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ABSTRACT Kalman filters (KFs) and dynamic observers are two main classes of the dynamic state
estimation (DSE) routines. The Power system DSE has been implemented by various KFs, such as the
extended KF (EKF) and the unscented KF (UKF). In this paper, we discuss two challenges for an effective
power system DSE: 1) model uncertainty and 2) potential cyber attacks and measurement faults. To address
this, the cubature KF (CKF) and a nonlinear observer are introduced and implemented. Various KFs and the
dynamic observer are then tested on the 16-machine 68-bus system given realistic scenarios under model
uncertainty and different types of cyber attacks against synchrophasor measurements. It is shown that the
CKF and the observer are more robust to model uncertainty and cyber attacks than their counterparts. Based
on the tests, a thorough qualitative comparison is also performed for KF routines and observers.

INDEX TERMS Cyber attack, dynamic state estimation, Kalman filter, model uncertainty, non-Gaussian
noise, observer, phasor measurement unit (PMU).

I. INTRODUCTION
State estimation is a crucial application in the energy
management system (EMS). The well-known static state esti-
mation (SSE) methods [1]–[5] assume that the power sys-
tem is operating in quasi-steady state, based on which the
static states—the voltage magnitude and phase angles of the
buses—are estimated by using SCADA and/or synchrophasor
measurements. SSE is critical for power system monitoring
as it provides inputs for other EMS applications such as
automatic generation control and optimal power flow.

However, SSE may not be sufficient for desirable situa-
tional awareness as the system states evolve more rapidly
due to an increasing penetration of renewable generation and
distributed energy resources. Therefore, dynamic state esti-
mation (DSE) processes estimating the dynamic states (i.e.,
the internal states of generators) by using highly synchro-
nized PMU measurements with high sampling rates will be
critical for the wide-area monitoring, protection, and control
of power systems.

For both SSE and DSE, two significant challenges
make their practical application significantly difficult. First,

the system model and parameters used for estimation can be
inaccurate, which is often called model uncertainty [6], con-
sequently deteriorating estimation in some scenarios. Second,
the measurements used for estimation are vulnerable to cyber
attacks, which in turn leads to compromised measurements
that can greatly mislead the estimation.

For the first challenge, there are recent efforts on validat-
ing the dynamic model of the generator and calibrating its
parameters [7], [8], which DSE can be based on. However,
model validation itself can be very challenging. Hence, it is
a more viable solution to improve the estimators by making
them more robust to the model uncertainty.

For the second challenge, false data injection (FDI) attacks
against SSE are proposed in [9]. After that it has been widely
studied about how to mitigate this type of attack and further
secure the monitoring and control of power grids [10]–[12].
In [13] an extended distributed state estimation is proposed
for the tolerable FDI attacks on the SSE. In [14] an optimal
PMU placement-based defense scheme is proposed for a
least-effort data integrity attack on DC SSE. In [15] FDI
attacks are designed to bypass the anomaly detection of the
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Kalman filtering in DSE. Enhancement of Kalman filter-
ing and temporal-based detection algorithm are proposed as
countermeasures against the attacks. In [16] a risk mitigation
strategy is proposed to eliminate the threat levels from the
power grid’s unknown inputs and potential cyber attacks
based on a sliding-mode observer and an attack detection
filter.

As for the approaches for performing DSE, there are
mainly two classes of methods that have been proposed:

1) Stochastic Estimators: given a discrete-time represen-
tation of a dynamical system, the observed measure-
ments, and the statistical information on process noise
and measurement noise, Kalman filter (KF) and its
many derivatives have been proposed that calculate the
Kalman gain as a function of the relative certainty of the
current state estimate and the measurements [17]–[21].

2) Deterministic Observers: given a continuous- or
discrete-time dynamical system depicted by state-
space matrices, a combination of matrix equalities
and inequalities are solved, while guaranteeing asymp-
totic (or bounded) estimation error. The solution to
these equations is often matrices that are used in
an observer to estimate states and other dynamic
quantities [22]–[24].

For power systems, DSE has been implemented by several
stochastic estimators, such as extended Kalman filter (EKF)
[25], [26], unscented Kalman filter (UKF) [27]–[31], square-
root unscented Kalman filter (SR-UKF) [32]–[35], extended
particle filter [36], [37], and ensemble Kalman filter [38].
While these techniques produce good estimation under nom-
inal conditions, most of them lack the ability to deal with
significant model uncertainty and malicious cyber attacks.

In order to improve the robustness of KFs, a generalized
maximum-likelihood-type estimate is proposed in [39] and a
two-stage KF is proposed in [40]. Besides, iterated EKF [41],
H∞ EKF [42], and robust UKF [43] are have also been
developed for power system DSE.

The goal of this paper is to present alternatives that
address these limitations. The paper contributions are sum-
marized as follows. First, we use a nonlinear observer for the
power system DSE problem that only requires computing a
Luenberger-like gain matrix. This computation can be per-
formed offline—and hence the presented observer is scalable
for large-scale power networks. The observer requires obtain-
ing scalar parameters that depict or bound the nonlinearities
arising from the power system model. Numerical algorithms
are provided to find these scalar parameters, in comparison
with the observer design literature that obtains these scalars
analytically which is impractical for large-scale power net-
works with high nonlinearities. The observer is endowed
with the the following properties and virtues: (a) assumes
that the generators’ control inputs are not known to the state
estimation method; (b) tolerates three classes of cyber-attacks
(data integrity, denial of service, and replay attack) and
other disturbances while accurately reconstructing the power

system state within seconds of an attack or large disturbance;
(c) assumes no statistical properties of the noise targeting
process and measurement models; (d) requires no major
real-time computation, in comparison with other estimation
methods that are computationally expensive. To our knowl-
edge, this contribution is the first of its kind in the power
system DSE literature in comparison with Kalman filter
derivatives.

Second, we introduce cubature Kalman filter (CKF) [21]
that uses a more accurate cubature approach and possesses
an important virtue of mathematical rigor rooted in the third-
degree spherical-radial cubature rule for numerically comput-
ing Gaussian-weighted integrals. Without a stem at the center
in the cubature-point set, CKF does not have the numerical
instability problem of UKF [21], [34].

Last but not least, we design a realistic power system
DSE problem by developing the system and measurement
models and considering various practical scenarios such as
unknown initial conditions, model uncertainties including
process noise, unknown and unavailable inputs, and inaccu-
rate parameters, and different types of measurement noises
and cyber attacks againstmeasurements.We present thorough
numerical experiments to showcase the performance of the
nonlinear observer and CKF in comparison with three other
methods that have been recently applied to DSE. The compre-
hensive numerical tests are performed under a variety of con-
ditions and disturbances, and the tests illustrate the potential
of the presented estimation methods in correctly estimating
the system’s state. The conceptual strengths and limitations
of different methods with significant model uncertainty and
cyber attacks are also discussed.

The remainder of this paper is organized as follows.
In Section II, we discuss the nonlinear dynamics of the
multi-machine power system. The physical depictions of the
model uncertainty and attack-threat model are introduced in
Section III. The CKF and the nonlinear observer are intro-
duced in Sections IV and V. Then, numerical results are given
in Section VI. Finally, insightful remarks and conclusions are
presented in Sections VII and VIII.

II. NONLINEAR MULTI-MACHINE POWER
SYSTEM MODEL
Here we briefly discuss the power system model used for
DSE. Each of the G generators is described by the fourth-
order transient model in local d− q reference frame:

δ̇i = ωi − ω0

ω̇i =
ω0

2Hi

(
Tmi − Tei −

KDi

ω0
(ωi − ω0)

)
ė′qi =

1
T ′d0i

(
Efdi − e′qi − (xdi − x ′di)idi

)
ė′di =

1
T ′q0i

(
− e′di + (xqi − x ′qi)iqi

)
,

(1)

where i is the generator serial number, δi is the rotor angle,
ωi is the rotor speed in rad/s, and e′qi and e

′

di are the tran-
sient voltage along q and d axes; iqi and idi are stator

77156 VOLUME 6, 2018



J. Qi et al.: Comparing KFs and Observers for Power System DSE With Model Uncertainty and Malicious Cyber Attacks

currents at q and d axes; Tmi is the mechanical torque, Tei
is the electric air-gap torque, and Efdi is the internal field
voltage; ω0 is the rated value of angular frequency, Hi is
the inertia constant, and KDi is the damping factor; T ′q0i
and T ′d0i are the open-circuit time constants for q and d
axes; xqi and xdi are the synchronous reactance and x ′qi and
x ′di are the transient reactance respectively at the q and d
axes.

The Tmi and Efdi in (1) are considered as inputs. The set of
generators where PMUs are installed is denoted by GP. For
generator i ∈ GP, the terminal voltage phaosr Eti = eRi + jeIi
and current phasor Iti = iRi + jiIi can be measured and
are used as the outputs. Correspondingly, the state vector
x ∈ Rn, input vector u ∈ Rv, and output vector y ∈ Rp

are

x =
[
δ> ω> e′q

> e′d
>]> (2a)

u =
[
Tm> Efd>

]> (2b)

y =
[
eR> eI> iR> iI>

]>
. (2c)

The Tei, idi, and iqi can be written as functions of x:

9Ri = e′di sin δi + e
′
qi cos δi (3a)

9Ii = e′qi sin δi − e
′

di cos δi (3b)

Iti = Yi(9R + j9I ) (3c)

iRi = Re(Iti) (3d)

iIi = Im(Iti) (3e)

iqi =
SB
SNi

(iIi sin δi + iRi cos δi) (3f)

idi =
SB
SNi

(iRi sin δi − iIi cos δi) (3g)

eqi = e′qi − x
′

diidi (3h)

edi = e′di + x
′
qiiqi (3i)

Tei =
SB
SNi

(eqiiqi + ediidi), (3j)

where 9i = 9Ri + j9Ii is the voltage source, 9R and 9I are
column vectors of all generators’ 9Ri and 9Ii, eqi and edi are
the terminal voltage at q and d axes, Yi is the ith row of the
admittance matrix of the reduced network Y, and SB and SNi
are the system base MVA and the base MVA for generator i,
respectively.

In (3), the outputs iRi and iIi have been written as functions
of x. Similarly, the outputs eRi and eIi can also be written as
function of x:

eRi = edi sin δi + eqi cos δi (4a)

eIi = eqi sin δi − edi cos δi. (4b)

The dynamic model (1) can then be rewritten in a general
state space form as{

ẋ = Ax+ Bu+ φ(x)
y = h(x),

(5)

where

A

=



IG(
−KD�2H

)d
(
−1G�T′d0

)d
(
−1G�T′q0

)d


,

B =


(
ω01G � 2H

)d
(
1G � T′d0

)d


,

φ =


−ω01G(

ω01G � 2H
)
~
(
− T e + KD1G

)(
1G � T ′d0

)
~
(
− (xd − x′d)id

)(
1G � T ′q0

)
~
(
(xq − x′q)iq

)

,
and h include functions (3d)–(3e) and (4) for all generators,
� and ~ are the Hadamard division/product (elementwise
division/product) of a vector, and (a)d gets a square diagonal
matrix with the elements of vector a on the main diagonal.

Note that the model presented here is used for DSE for
which the real-time inputs are assumed to be unavailable and
Tmi and Efdi only take steady-state values, mainly because
these inputs are difficult to measure [26], [30]. However,
when we simulate the power system to mimic the real system
dynamics, we model an IEEE Type DC1 excitation system
and a simplified turbine-governor system for each generator
and thus Tmi and Efdi change with time due to the gover-
nor and the excitation control, which leads to a tenth order
generator model. More details about the model can be found
in [16].

We do not directly use a detailed model including the
exciter and governor as in [37] for the DSE mainly because
1) A good model should be simple enough to facilitate
design [6], 2) it is harder to validate a detailed model and
there are also more parameters that need to be calibrated [7],
[8], [44], and 3) the computational burden can be higher for a
more detailed model, which may not satisfy the requirement
of real-time estimation.

III. MODEL UNCERTAINTY AND CYBER ATTACKS

The dynamic model of the power system can be written in
a general state space form as{

ẋ = f(x,u) (6a)

y = h(x,u), (6b)
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where x ∈ Rn, u ∈ Rv, and y ∈ Rp are the vectors of the
state, input, and output, and f and h are the nonlinear state
transition functions and measurement functions. We rewrite
(6) by separating the nonlinear term in the state transition
functions as {

ẋ = Ax+ Bu+ φ(x) (7a)

y = h(x,u), (7b)

where φ(x) represents the nonlinear term that models the
interconnections in a multi-machine power system.

Two great challenges for an effective DSE are the model
uncertainty and potential cyber attacks—discussed next.

A. MODEL UNCERTAINTY
The term model uncertainty refers to the differences or errors
between models and reality. Various control and estima-
tion theory studies investigated methods that addresses
the discrepancy between the actual physics and models.
The model uncertainty can be caused by the following
reasons.

1) Unknown inputs: The unknown inputs against the sys-
tem dynamics include ud (representing the unknown
plant disturbances), uu (denoting the unknown control
inputs), and fa (depicting potential generators actuator
faults). For simplicity, we can combine them into one
unknown input quantity w =

[
u>d u>u f>a

]>
. Defining

Bw to be the known weight distribution matrix of the
distribution of unknown inputs with respect to each
state-equation. The term Bww models a general class
of unknown inputs such as: nonlinearities, modeling
uncertainties, noise, parameter variations, unmeasur-
able system inputs, model reduction errors, and actu-
ator faults [45], [46]. For example, the equation ẋ1 =
δ̇1 = ω1 − ω0 most likely has no unknown inputs,
as there is no modeling uncertainty related to that pro-
cess. Hence, the first row of Bw can be identically zero.
The process dynamics under unknown inputs can be
written as follows:

ẋ = Ax+ Bu+ Bww+ φ(x). (8)

2) Unavailable inputs: Real-time inputs u can be unavail-
able, in which case the steady-states inputs u0 are used
for estimation.

3) Parameter inaccuracy: The parameters in the system
model can be inaccurate. For example, the reduced
admittance matrix can be inaccurate when a fault or the
following topology change are not detected.

B. CYBER ATTACKS
The National Electric Sector Cybersecurity Organization
Resource (NESCOR) developed cyber-security failure sce-
narios with corresponding impact analyses [47]. The
WAMPAC failure scenarios motivate the research in this
paper include: a) Measurement Data (from PMUs) Com-
promised due to PDC Authentication Compromise and b)
Communications Compromised between PMUs and Control

Center [47]. Specifically, we consider the following three
types of attacks [47], [48].

1) Data integrity attacks: An adversary attempts to corrupt
the content of either the measurement or the control
signals. A specific example of data integrity attacks
are Man-in-the-Middle attacks, where the adversary
intercepts the measurement signals and modifies them
in transit. For DSE the PMU measurements can be
modified and corrupted.

2) Denial of Service (DoS) attack: An attacker attempts
to introduce a denial in communication of measure-
ment. The communication of a sensor could be jammed
by flooding the network with spurious packets. DoS
attacks can happen at a variety of communication layers
in a smart grid, such as the physical layer, Medium
Access Control (MAC) layer, network and transport
layer, and application layer. For DSE the consequence
can be that the updated measurements cannot be sent to
the control center.

3) Replay attacks: A special case of data integrity attacks,
where the attacker replays a previous snapshot of a
valid communication packet sequence that contains
measurements in order to deceive the system. For DSE
the PMU measurements can be changed to be those in
the past.

For a data integrity cyber attack, it can be modeled by
adding a vector v(t). Then the measurement model under
cyber attacks becomes

y(t) = h
(
x(t),u(t)

)
+ v(t). (9)

A DoS attack on output i at t ∈ (t1, t2] can be modeled
as

yi = hi
(
x(t1),u(t1)

)
, t ∈ (t1, t2]. (10)

A replay attack on output i at t ∈ [t1, t2] can be modeled
as

yi = hi
(
x(t −1T ),u(t −1T )

)
, t ∈ [t1, t2], (11)

where 1T = t2 − t1.
In [49] the impact of false data injection attacks on dynamic

state estimation is studied for linear dynamic systems, under
Gaussian disturbances and attacks/biases and the effect of
the false information is mathematically analyzed based on
which corresponding defending strategies are investigated.
In this paper, we consider cyber attacks against the PMU
measurements used for DSE of nonlinear power systems.
Specifically, we investigated the above-mentioned three types
of attack models with no assumptions on the distribution of
the noise.

Apart from cyber attacks against the PMU measurements,
the commonly assumed Gaussian distribution of the PMU
measurement noise may not hold for real data. Exten-
sive results using field PMU data from WECC system has
revealed that the Gaussian assumption is questionable [50].
Therefore, it would be valuable to evaluate the performance
of different DSE methods under non-Gaussian noise.
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IV. KALMAN FILTERS FOR POWER SYSTEM DSE

Unlike many estimation methods that are either com-
putationally unmanageable or require special assumptions
about the form of the process and observation models, KF
only utilizes the first two moments of the state (mean and
covariance) in its update rule [17]. It consists of two steps:
in prediction step, the filter propagates the estimate from
last time step to current time step; in update step, the fil-
ter updates the estimate using collected measurements. KF
was initially developed for linear systems while for power
system DSE the system equations and outputs have strong
nonlinearity. Thus variants of KF that can deal with non-
linear systems have been introduced, such as EKF and
UKF.

We consider a nonlinear system (without model
uncertainty or attack vectors) in discrete-time form
as {

xk = f(xk−1,uk−1)+ qk−1 (12a)

yk = h(xk ,uk )+ rk , (12b)

where xk ∈ Rn, uk ∈ Rv, and yk ∈ Rp are states, inputs,
and observed measurements at time step k; the estimated
mean and estimated covariance of the estimation error are
m and P; f and h are vectors consisting of nonlinear state
transition functions and measurement functions; qk−1 ∼
N (0,Qk−1) is the Gaussian process noise at time step k −
1; rk ∼ N (0,Rk ) is the Gaussian measurement noise at
time step k; and Qk−1 and Rk are covariance matrices of
qk−1 and rk .

A. EXTENDED KALMAN FILTER
Although EKF maintains the elegant and computationally
efficient recursive update form of KF, it works well only in
a ‘mild’ nonlinear environment, owing it to the first-order
Taylor series approximation for nonlinear functions [21].
It is sub-optimal and can easily lead to divergence. Also,
the linearization can be applied only if the Jacobian matrix
exists and calculating Jacobian matrices can be difficult and
error-prone. For DSE, EKF has been discussed in [25] and
[26].

B. UNSCENTED KALMAN FILTER
The unscented transformation (UT) [51] is developed to
address the deficiencies of linearization by providing a
more direct and explicit mechanism for transforming mean
and covariance information. Based on UT, Julier and
Uhlmann [19], [20] propose the UKF as a derivative-free
alternative to EKF. The Gaussian distribution is represented
by a set of deterministically chosen sample points called
sigma points. The UKF has been applied to power system
DSE, for which no linearization or calculation of Jacobian
matrices is needed [27]–[31].

In UKF, a total of 2 n + 1 sigma points (denoted by
X ) are calculated from the columns of the matrix η

√
P

as 
X (0)
= m (13a)

X (i)
= m+

[
η
√
P
]
i
, i = 1, . . . , n (13b)

X (i)
= m−

[
η
√
P
]
i
, i = n+ 1, . . . , 2n (13c)

with weights

w(0)
m =

λ

n+ λ
(14a)

w(0)
c =

λ

n+ λ
+ (1− α2 + β) (14b)

w(i)
m =

1
2(n+ λ)

, i = 1, . . . , 2n (14c)

w(i)
c =

1
2(n+ λ)

, i = 1, . . . , 2n, (14d)

where the matrix square root of a positive semidefinite matrix
P is a matrix S =

√
P such that P = SS>, wm and wc are

respectively weights for the mean and the covariance, η =
√
n+ λ, λ is a scaling parameter defined as λ = α2(n+κ)−n,

and α, β, and κ are constants and α and β are nonnegative.
The basic idea of UKF is to choose the sigma-point set to

capture a number of low-order moments of the prior density
of the states as correctly as possible, and then compute the
posterior statistics of the nonlinear functions (either state
transition functions f or measurement functions h) by UT
which approximates the mean and the covariance of the non-
linear function by a weighted sum of projected sigma points.

However, for the sigma-points, the stem at the center (the
mean) is highly significant as it carries more weight which
is usually negative for high-dimensional systems. There-
fore, the UKF is supposed to encounter numerical instability
troubles when used in high-dimensional problems. Several
techniques including the square-root unscented Kalman filter
(SR-UKF) have been proposed to solve this problem [32],
[33]. Recently SR-UKF has been applied to DSE in power
systems in [34].

C. CUBATURE KALMAN FILTER

EKF and UKF can suffer from the curse of dimensionality
while becoming detrimental in high-dimensional state-space
models of size twenty or more—especially when there are
high degree of nonlinearities in the equations that describe
the state-space model [21], [52], which is exactly the case for
power systems. Making use of the spherical-radial cubature
rule, Arasaratnam and Haykin [21] propose CKF, which pos-
sesses an important virtue of mathematical rigor rooted in the
third-degree spherical-radial cubature rule for numerically
computing Gaussian-weighted integrals. In this paper we will
apply CKF to power systemDSE. Compared with EKF, UKF,
and SR-UKF, CKF has the following advantages:

1) Compared with EKF and similar to UKF and SR-UKF,
CKF is also derivative-free and is easier for application.

2) Similar to UKF and SR-UKF, CKF also uses a
weighted set of symmetric points to approximate the
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Gaussian distribution. But the cubature-point set does
not have a stem at the center and thus does not have
the numerical instability problem of UKF discussed in
Section IV-B.

3) UKF treats the derivation of the sigma-point set for the
prior density and the computation fo posterior statistics
as two disjoint problems. By contrast, CKF directly
derives the cubature-point set to accurately compute
the first two-order moments of a nonlinear transforma-
tion, therefore naturally increasing the accuracy of the
numerical estimates for moment integrals [21].

4) As suboptimal Bayesian filters, EKF, UKF, and CKF
all have some robustness to model uncertainties and
measurement outliers [53]. The extent of robustness
depends on their ability to accurately deal with the
nonlinear transformations. The EKF is the least robust
method due to a first-order Taylor series approxima-
tion of the nonlinear functions while the CKF has the
highest robustness thanks to its more accurate cubature
approach, which will be validated in the result section.

V. NONLINEAR OBSERVERS FOR POWER SYSTEM DSE

Dynamic observers have been thoroughly investigated for
different classes of systems. To mention a few, they have
been developed for linear time-invariant (LTI) systems, non-
linear time-invariant (NLTI) systems, LTI and NLTI systems
with unknown inputs, sensor and actuator faults, stochastic
dynamical systems, and hybrid systems [22], [23].

Most observers utilize the plant’s outputs and inputs to
generate real-time estimates of the plant states, unknown
inputs, and sensor faults. The cornerstone is the innova-
tion function—sometimes a simple gain matrix designed
to nullify the effect of unknown inputs and faults.
Linear and nonlinear functional observers, sliding-mode
observers, unknown input observers, and observers for
fault detection and isolation are all examples on developed
observers for different classes of systems, under different
assumptions [24].

In comparison with KF techniques, nonlinear and robust
observers have not been utilized for power system DSE.
However, they inherently possess the theoretical, technical,
and computational capabilities to perform good estimation of
the power system’s dynamic states. As for implementation,
observers are simpler than KFs. For observers, matrix gains
are computed offline to guarantee the asymptotic stability
of the estimation error or the boundedness of the estimation
error within a neighborhood of the origin.

Here, we present a recently developed observer in [54]
that can be applied for DSE in power systems. This observer
assumes that the nonlinear function φ(x) in (7) satisfies the
one-sided Lipschitz condition. Specifically, there exists ρ ∈
R such that ∀ x1, x2 in a region D including the origin with
respect to the state x, there is

〈φ(x1)− φ(x2), x1 − x2〉 ≤ ρ ‖x1 − x2‖2,

Algorithm 1 Obtaining One-Sided Lipschitz Constant ρ
input φ(x) and D
ρ0←−∞

for i = 1 : nD do
x← xi

compute ρi =

[
λmax

(
1
2

(
∂φ(x)
∂x
+

(
∂φ(x)
∂x

)>))]
ρi = max(ρi−1, ρi)

end for
output ρ ← ρnD

where 〈·, ·〉 is the inner product. Besides, the nonlinear func-
tion is also assumed to be quadratically inner-bounded as(
φ(x1)− φ(x2)

)>(
φ(x1)− φ(x2)

)
≤ µ ‖x1 − x2‖2

+ϕ 〈φ(x1)− φ(x2), x1 − x2〉,

where µ and ϕ are real numbers. Similar results related to the
dynamics of multi-machine power systems established a sim-
ilar quadratic bound on the nonlinear component (see [55]).
To determine the constants ρ,µ, andϕ, a simple offline algo-
rithm can be implemented. For example, we can define a
region of interest D ⊂ Rn to be the state-space region where
the system operates. For the multi-machine power network,
this region is the intersection of all upper and lower bounds
of states, which can be written as

D = [xmin
1 , xmax

1 ]× [xmin
2 , xmax

2 ]× · · · × [xmin
n , xmax

n ].

This region D can be obtained by the method discussed
in [56]. We sample random points in this region. Denser
sampling yields a more realistic Lipschitz constant, while
requiring more computational time. Let nD be the total num-
ber of samples inside D. Algorithm 1 includes the steps
required to obtain ρ. Specifically, ρ can be calculated from

ρ = lim sup
(
β
(∂φ
∂x

))
for all x ∈ D, where β(H) denotes the logarithmic matrix
norm of matrix H defined as

β(H) = lim
ε→0

‖I+ εH‖ − 1
ε

,

where ‖ · ‖ represents any matrix norm. It is shown in [57]
that the logarithmic matrix norm can also be written as

β(H) = λmax

(
1
2

(
H+H>

))
≤ ‖H‖.

At each iteration, we obtain the maximum eigenvalue of
1
2

(
∂φ(x)
∂x
+

(
∂φ(x)
∂x

)>)
where the Jacobian of the nonlin-

ear function is evaluated at the ith sampled point. Finally, ρ
is computed by finding the maximum value of β(·) over D.
Algorithm 1 is an offline search method to obtain the one-

side Lipschitz constant. The most computationally intensive
step of Algorithm 1 is finding the eigenvalues of an n-by-
n matrix (where n is the state dimension, i.e., x ∈ Rn),
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followed by finding the maximum eigenvalue. There are
many algorithms to find the eigenvalues of a matrix, but the
majority rely on matrix decompositions. Classical algorithms
replying on the singular value decomposition (SVD) require
O(n3), and since the algorithm is repeated nD times, then the
computational complexity of Algorithm 1 is O(n3 · nD).

To compute the quadratic inner-boundedness constants µ
and ϕ, a similar algorithm can be obtained. In particular,
instead of sampling over individual xi ∈ D, two state-space
samples xi and xj can be sampled at each iteration (i, j), and(
φ(xi)− φ(xj)

)>(
φ(xi)− φ(xj)

)
≤ µi,j ‖xi − xj‖2

+ϕi,j 〈φ(xi)− φ(xj), xi − xj〉,

is evaluated iteratively for all possible permutations xi and xj
inD to obtain themaximum values forµ and ϕ that satisfy the
above inequality. Following these assumptions, the dynamics
of this observer can be written as

˙̂x. = A ˙̂x+ Bu+ φ( ˙̂x)+ L
(
y− C ˙̂x

)
, (15)

where L is a matrix gain determined by Algorithm 2. First,
given the Lipschitz constants ρ, ϕ, and µ, the linear matrix
inequality in (16) is solved for positive constants ε1, ε2, and
σ and a symmetric positive semi-definite matrix P. Utilizing
the solution L in (17), the state estimates generated from (15)
are guaranteed to converge to the actual values of the states.

Algorithm 2 Observer Design Algorithm
compute constants ρ,µ, and ϕ via an offline search algo-
rithm
solve this LMI for ε1, ε2, σ > 0 and P = P> � O:
A>P+ PA+ (ε1ρ + ε2µ)In

−σ C>C P+
ϕ ε2 − ε1

2
In(

P+
ϕ ε2 − ε1

2
In

)>
−ε2In


< 0.

(16)

obtain the observer design gain matrix L:

L =
σ

2
P−1C>. (17)

simulate the observer design given in (15)

Note that the observer design utilizes linearized measure-
ment functions C, which for power system DSE can be
obtained by linearizing the nonlinear functions in (7). How-
ever, since the measurement functions have high nonlinearity,
when performing the estimationwe do not use (15), as in [54],
but choose to directly use the nonlinear measurement func-
tions as

˙̂x. = A ˙̂x+ Bu+ φ( ˙̂x)+ L
(
y− h( ˙̂x)

)
. (18)

The main principle behind the observer design is to min-
imize the difference between the estimated measurements

(i.e., ˙̂y(t)) and the actual ones (y(t)) through the innova-
tion term L

(
y − h( ˙̂x)

)
. The objective of this term is to

nullify/minimize the discrepancies due to errors in the esti-
mation, model uncertainties, measurement noise, or attack
vectors. The difference between y(t) and ˙̂y(t) yields an esti-
mate for the attack vector. Hence, the states evolution for
the observer are indirectly aware of the differences between
measured and potentially corrupt outputs and the estimated
ones. Given the solution to the linear matrix inequality (LMI),
the estimation error dynamics will be asymptotically stable.
Finally, it is important to mention that Algorithm 2 can be
performed offline, which implies that the observer in real-
time only requires a state-estimate update while all other
quantities are given; after finding L one can simulate (18)
without needing to perform other computations.

For Algorithm 2, we solve the LMI (16). Primal-dual
interior-point methods for LMIs/SDPs have a worst-case
complexity estimate ofO

(
m2.75L1.5

)
, wherem is the number

of variables (a function of n and ny, the state and output
dimensions) and L is the number of constraints [58]. In vari-
ous problems arising in estimation/control, it is shown that the
complexity estimate is closer to O

(
m2.1L1.2

)
; see [58] and

references therein. With that in mind, recent advancements
in semidefinite programming that utilize the sparse nature
of the state-space matrices can be exploited to improve the
computational efficiency.

VI. NUMERICAL RESULTS

Here we test EKF, UKF, SR-UKF, CKF, and the nonlinear
observer on the 16-machine 68-bus system extracted from
Power System Toolbox (PST) [59]. The one-line diagram of
the test system is shown in Fig. 1. For the DSE we con-
sider both unknown inputs to the system dynamics and cyber
attacks against the measurements including data integrity,
DoS, and replay attacks; see Section III. All tests are per-
formed on a 3.2-GHz Intel(R) Core(TM) i7-4790S desktop.

For simulating the power system to mimic the real system
dynamics, we model an IEEE Type DC1 excitation system
and a simplified turbine-governor system, which leads to a
10th order generator model. More details about the model
can be found in [16]. The simulation data is generated as
follows.

1) The simulation data is generated by the detailed 10-th
order model. The sampling rate is 60 samples/s.

2) In order to generate dynamic response, a three-phase
fault is applied at bus 6 of branch 6− 11 and is cleared
at the near and remote ends after 0.05 and 0.1 s.

3) All generators are equipped with PMUs at their termi-
nal buses. The real and imaginary parts of the voltage
phasor and current phasor are considered as measure-
ments.

4) The sampling rate of the measurements is set to be
60 frames/s to mimic the PMU sampling rate.

5) Gaussian process noise is added and the corresponding
process noice covariance is a diagonal matrix, whose
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FIGURE 1. 16-machine 68-bus system.

diagonal entries are the square of 5% of the largest state
changes [36].

6) Gaussian noise with variance 0.012 is added to the
PMU measurements.

7) Each entry of the unknown input coefficients Bw is a
random number that follows normal distribution with
zero mean and variance as the square of 50% of the
largest state changes. Note that the variance here is
much bigger than that of the process noise.

8) The unknown input vector w is set as a function of t as

w(t) =



0.5 cos(ωut)
0.5 sin(ωut)
0.5 cos(ωut)
0.5 sin(ωut)
−e−5t

0.2 e−t cos(ωut)
0.2 cos(ωut)
0.1 sin(ωut)


,

where ωu = 100 is the frequency of the given signals.
The unknown inputs are manually chosen, showing
different scenarios for inaccuratemodel and parameters
without a predetermined distribution.

For DSE we use the fourth-order generator model in [33]
and [34]. The Kalman filters and the observer are set as
follows.

1) DSE is performed on the post-contingency system on
time period [0, 10 s], which starts from the fault clear-
ing.

2) The initial estimated mean of the rotor speed is set to
be ω0 and that for the other states is set to be twice of
the real initial states.

3) The initial estimation error covariance is set to be 0.1In.
4) As mentioned before, the covariance of the process

noise is set as a diagonal matrix, whose diagonal entries
are the square of 5% of the largest state changes [36].

FIGURE 2. Norm of relative error of the states in Scenario 1.

5) The covariance for the measurement noise is a diag-
onal matrix, whose diagonal entries are 0.012, as
in [36].

6) For both UKF and SR-UKF, 2n + 1 sigma points are
used in the unscented transformation.

7) For UKF and SR-UKF, a popular heuristic n+ κ = 3
proposed in [60] is used to choose the parameter κ
in unscented transformation in order to minimize the
moments of the standard Gaussian and the sigma points
up to the fourth order.

8) For UKF is performed by using the EKF/UKF tool-
box [61], in which the function ‘schol’ is used to calcu-
late the lower triangular Cholesky factor of amatrix and
can get an output even when the matrix is not positive
semidefinite [34].

9) For the observer in Section V, the LMI (16) is solved
via CVX on MATLAB [62]. The Lipschitz constants
in Algorithm 2 are set as ρ = 10, µ = 1,
and ϕ = 1.

10) The mechanical torque and internal field voltage are
considered as unavailable inputs and take steady-state
values, because they are difficult to measure [26], [30].

11) On [0, 1 s] the reduced admittance matrix is the one for
the pre-contingency state.

12) Data integrity, DoS, and replay attacks, as discussed in
Section III-B, are added to the PMU measurements.

A. SCENARIO 1: DATA INTEGRITY ATTACK
Data integrity attack is added to the first eight measurements,
i.e., the real parts of the voltage phasors. The compromised
measurements are obtained by scaling the real measurements
by 0.6 and 1/0.6, respectively, for the first four and the last
four measurements. The 2-norm of the relative error of the
states, ||(x(t)− x̂(t))/x(t)||2, for different estimation methods
is shown in Fig. 2. It is seen that the error norm for both
CKF and the observer can quickly converge among which the
observer converges faster, while the value that CKF converges
to is slightly smaller in magnitude. By contrast, EKF, UKF,
and SR-UKF do not perform as well.

We also show the states estimation for Generator 1 in
Fig. 3. It is seen that the observer and CKF converge rapidly
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FIGURE 3. Estimated states by EKF, SR-UKF, CKF, and observer in
Scenario 1.

FIGURE 4. Estimated states by UKF in Scenario 1.

FIGURE 5. Estimated values for the first measurement in Scenario 1.

while the EKF fails to converge after 10 seconds. The esti-
mation for UKF is separately shown in Fig. 4 because its
estimated states are far away from the real states. Note that
the real system dynamics are stable while the UKF estimation
misled by the data integrity attack indicates that the system is
unstable.

The real, compromised, and estimated values for the first
measurement are shown in Fig. 5. For the observer, CKF,
and SR-UKF, the estimated measurements are very close
to the actual ones. For EKF there are some differences
between the estimates and the real values, while UKF’s
generated estimates are close to the compromised measure-
ments, indicating that it is completely misled by the cyber
attack.

FIGURE 6. Norm of relative error of the states. (a) Scenario 2.
(b) Scenario 3.

FIGURE 7. System states with and without model uncertainty in
Scenario 1.

B. SCENARIO 2: DOS ATTACK AND SCENARIO 3:
REPLAY ATTACK
The first eight measurements are kept unchanged for t ∈
[3 s, 6 s] to mimic the DoS attack in which case the updated
measurements cannot be sent to the control center due
to, for example, jammed communication between PMU to
PDC or between PDC to the control center [47].

Replay attack is added on the first eight measurements for
which there is yi(t) = yi(t − 3) for t ∈ [3 s, 6 s].

The 2-norm of the relative error of the states is shown
in Fig. 6 and the results are very similar to those in Scenario 1.

C. DISCUSSION ON MODEL UNCERTAINTY ESTIMATION
We take Scenario 1 as an example to discuss the performance
of different methods in dealing with model uncertainty. The
states of the system with and without model uncertainty,
including unknown inputs, unavailable inputs, and parameter
inaccuracy, are separately denoted by x and x0, which are
shown in Fig. 7. The difference between x and x0, x − x0,
is shown in Fig. 8. The estimated model uncertainty for
Generator 1 by EKF, SR-UKF, CKF, and the observer is
shown in Fig. 9 and that for UKF is shown in Fig. 10. It is seen
that SR-UKF, CKF, and the observer can estimate the model
uncertainty pretty well while the EKF does not perform as
well and the UKF has the worst performance for which the
model uncertainty estimation is largely misled by the data
integrity attack.
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FIGURE 8. The x− x0 in Scenario 1.

FIGURE 9. Estimated model uncertainty for EKF, SR-UKF, CKF, and the
observer in Scenario 1.

FIGURE 10. Estimated model uncertainty for UKF in Scenario 1.

D. DISCUSSION ON CYBER ATTACK DETECTION
The normalized innovation ratio of the jth measurement at
time step k is defined as the ratio between the deviation of its
actual measurement from the predicted measurement and the
expected standard deviation [27], [29], [30]:

λk,j =
yk,j − ŷk|k−1,j√

Pyy,k|k−1,j
, (19)

where Pyy,k|k−1,j is the jth diagonal element of the measure-
ment covariance.

The normalized innovation ratio for all of the measure-
ments for EKF, UKF, SR-UKF, and CKF in Scenario 1 are

FIGURE 11. Cyber attack detection in Scenario 1 for (a) EKF, (b) UKF,
(c) SR-UKF, and (d) CKF.

FIGURE 12. Norm of relateive error of the states. (a) attack detection and
real and estimated measurements for the observer in Scenario 1.

shown in Fig. 11. It is seen that for EKF and UKF the
normalized innovation ratios of a few uncompromised mea-
surements are greater than those for the compromised mea-
surements, which means that EKF and UKF cannot correctly
detect the compromised measurements. For SR-UKF and
CKF, after a few seconds (in the first second some uncompro-
mised measurements can have bigger normalized innovation
ratios mainly because the parameters used for estimation
in that time period are inaccurate), the normalized innova-
tion ratios for compromised measurements are significantly
greater than those for the uncompromised ones, and the com-
promised measurements can be detected by a properly chosen
threshold. Compared to SR-UKF, CKF has a better perfor-
mance. For Scenarios 2–3 the results are similar and are not
presented.

For the observer, since there is no measurement covari-
ance we will detect cyber attacks against the measurements
directly using the measurement innovation yk,j − ŷk|k−1,j,
which is shown in Fig. 12a for Scenario 1. It is seen that after
the first second in which the parameters are inaccurate the
measurement innovation of the compromised measurements
are significantly greater than those of the uncompromised
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FIGURE 13. Cyber attack detection in Scenario 2 and Scenario 3 for the
observer.

ones and thus the compromised measurements can be easily
detected. In Fig. 12b we also show the different between the
real and estimated measurements, y0 − ŷ. For both the com-
promised and uncompromised measurements, the estimated
measurements from the observer can almost immediately
converge to the real measurements after the first second.

In Fig. 13 we show the measurement innovation of the
observer for Scenario 2 (Fig. 13a) and Scenario 3 (Fig. 13b),
which indicates that the compromised measurements can also
be detected by the observer.

E. NON-GAUSSIAN MEASUREMENT NOISE
We performed DSE under data integrity attack in Sce-
nario 1 with non-Gaussian measurement noise, including the
Laplace noise and Cauchy noise. Laplace noise with mean m
and scale s is generated by

rLaplace = m− s sgn(U1) ln(1− 2|U1|), (20)

where m is set to be zero, s is chosen as 0.02, and U1 is a
random number sampled from a uniform distribution in the
interval (−0.5, 0.5]. Cauchy noise is obtained by sampling
the inverse cumulative distribution function of the distribution

rCauchy = a+ b tan
(
π (U2 − 0.5)

)
, (21)

where a = 0 and b = 10−4 are the location and scale
parameters, and U2 is randomly sampled from the uniform
distribution on the interval (0, 1).

The norms of the relative error of the states under Laplace
and Cauchy noises are shown in Fig. 14. Similar to the case
with Gaussian noise, the observer and CKF also outperform
the other methods. Under Laplace noise, the performance of
different methods are similar to that under Gaussian noise.
However, under Cauchy noise that has a super-heavy tailed
distribution with no defined moments, the performance of
all methods degrade, converging to a much bigger norm of
relative error of the states.

F. COMPUTATIONAL EFFICIENCY
For the above three scenarios, the time for estimation by
different methods is listed in Table 1. It is seen that EKF and
the observer are more efficient than the other methods while
CKF is the least efficient. Note that the time reported here is

FIGURE 14. Norm of relative error of the states under different
measurement noises. (a) Laplace noise and (b) Cauchy noise.

TABLE 1. Time for performing estimation for 10 seconds.

from MATLAB implementations. It can be greatly reduced
by more efficient, such as C-based implementations.

VII. COMPARING KALMAN FILTERS AND OBSERVERS
Here, various functionalities of DSE methods and their
strengths and weaknesses relative to each functionality are
presented based on (a) the technical, theoretical capabilities
and (b) experimental results in Section VI.

• Nonlinearities in Dynamics: UKF, SR-UKF, CKF, and
the observer in Section V all work on nonlinear sys-
tems while EKF assumes linearized system dynamics.
Besides, the presented observer uses linearizedmeasure-
ment functions for design but directly uses nonlinear
measurement functions for estimation.

• Solution Feasibility: The main principle that governs the
design of most observers is based on finding a matrix
gain satisfying a certain condition, such as a solution to
a matrix inequality. The state estimates are guaranteed
to converge to the actual ones if a solution to the LMI
exists. In contrast, KF methods do not require that.

• Unknown Initial Conditions: Observer designs are inde-
pendent on the knowledge of the initial conditions of the
system. However, if the estimator’s initial condition is
chosen to be reasonably different from the actual one,
estimates fromKFmight not converge to the actual ones.

• Robustness to Model Uncertainty and Cyber Attacks:
The observer in Section V and the CKF outper-
forms UKF (SR-UKF) and EKF in the state estima-
tion under model uncertainty and attack vectors. The
observer is robust to model uncertainties because it
only assumes that the nonlinearities in the power sys-
tem dynamics (i.e., φ(x)) satisfy the quadratic inner-
boundedness and the one-sided Lipschitz condition.
As in Section IV-C, CKF is more robust mostly due to
its more accurate cubature approach, which, however,
requires more careful investigation. With that in mind,
it is hard to generalize. Therefore, advanced theoretical
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understanding and more numerical experiments vis-à-
vis robustness to model uncertainty and attacks are both
needed.

• Tolerance to Process and Measurement Noise: The
observer in Section V is tolerant to measurement
and process noise similar to those assumed for KFs.
By design, the KF techniques are developed to deal
with such noise assuming statistical distributions are
provided. However, many observers do not assume any
statistical information regarding unknown inputs.

• Convergence Guarantees: Observers have theoretical
guarantees for convergence while for the KF techniques
there is no strict proof to guarantee that the estimation
converges to actual states.

• Numerical Stability: Observers do not have numerical
stability problems while UKF can encounter numeri-
cal instability because the estimation error covariance
matrix is not always guaranteed to be positive semi-
definite [34].

• Tolerance to Parametric Inaccuracy: KF-based meth-
ods can tolerate inaccurate parameters to some extent.
Dynamic observers deal with parametric uncertainty in
the sense that all uncertainties can be augmented to the
unknown input component in the state dynamics (Bww).

• Computational Complexity: The CKF, UKF (SR-
UKF), and EKF all have computational complexity of
O(n3) [21], [32]. Since the observers’ matrix gains are
obtained offline by solving LMIs, observers are easier
to implement as only the dynamics are needed in the
estimation.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we discuss different DSE methods by pre-
senting an overview of state-of-the-art estimation techniques
and developing alternatives, including the CKF and dynamic
observers, to address major limitations of existing methods
such as intolerance to inaccurate system model and mali-
cious cyber attacks. The proposed methods are extensively
tested on a 16-machine 68-bus power system, under signif-
icant model uncertainty and cyber attacks against the syn-
chrophaosr measurements. It is shown that the CKF and the
observer are more robust to model uncertainty and cyber
attacks.

Based on the theoretical capabilities and the experimen-
tal results, we summarize the strengths and weaknesses of
different estimation techniques especially for power system
DSE. We acknowledge that some of these comparisons, such
as tolerance to process and measurement noise, are mostly
based on numerical results. As future work we will more the-
oretically investigate and analyze the observer in comparison
with Kalman filters, based on which better defending strate-
gies against model uncertainties and cyber attacks against
measurements will be developed. Specifically, future work
will focus on deriving matrix inequalities that analytically

capture robustness in the observer state estimation process
with theoretical guarantees. This will be investigated jointly
with a nonlinear PMU measurement model, rather than a
linearized one.
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