ASTs.

All experiments have been performed on a Linux x86-64
machine with a 2.30 GHz processor. The benchmark appli-
cation code was obtained from an industrial repository in
the telecom domain.9 Time was measured by the ‘‘time’’
predicate of SWI-Prolog, which gives time in seconds as a
floating point number with 3 digits after the decimal point
precision.

VII. EXPERIMENTAL RESULTS
Table 2 provides the experimental results performed on our
benchmark application. The columns #Node and #Tasks spec-
ify the size of PTGs and the actual number of tasks, each
related to DSP C code. The #Pairs(MHP) column indicates
the number of pairs of tasks that may run in parallel, which
is obtained from Eq. (8) after the analysis of Algorithm 1.
The column Time (Algorithm 1) specifies the execution time
required by the data-flow analysis, while Time (total) spec-
ifies the total running time including parsing, generating
PTGs in prolog format, and generating compile commands
for Clang (among other implementation specific jobs). The
#Events column gives the total number of messages received
by the PTGs. TheMLOC column gives the number ofmillions

8https://clang.llvm.org/
9Note that for confidentiality reasons, we cannot disclose details of the

code used for the experiments.

78984 VOLUME 6, 2018

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

TABLE 2. Example benchmarks and results of MHP analysis (via Algorithm 1).

of lines of DSP C code searched for the message transfer
instructions. The Time (C Code) column shows the execution
time of the Racer tool required to find the tasks sending
messages, and the Time (CG) column shows the time required
to build and analyse the call graph of the relevant code. All
times are measured in seconds except Time (CG), which is
measured in milliseconds.

The results in Table 2 come from the analysis of PTGs
individually. As the final row indicates, we required only
80 seconds for the total processing time generating 3424 pairs
of tasks that may run in parallel. The data-flow analy-
sis performed by Algorithm 1 requires only ∼43 seconds.
PTG G10 contributes with most MHP-pairs and requires the
longest analysis time (27 seconds by the implementation of
Algorithm 1). Comparing the results of PTGs G8 and G9, G8
has more task nodes and requires longer analysis time, but
less total number of nodes and produces less MHP pairs.
This reveals that it is the number of tasks that most heavily
influences the execution time of data-flow analysis. This is
theoretically correct since a bigger number of task nodes
(along with barrier nodes) generates more facts and requires
more time to reach a fixpoint. However, the graph structure
should also influence the execution time of the data-flow
analysis, as illustrated later in this section.

The last 6 PTGs (i.e. G5–G10) are involved in message
transfer events for which we analysed 36.57 MLOC (DSP C)
in approximately 7 minutes in order to find tasks involved in
message transfer events. The reason for such a short analysis
time, considering the huge number of code lines, is that
(i) Steensgaard’s pointer analysis requires almost linear time,
(ii) the complexity of our AST traversal algorithm is linear,
and (iii) building call graphs and reachability check in any
call graph require at most linear time with respect to the
size of the code. We performed the reachability check on the
call graph of a given task in a bottom-up manner in order
to confirm whether the method sending messages is reach-
able from the tasks’ initial method (i.e. the task is sending
a specific message). The Time (CG) column indicates that
building and analysing call graphs requires very negligible
time compared to the total time required to identify message
transfer events. Moreover, the time to identify the message
transfer events is 5.6 times bigger than the total processing

FIGURE 10. Comparing the number of MHP pairs (Y-axis) of different
PTGs (X-axis). The X-axis represents 10 different test cases each
containing 3 PTGs. The third PTG is the combination of the first and
the second (or a copy of the first) PTG.

time of the graphs (including data-flow analysis of individual
PTGs). However, once the analysis of the C code for finding
message transfer events is completed, no further code analysis
is required and detecting parallelism among multiple PTGs
can benefit from it.

Table 3 provides the MHP analysis results obtained from
Algorithm 1 after combining relevant PTGs according to
Section V-B. As seen from the table, the number of task
nodes in PTGs usually dominate the analysis time and the
number of MHP pairs. One exception is the case in which
we analysed the combination of PTGs G5,G7,G9. All these

TABLE 3. Results of MHP analysis (via Algorithm 1) after combining PTGs.

VOLUME 6, 2018 78985

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

FIGURE 11. Comparing the number of MHP pairs (Y-axis) obtained from
Algorithm 1 and Algorithm 4 of different PTGs (X-axis).

PTGs are involved in heavy communication and therefore
data-flow facts generated in one PTG are copied to distant
parallel branches of other PTGs. This increases the flow
of facts in all segments of the graph, and thus, reaching
a fixpoint requires longer time. The combination of PTGs
(G5,G5) (or (G9,G9)), as indicated in the table, represents
multiple instances of the same PTG are running. We obtain
these combinations by first creating a copy of G5 (or G9) and
then combining it with G5 (or G9). Fig. 10 shows a com-
parison of the number of MHP pairs obtained by analysing
the combined PTGs with respect to the number of MHP
pairs obtained by analysing the constituent PTGs. The X- and
Y-axis represent the test cases and the number of MHP pairs.
The third bar in each group of PTGs represents the number
of MHP pairs obtained by analysing the combined PTGs.
Not surprisingly, we obtained an exponential increment of
the number of MHP pairs, in comparison with the results
of its constituent PTGs, when the PTGs are combined and
they are involved in little or no communication. However,
the results of the PTG groups (G5,G9), (G5,G7,G9) and
(G3,G4,G10) do not provide an exponential increase of the
number of MHP pairs when compared with the number of
MHP pairs of individual PTGs. After examining the graphical
representation of the connected PTGs, it reveals that each
group of PTGs is involved in inter-graph communication that
restricts the parallelism of the combined PTGs.

We have tested the implementation of Algorithm 4 on a
number of industrial use-cases, and compared the obtained
results (i.e. the number of MHP pairs) with the results of
Algorithm 1 combining PTGs according to Section V-B.
Note that Algorithm 4 uses Algorithm 1 to compute MHP
pairs of individual PTGs. Moreover, it takes into account the
task-actor-PTG communication. Algorithm 1 is unaware of
the task-actor communication and it assumes that all PTGs
are running in parallel if there is no communication among
them. The comparison is presented in Fig. 11, which shows
that Algorithm 4 is more precise than Algorithm 1 in 9 out
of 10 cases. In case 7, there is no task-actor communication
involved, thus the two algorithms provide the same results.

In order to manually validate the correctness of our results,

we generated a graphical representation of PTGs in which
all tasks running in parallel with a given task were marked.
We inspected the marked graphs to check the correctness.
We inspected all results of smaller PTGs and took random
samples from larger PTGs.

Themajor application of ourMHP analyses is for detection
of data races. A data race may appear if there are two tasks t ,
t ′ that might run in parallel and where there is an instruction
in t , and one in t ′ such that both may access the same memory
address, and at least one instruction is a write. On each
pair of tasks obtained from our MHP analyses we ran our
Racer tool on the code for the tasks, checking for mem-
ory conflicts. Racer uses Steensgaard’s pointer analysis to
detect possible aliasing. During the experiment, our analyses
reported 12052 MHP task-pairs (after duplicates removal).
Thus, the Racer tool had 12052 test-cases for race detection
and it reported 39 potential data races after nearly 9.5 hours of
computation to analyse 36.57 MLOC code. Note that Racer
is not optimized, in the sense that a task appearing in multiple
MHP pairs is analysed multiple times with respect to memory
accesses; we expect Racer to be much faster after removing
this redundant analysis.

VIII. APPLICABILITY TO OTHER
COMPUTATIONAL MODELS
Our theoretical development is not limited to the computa-
tional model that we describe in Section II. We can in fact
analyse subclasses of other programming models from which
it is possible to extract PTGs, such as Cilk [24] or X10 [25].
In the following, we provide a brief introduction to
X10 followed by an illustration on how to generate PTGs
from X10 code samples; our analyses can be applied to the
generated PTGs.

X10 is a class-based object-oriented programming lan-
guage designed for high-performance, high-productivity
computing [25]. X10 targets program execution on a wide
range of computers such as multi-core processors, large clus-
ters of parallel processors, hardware accelerators, embedded
processors and supercomputers. The concept of place is cen-
tral to the language. A place is conceptually a computational
unit with a finite number of threads called activities having
an uniform access to a finite amount of shared memory. The
global address space is divided into multiple places. X10 pro-
vides various concurrency constructs such as creating and
synchronising parallel activities, enforcing mutual exclusion,
and synchronising parallel activities through barriers. In the
following, we briefly illustrate some of the concurrency
constructs of X10:
• async S – creates a new child activity to execute S asyn-
chronously at the place of the parent activity. Execution
returns immediately to the parent activity meaning that
the remaining instructions of the parent activity and the
newly created activity may run in parallel.

• finish S – it guarantees that the parent activity must wait
after the finish for all the child activities created within
S to terminate.

78986 VOLUME 6, 2018

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

FIGURE 12. (a) X10 code containing async-finish parallel constructs, (b) PTG representation of the X10 code in Fig. (a).

• atomic S – the atomic construct executes S atomically
pretending a single-step execution. It offers the mutual
exclusive operation by multiple parallel activities to
shared data located at the same place. However, S may
not spawn another activity of use blocking statement
such as finish.

• async clocked(cl) S – the language supports the
synchronisation of dynamically varying collection of
activities through the clocks that act as barriers. This
statement creates an asynchronous activity to execute S;
its execution should be synchronised with other activi-
ties that are registered with the clock cl. A single clock
may have several phases of barriers and the instruction
Clock.advanceAll() executed by an activity causes it to
synchronise at this phase and the remaining instructions
of the activity should synchronise to the next phase.

Let us now see how we can generate PTGs from X10 code
samples. The code in Fig. 12(a) illustrates the async-finish
parallelism in X10. The parent activity is creating an asyn-
chronous child activity preceded by a finish command. So,
the child activity and the remaining instruction of the par-
ent activity inside the finish block should synchronise their
execution. We create the corresponding PTG in Fig. 12(b)
such that the instructions of the parent activity are divided
into three tasks: (i) task-1 contains all the instructions before
the finish block, (ii) task-2 contains the instructions inside
the finish block but excluding the async instruction, and
(iii) task-3 includes the remaining instructions of the parent
activity. After task-1, we create a barrier node to fork an
asynchronous activity due to the async command, and task-2.
Task-2 and the asynchronous task should synchronise their
execution due to the finish command, and task-3 should be
forked from a barrier node, after which it should run to
completion.

Fig. 13(a) depicts an example of clock-based synchroni-
sation in which the parent activity invokes a child activity
to be synchronised with the parent due to the finish com-

mand. The child activity invokes two asynchronous activities
A and B, which are registered to the clock cl. Both activities
should advance their execution in three different phases. The
corresponding PTG in Fig. 13(b) depicts this scenario in
which both activities A and B are divided into three sub-
tasks Ai and Bi for i ∈ [1..3]. The sequence of executions
is the following: both A1 and B1 are invoked from the same
barrier node and joined at the same join node; the join node
is connected with a barrier node forking A2 and B2, and the
process is repeated for A3, and B3.

We now consider a more complex code in which async
and atomic instructions are inside the loops, as in Fig. 14(a).
We need to extend the node types used in Def. 1 in order
to deal with this problem. The join nodes in Def. 1 merge
parallel control flow. However, the code in Fig. 14(a) requires
merging sequential control flow as well. We thus introduce an
additional join node type sjoin such that a sjoin node merges
multiple sequential control flow edges with the semantics that
control transfers to its sucessor node immediately if the sjoin
node is reached via one of its predecessor nodes. In Fig. 14(b),
nodes J1, J2, J4 are the sjoin nodes. In previous examples,
we divided the instructions of an activity into one or more
subtasks; this can not be done here. Either the loop instruction
should belong to a single subtask or it should be broken
apart. Due to the existence of the async instruction in the loop
body, the loop instruction cannot belong to a single subtask.
Here, we model the two loop instructions by the conditional
nodes C1, C2 and C3 of the PTG shown in Fig. 14(b).
The async instruction is creating a child activity and the

remaining instruction of the parent activity (in the inner for
loop) is atomic. Thus, we create two subtasks T1 and T2
corresponding to these instructions, which are forked from
a single barrier. Subtask T2 is connected to the conditional
nodeC3 via a sjoin node J2 through a feedback loop. NodeC3
represents the conditional part of the inner for loop. Thus,
as long as j ≤ n is evaluated true, subtasks T1 and T2 are
spawned, and continues to the next iteration when T2 finishes.

VOLUME 6, 2018 78987

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

FIGURE 13. (a) X10 code containing clock-based synchronisation primitives, (b) PTG representation of the X10 code in Fig. (a).

The false edge of C3 and the barrier node B are connected
with the join node J3. The node B ensures that all subtasks T1
terminates when j ≤ n is evaluated false. This is due to
the finish construct, as the parent activity should wait for
any child activity to terminate when executed inside a finish
block.

The condition of the inner for loop is modeled by two
condition nodes C2 and C3. The false edge of C2 ensures
that no subtasks T1 and T2 are ever created. The true edge
of C2 is connected with the subgraph modeling the body of
the inner for loop. The sjoin node J4 merges both branches of
C2 and followed by the task node incrementing the outer loop
counter. The subtask incrementing the outer loop counter is
connected through a feedback loop to the conditional nodeC1
through the sjoin node J1 representing the conditional part of
the outer for loop. Now, in order to perform our analyses,
we simply consider that (i) the kill and gen sets of any sjoin
node are empty, and (ii) the subtasks Tk are multi-task nodes
creating multiple instances of themselves for k = 1, 2. Then,
we can use Algorithm 1 to infer all task-level parallelism.

The resulting PTG in Fig. 14(b) contains cycles. This poses
some challenges for the expected properties of PTGs as well
as the MHP analysis. The main cause is that in a PTG with
cycles, the same task node may be executed several times.
This can create new opportunities for concurrent executions
of tasks, which may violate the expected properties of PTGs
and thus may render the current MHP analysis unsound.
For the example in Fig. 14 the analysis will yield a sound
result, given themodifications in the analysis indicated above.

However it is not hard to come up with examples of cyclic
PTGs where, for instance, different executions of the same
task will trigger the concurrent execution of tasks in both
branches from a conditional node thus violating the mutual
exclusivity of these branches. In such situations the current
MHP analysis will be unsound. There are two ways to deal
with this situation:

• modify the MHP analysis in order to be sound also in
the presence of several executions of the same task, or

• define rules for ‘‘well-formedness’’ of cyclic PTGs such
that the important properties of acyclic PTGs, like prece-
dence and mutual exclusivity of task executions, hold
also for the cyclic PTGs under consideration. It is of
particular interest if translations into PTGs from other
parallel models can be shown to always yield well-
formed PTGs.

We leave the investigations of these issues as future work.

IX. RELATED WORK
Execution order of statements in parallel or concurrent pro-
grams is inherently related to inferring MHP information.
Some early works on inferring execution order of statements
from concurrent programs are due to Bristow et al. [26], and
Callahan and Subhlok [27]. They considered a computational
model in which there are specific synchronisation points in
the program. Duesterwald and Soffa [28] extended the work
of Callahan and Subhlok to infer non-concurrency analysis
in the rendezvous model that addressed the interprocedural

78988 VOLUME 6, 2018

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

FIGURE 14. (a) X10 code segment containing a async statement inside
loops, (b) PTG representation of the X10 code in Fig. (a).

effects on the concurrency analysis. This was later extended
by Masticola and Ryder [18] to handle binary semaphores,
and applied iterative refinement techniques to obtain more
precise results. Naumovich andAvrunin [17] presented a con-
servative approach of computing the MHP facts for programs
consisting of rendezvous-like synchronisations. It works on
a trace flow graph, which is a forest of control-flow graphs
adding special communication nodes and edges for syn-
chronous communication. Later, they extended their work
together with Clarke [8] to handle the concurrency model of

java. All these works apply data-flow analysis techniques to
infer the MHP information once the parallel control-flow is
generated. The complexity of these approaches are mostly
due to different kinds of synchronisation primitives, which
either create too many synchronisation points or complicate
the generation parallel control-flow. In our case, we take
advantage of the high-level software design to generate par-
allel control-flow of task-graphs; however, the complexity of
our approach comes from the parallel execution of multiple
task-graphs, the parallel execution of actors, and the commu-
nication between actors and task-graphs.

Albert et al. [29] proposed MHP analysis for concur-
rent objects. They used abstract interpretation [30] based
techniques to infer local (method-level) MHP information
followed by constructing MHP graph and solving the reach-
ability problem to infer global MHP information. Their
method is sound, and the worst-case computational com-
plexity is cubic with respect to the number of nodes in the
MHP graph. This work was further extended (i) in [31]
that takes into account the interprocedural synchronisation
that prevails in most concurrent languages, and (ii) in [7]
that includes a proof of soundness, and an improvement
of accuracy for conditional statements. With respect to our
solution, our computational model is different from theirs and
their solution is not applicable to it. We applied a data-flow
analysis technique which has lower order polynomial com-
plexity to infer MHP facts from PTGs. Moreover, analysing
multiple PTGs executing in parallel is done by inferring non-
concurrency analysis, and dependencies among task-graphs
and actors are inferred by generating specific context-free
grammars from the system code followed by enumerating
strings from the generated grammar.

Agarwal et al. [4] proposed static MHP analysis of
X10 programs. These programs may contain concurrency
primitives such as async, finish, and atomic that allows them
to devise more precise and efficient algorithms based on
traversing the Program Structure Tree. In doing so, they
first perform a Never-Execute-In-Parallel analysis followed
by a Place-Equivalence analysis that decides whether all
instances of two given operations execute at the same place.
Lee et al. [5] proposed algorithms for static MHP analysis
of X10 like languages consisting of async-finish parallelism
and procedures. They solve the MHP decision problem in
linear time by reducing the program to constrained dynamic
pushdown networks. The MHP computation problem is
solved by running a type-based analysis followed by utilising
theMHP decision algorithm to refine the results. Even though
async-finish parallel constructs have some similarity with
barrier-based synchronisation, nevertheless, our computa-
tional model is not comparable with the parallel computa-
tional model of X10 and their type-based analysis technique
is different from ours, which uses data-flow analysis inferring
partial order relations and deriving context-free grammars.

To summarize, existing MHP analyses differ either by the
computational model of the targeted language, or by the kinds
of synchronisation constructs used by the language.

VOLUME 6, 2018 78989

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

X. CONCLUSION AND FUTURE WORK
Parallel programming is idiosyncratically more complex than
sequential programming. Methodological aids are essential
for developers to ensure the safety and liveness properties of
parallel applications such as data race detection, termination
analysis, deadlock detection, resource analysis, and deter-
minism checking. A crucial preparation activity for these
analyses is the MHP analysis, which identifies pairs of tasks
runnable in parallel. In this paper, we introduce a novel MHP
analysis tailored to a computational model based on task-
graphs and actors. Moreover, we provide a UML profile spe-
cific for this computational model, both for modelling graphs
and for back-propagating analysis results to the modelled
graphs for further investigation.

We developed a data-flow analysis technique applicable to
parallel control-flow structures that can infer all MHP facts
from individual task graphs. Our technique can be applied
to parallel graphs obtained from other programming lan-
guages for inferring properties not only limited to MHP facts.
We have shown by examples how to transform X10 code into
parallel task-graphs, on which our analysis is directly appli-
cable. In our computational model, actors and task-graphs
may involve in direct or indirect communication either by
transmitting asynchronousmessages or acting on the received
messages. These message transfer events restrict task-level
parallelism due to dependencies between tasks but increase
the flow of information among task-graphs. We generate a
context-free grammar (CFG) of the system and enumerate
all valid strings from the generated CFG that represent all
communication information among parallel task-graphs. Our
data-flow analysis technique is extended by utilising the
obtained communication information and via inferring non-
concurrency among tasks to generate all MHP facts from the
underlying system. We have described the theoretical worst-
case asymptotic complexity of the algorithms conceived by
our solution. We obtained a polynomial time complexity for
analysing a single PTG, and exponential time complexity
for analysing n PTGs. However, by statically determining
the maximum number of PTGs that can run in parallel,
exponential time complexity can be reduced to higher order
polynomial time complexity.

We implemented the algorithms, and evaluated them on
a set of real-world signal processing applications from
the telecom domain consisting of 36.57 MLOC, repre-
senting 232 different tasks. The analysis required approx-
imately 7 minutes to identify all communication informa-
tion, and 10.5 minutes to generate 12052 pairs of tasks
running in parallel. Our Racer tool took around 9.5 hours
to identify 39 potential data races from 36.57 MLOC,
which shows that the analysis can scale to realistic
applications.

As a future work, our plan is to transform other program-
ming models into task models and analyse them through our
methods, as well as to develop other analyses, based on our
data-flow analysis technique, to infer other kinds of program
properties from parallel applications.

REFERENCES
[1] R. N. Taylor, ‘‘Complexity of analyzing the synchronization structure of

concurrent programs,’’ Acta Inf., vol. 19, no. 1, pp. 57–84, 1983.
[2] G. Ramalingam, ‘‘Context-sensitive synchronization-sensitive analysis

is undecidable,’’ ACM Trans. Program. Lang. Syst., vol. 22, no. 2,
pp. 416–430, Mar. 2000.

[3] H. Seidl and B. Steffen, ‘‘Constraint-based inter-procedural analysis of par-
allel programs,’’ Nordic J. Comput., vol. 7, no. 4, pp. 375–400, Dec. 2000.

[4] S. Agarwal, R. Barik, V. Sarkar, and R. K. Shyamasundar, ‘‘May-happen-
in-parallel analysis of x10 programs,’’ in Proc. 12th ACM SIGPLAN Symp.
Princ. Pract. Parallel Program. (PPoPP), New York, NY, USA, 2007,
pp. 183–193.

[5] J. K. Lee, J. Palsberg, R. Majumdar, and H. Hong, ‘‘Efficient may happen
in parallel analysis for async-finish parallelism,’’ in Proc. 19th Int. Static
Anal. Symp., in Lecture Notes in Computer Science, vol. 7460. Berlin,
Germany: Springer, 2012, pp. 5–23.

[6] J. K. Lee and J. Palsberg, ‘‘Featherweight x10: A core calculus for async-
finish parallelism,’’ in Proc. 15th ACM SIGPLAN Symp. Principles Pract.
Parallel Program. (PPoPP), New York, NY, USA, 2010, pp. 25–36.

[7] E. Albert, A. Flores-Montoya, S. Genaim, and E. Martin-Martin, ‘‘May-
happen-in-parallel analysis for actor-based concurrency,’’ ACM Trans.
Comput. Logic, vol. 17, no. 2, pp. 11:1–11:39, Dec. 2015.

[8] G. Naumovich, G. S. Avrunin, and L. A. Clarke, ‘‘An efficient algorithm
for computingMHP information for concurrent Java programs,’’ SIGSOFT
Softw. Eng. Notes, vol. 24, no. 6, pp. 338–354, Oct. 1999.

[9] P. Lammich and M. Müller-Olm, ‘‘Precise fixpoint-based analysis of
programs with thread-creation and procedures,’’ in Proc. 18th Int.
Conf., Concurrency Theory (CONCUR), Lisbon, Portugal, L. Caires and
V. T. Vasconcelos, Eds. Berlin, Germany: Springer, 2007, pp. 287–302.

[10] G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott, ‘‘A founda-
tion for actor computation,’’ J. Funct. Program., vol. 7, no. 1, pp. 1–72,
Jan. 1997.

[11] G. Agha, Actors: A Model of Concurrent Computation in Distributed
Systems. Cambridge, MA, USA: MIT Press, 1986.

[12] M. Lundqvist, A. Mallo, P. Brauer, and D. Engdal, ‘‘BOS: A task-graph
processing software framework for the epiphany many-core architecture,’’
in Proc. 6th Swedish Workshop Multicore Comput. (MCC), Nov. 2013,
pp. 1–4.

[13] F. Ciccozzi, A. Cicchetti, and M. Sjödin, ‘‘Round-trip support for extra-
functional property management in model-driven engineering of embed-
ded systems,’’ Inf. Softw. Technol., vol. 55, no. 6, pp. 1085–1100, 2013.

[14] M. Själander, S. A. McKee, P. Brauer, D. Engdal, and A. Vajda, ‘‘An LTE
uplink receiver PHYbenchmark and subframe-based powermanagement,’’
in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Apr. 2012,
pp. 25–34.

[15] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, ‘‘What
industry needs from architectural languages: A survey,’’ IEEE Trans. Softw.
Eng., vol. 39, no. 6, pp. 869–891, Jun. 2013.

[16] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program Analysis.
New York, NY, USA: Springer, 2010.

[17] G. Naumovich and S. G. Avrunin, ‘‘A conservative data flow algorithm for
detecting all pairs of statements that may happen in parallel,’’ SIGSOFT
Softw. Eng. Notes, vol. 23, no. 6, pp. 24–34, Nov. 1998.

[18] S. P. Masticola and B. G. Ryder, ‘‘Non-concurrency analysis,’’ SIGPLAN
Notices, vol. 28, no. 7, pp. 129–138, Jul. 1993.

[19] C. C. Florêncio, J. Daenen, J. Ramon, J. van den Bussche, and D. V. Dyck,
‘‘Naive infinite enumeration of context-free languages in incremental poly-
nomial time,’’ J. Universal Comput. Sci., vol. 21, no. 7, pp. 891–911,
Jul. 2015.

[20] Y. Dong, ‘‘Linear algorithm for lexicographic enumeration of CFG parse
trees,’’ Sci. China Ser. F, Inf. Sci., vol. 52, no. 7, pp. 1177–1202, 2009.

[21] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation, 3rd ed. Reading, MA, USA:
Addison-Wesley, 2006.

[22] P. Dömösi, ‘‘Unusual algorithms for lexicographical enumeration,’’ Acta
Cybernetica, vol. 14, no. 3, pp. 461–468, 2000.

[23] B. Steensgaard, ‘‘Points-to analysis in almost linear time,’’ in Proc.
23rd ACM SIGPLAN-SIGACT Symp. Princ. Programming Lang. (POPL),
New York, NY, USA, 1996, pp. 32–41.

[24] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,
andY. Zhou, ‘‘Cilk: An efficientmultithreaded runtime system,’’ SIGPLAN
Notes, vol. 30, no. 8, pp. 207–216, Aug. 1995.

[25] V. Saraswat et al., ‘‘X10 language specification-version 2.3,’’ IBM, New
York, NY, USA, Tech. Rep., 2012.

78990 VOLUME 6, 2018

A. N. Masud et al.: Automatic Inference of Task Parallelism in Task-Graph-Based Actor Models

[26] G. Bristow, C. Drey, B. Edwards, and W. Riddle, ‘‘Anomaly detection
in concurrent programs,’’ in Proc. 4th Int. Conf. Softw. Eng. (ICSE),
Piscataway, NJ, USA, 1979, pp. 265–273.

[27] D. Callahan and J. Sublok, ‘‘Static analysis of low-level synchronisation,’’
SIGPLAN Notes, vol. 24, no. 1, pp. 100–111, Nov. 1988.

[28] E. Duesterwald and M. L. Soffa, ‘‘Concurrency analysis in the presence
of procedures using a data-flow framework,’’ in Proc. Symp. Test., Anal.,
Verification (TAV4), New York, NY, USA, 1991, pp. 36–48.

[29] E. Albert, A. E. Flores-Montoya, and S. Genaim, ‘‘Analysis of may-
happen-in-parallel in concurrent objects,’’ inProc. Int. Conf. Formal Techn.
Distrib. Syst., vol. 7273, H. Giese and G. Rosu, Eds. Berlin, Germany:
Springer, Jun. 2012, pp. 35–51.

[30] P. Cousot and R. Cousot, ‘‘Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points,’’ in Proc. 4th ACM SIGACT-SIGPLAN Symp. Princ. Program.
Lang. (POPL), New York, NY, USA, 1977, pp. 238–252.

[31] E. Albert, S. Genaim, and P. Gordillo, ‘‘May-happen-in-parallel analysis
for asynchronous programs with inter-procedural synchronisation,’’ in
Proc. 22nd Int. Static Anal. Symp. (SAS), S. Blazy and T. Jensen, Eds.
Berlin, Germany: Springer, Sep. 2015, pp. 72–89.

ABU NASER MASUD received the Ph.D. degree
in computer science (awarded Apto Cum Laude)
from the Technical University of Madrid, in 2013.
He was one of the Erasmus Mundus Scholars
to complete European Masters in Computational
Logic from the Technical University of Madrid,
Spain, and the University of Technology Dresden,
Germany. He was a Researcher and also a Post-
Doctoral Researcher at Mälardalen University,
from 2013 to 2017, and an also an Assistant

Professor at Khulna University, Bangladesh, in 2006. He is currently a Senior
Lecturer with the Computer Science and Software Engineering Division,
Mälardalen University.

He was involved in several research projects funded by the European
commission (HATS), Madrid Regional Government (PROMETIDOS-CM),
EU Marie Curie (APARTS), and KKS HÖG (SPACES and MOMENTUM)
related to software resource analysis, WCET analysis, static program analy-
sis, program transformation, and analysis and transformation of executable
models.

BJÖRN LISPER received the M.Sc. degree in
engineering physics, in 1980, and the Ph.D. degree
in computer science, in 1987, both from the KTH
Royal Institute of Technology, Sweden. He was
also an appointed ‘‘docent’’ in computer sys-
tems, in 1991. He is currently a Professor in
computer engineering with Mälardalen Univer-
sity, where he leads the Programming Languages
Research Group. His current research interests are
in programming language issues, targeting pro-

gram analysis, especially with respect to timing properties. He has been a
Core Member of the FP7 NoE ArtistDesign, where he was the Leader of the
timing analysis activity. He coordinated the FP7 ICT Project ALL-TIMES,
and the Marie Curie IAPP Project APARTS. He is also a member of the
IFIP WG 10.2 on Embedded Systems. He is the Chair of the COST Action
IC1202 Timing Analysis on Code-Level.

FEDERICO CICCOZZI received the Ph.D. degree
from the School of Innovation, Design and Engi-
neering, Mälardalen University, Sweden, in 2014.
He is currently an Associate Professor with the
School of Innovation, Design and Engineering,
Mälardalen University. His research focuses on the
definition of metamodels and model transforma-
tions for several automation aspects in the model-
driven development of component-based embed-
ded real-time systems, such as code generation,

preservation of system properties, back-propagation, tomention a few.More-
over, he carries out research in the areas of multi-paradigm modeling, model
versioning, co-evolution and synchronization, as well as the application of
model-driven and component-based techniques to multi-robot systems. He
has co-authored over 75 publications in journals and international confer-
ences and workshops in these areas. He has been serving the community
as the Conference Track and Workshop Organizer, an Expert Panelist, a
Program Committee Member, and also as a Reviewer for conferences, work-
shops, and international journals. In his research activity, he has collaborated
with several companies and research institutions such as Ericsson, ABB,
Alten, Thales, Saab, CEA list, and so on. More information is available at
http://www.es.mdh.se/staff/266-Federico_Ciccozzi.

VOLUME 6, 2018 78991

	INTRODUCTION
	CONTRIBUTIONS
	ORGANIZATION OF THE ARTICLE

	COMPUTATIONAL MODEL
	MHPP UML PROFILE AND RUNNING EXAMPLE
	OPERATIONAL SEMANTICS
	OUR MHP ANALYSIS
	TASK-PARALLELISM IN A SINGLE TASK-GRAPH
	COMMUNICATION AMONG TASK-GRAPHS
	TASK-PARALLELISM IN MULTIPLE TASK-GRAPHS
	WHOLE SYSTEM ANALYSIS
	DEFINING THE GENERIC CFG
	GENERATING AN INSTANCE OF THE GENERIC CFG
	ANALYSIS OF THE GENERATED STRINGS

	INSTRUCTION-LEVEL PARALLELISM

	IMPLEMENTATION AND EXPERIMENTAL SETUP
	EXPERIMENTAL RESULTS
	APPLICABILITY TO OTHER COMPUTATIONAL MODELS
	RELATED WORK
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	ABU NASER MASUD
	BJÖRN LISPER
	FEDERICO CICCOZZI

