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ABSTRACT Accurate wind energy assessments require wind speed (WS) at the hub height. The cost of WS
measurements grows enormously with height. This paper utilizes deep neural network (DNN) algorithm
for the extrapolation of the WS to higher heights based on measured values at lower heights. LiDAR
measurements at lower heights are used for training the system and at higher heights for performance
analysis. These measurements are made at 10, 20, . . . , and 120 m heights. First, the measured WS values
at 10–40 m were used to extrapolate values up to 120 m. In the second scenario, the WS at 10–50 m were
used to extrapolate values up to 120 m. This continued until the last scenario, in which the WS at 10–100 m
were used to estimate values at 110 and 120 m. A relationship between heights of measurements and the
accuracy of the WS estimation at hub height is presented. The WS extrapolated using the present approach
is compared with the measured values and with local wind shear exponent (LWSE)-based extrapolated
WS. Furthermore, to analyze the performance of the DNN relative to other machine learning methods, we
compared its performance with that of classical feedforward artificial neural networks trained using a genetic
algorithm to find the initial weights and the Levemberg–Marquardt (LM) method (GANN) for training. The
mean absolute percent error between measured and extrapolatedWS at height 120 m based on measurements
between 10–50 m using DNN, GANN, and LWSE are 9.65%, 12.77%, and 9.79%, respectively.

INDEX TERMS Extrapolation, machine learning, renewable energy, wind speed profile.

I. INTRODUCTION
Generally, the energy output of a wind turbine increases
with increasing wind speed (WS). However, the WS at a site
increases with height due to less gravitational pull and the
leaning up of frictional forces at higher heights. Hence there
is a need to conduct WS measurements at higher heights
either using wind masts or LiDAR type of equipment for
accurate wind energy resource assessment. Both of these
approaches are costly and skilled manpower intensive [1].
On the cost front of wind speed measurements, a 60m tall
tower costs around US $45,000 while an 80-meter lattice
tower costs more than US $85,000 [2]. Commonly, the hub
heights of modern wind turbines range from 60 to 120m
for on-shore applications and more for offshore installations.
Therefore, it motivates to develop models and methodologies
which can provide better estimates of WS at hub height using
the available measured WS at lower heights. Hence accurate
wind measurements are required up to the wind turbine hub
height for risk free investment.

The behavior of vertical wind speed profile over homoge-
neous land in stationary conditions can be estimated accu-
rately within the first 30 to 60m above ground level using
Monin-Obukhov Similarity Theory (MOST) and surface-
layer scaling [3]–[7]. Beyond these levels the vertical
WS profile progressively deviates from MOST due to the
influence of other parameters such as the boundary-layer
height [7], [8]. However, it has been observed that marine
wind speed profile does not follow the MOST profile starting
at heights as low as 29m above mean sea level (AMSL) [9].
Lange et al. [10] and Peña and Gryning [11] found devia-
tions in near-neutral and stable conditions at 45-50m AMSL.
Gualtieri [12] extrapolated WS to 100m using α–I method in
conjunction with turbulence intensity measurements at 30m
with a bias of less than 5%, RMSE = 0.20, and R2

= 0.94.
In another study, Gualtieri and Secci [13] analyzed the per-
formance of several theoretical methods for WS profile esti-
mation and indicated that their accuracies depend highly on
the atmospheric stability conditions.
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Empirical methods rely mainly on the logarithmic and
power law calculations. However, Newman and Klein [14]
found that the power law performed well under neutrally
stable atmospheric situations and failed under unstable con-
ditions and hence has limitations. Local wind shear expo-
nent (LWSE) model is based on the empirical value of the
shear exponent which is calculated using the local wind
speed measurements made at different heights at the site of
interest. It provides good extrapolated wind speed compared
to the above theoretical methods. However, it is highly site
dependent and relies on class one quality wind anemome-
ter based measurements. Ayodele et al. [15] used measured
wind speeds at 20 and 60m to estimate the LWSE and then
carried out wind power assessment with better accuracy.
Tizpar et al. [16] used wind speed measurements at 10, 30,
and 40m to estimate the LWSE and then obtained reliable
wind power potential assessment at hub height. In Northern
Cyprus, Solyali et al. [17] calculated the LWSE using wind
measurements at 50, 80, and 90m and then extrapolated the
wind speed to the required hub height for accurate wind
power potential.

Hence to overcome the complexity and the cost burden
related to the above approaches, which most countries can-
not afford, modelling approaches are being used to extrap-
olate the WSs to required hub heights using historically
available data. The present study aims at using Deep Neu-
ral Networks (DNN) to estimate the WS at the hub height
based on measurements at lower heights. A large number
of artificial neural networks methodologies have been used
for temporal and spatial wind speed estimations [18]–[23].
Limited work has been reported in the literature on the use
of machine learning methods for vertical wind speed estima-
tion [24]–[26]. Turkan et al. [25] compared the performance
of seven different machine learning methods to estimate
WS at 30m heights based on measurements at 10m height.
Saiful Islam et al. [26] used wind speed data measured at
10-40m at Juaymah meteorological station in Saudi Arabia
and extrapolated theWS up to 100m height. Authors used two
hybrid neural networks, namely, Genetic algorithm and parti-
cle swarm optimization. They had nomeasured data except up
to 40m, therefore, they compared their extrapolation results
with 1/7 power law and logarithmic law.

The contributions of this paper can be summarized as
follows:
• It represents the first use of deep neural networks for
vertical WS extrapolation.

• It shows users themeasurements needed at lower heights
to achieve a specified amount error at the hub height.

• It shows that DNN outperforms other machine learning
method (GANN) and a classical non-machine learning
method (LWSE)

• It compares extrapolated WS values with real measured
values up to height of 120m.

The paper is organized as follows: Section II describes
the methodology used. Section III discusses the experimen-
tal results, while analysis of performance is provided in

FIGURE 1. ZephIR 300 Onshore Wind Lidar.

Section IV. Finally conclusions and future works are summa-
rized in Section V.

II. METHODOLOGY USED
Laser Doppler (LiDAR) anemometry devices have gained
significantmaturity in recent years, both in terms of reliability
andmeasurement quality. These techniques are being increas-
ingly applied in routine wind measurement campaigns as can
be seen from the studies reported in the literature [27]–[31].
The LiDAR anemometers have many advantages, includ-
ing ease and low cost of installation and decommissioning,
measurements to blade tip and above, re-usability, no cal-
ibration drift, no permits requirement, no aviation obstruc-
tion, no mast or boom flow distortions, no icing affects, and
reduced lightning vulnerability.

The acquired LiDAR (shown in Fig. 1) was deployed at
a secured site in Dhahran (inside the campus of King Fahd
University of Petroleum and Minerals). The unit can mea-
sure WS up to 200m height in the range of 2-50m/s within
−5 to 50◦C ambient temperatures. Dhahran is an on-shore
site 15 km away from the Gulf coast with a flat terrain. There
are some short trees around the site which experiences normal
diurnal changes of temperature and wind speed.

Deep Neural Networks (DNN) is finding wide real life
applications lately. ADNN is a feed-forwardArtificial Neural
Network (ANN) with more than one hidden layer between its
inputs and the outputs. DNN has shown its significant superi-
ority over shallow ANN on modelling data for speech recog-
nition, image recognition, classification, and dimensionality
reduction [32], [33]. DNN with multiple hidden layers and
large number of units per layer can model extremely complex
and non-linear relationships between inputs and outputs from
training data.

Rehman [33] proposed a generative pre-training to model
the structure of the available data. After pre-training, near
optimal initial weights are obtained and fine-tuning is per-
formed using regular backpropagation learning. In addition to
providing near optimal initial weights, the Restricted Boltz-
mannMachine (RBM) pre-training also enhances generaliza-
tion since most of the information in the weights is drawn
from sampling the data [33]. Pre-training is performed by
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FIGURE 2. RBM architecture.

decomposing each layer as an input-output pair. Each pair is
then treated as a RBM which consists of two layers namely
visible (v) and hidden (h) (Fig. 2). The biases b and c denote
the visible and hidden layer biases. The visible and hidden
units are connected with weights W. The initial values of
the weights and biases are assumed random with Gaussian
distribution N(0, 0.1).

For each iteration, the pre-training takes two phases i.e. a
positive and a negative. First, in the positive phase, we set the
training vector x as the values of the visible units (v+). The
value of each hidden unit (h+j ) is set to one with probability

ĥ+j = p
(
h+j = 1|v+

)
= σ

(
cj +

∑
i
v+i wij

)
(1)

where σ (x) is the logistic sigmoid function 1/(1+exp (−x)).
The values from the positive phase h+j are used to calculate
the values in the negative phase as follows:

v̂−i = σ
(
bi +

∑
j
h+j wij

)
(2)

ĥ−j = σ
(
cj +

∑
i
v̂−i wij

)
. (3)

Finally, the updates for the weights and biases are given by:

1wij = ε
(
〈viĥj〉+ − 〈v̂iĥj〉−

)
(4)

1bi = ε
(
〈vi〉+ − 〈v̂i〉−

)
(5)

1cj = ε
(
〈ĥj〉+ − 〈ĥj〉−

)
(6)

where 〈·〉 denotes expectation operator over all data and ε is
the learning rate. Superscripts + and − indicate the positive
and negative phases, respectively. This process is repeated for
a pre-set maximum number of iterations. The same procedure
is applied for the next RBM using the outputs of the previous
RBMas inputs to the current one. This process continues until
the last RBM. The weights and biases obtained from this pre-
training process are used as initial values for a feedforward
network obtained by stacking the RBM pairs in sequence.
This resultant network is trained using regular feedforward
backpropagation for fine tuning. The training process con-
tinues until the error between the desired output and the real
output layer reaches a pre-determined value or a maximum
number of iterations.

In our experiments, we divided the measurement data into
training part (50%), cross validation part (25%) and testing
part (25%). Based on the performance of cross validation
data, 50 iterations are used for pre-training of each RBM

with a unified learning rate of 0.1 for all weights and biases.
Five RBMs were pre-trained to generate initial weights and
biases for four hidden layers with 30-20-15-10 units. All units
used sigmoid activation units. The fine-tuningwas done using
the regular back-propagation technique with a learning rate
of 0.001 and a maximum number of iterations of 1000.

For performance evaluation, several measures are used
including mean absolute percent error (MAPE), root mean
square error (RMSE), and mean biased error (MBE). These
error parameters are calculated using the following equa-
tions [34]:

MAPE =
1
N

∑N

i=1

∣∣∣∣Mi − Ei
Mi

∣∣∣∣ (7)

RMSE =

√
1
N

∑N

i=1
(Mi − Ei)2 (8)

MBE =

∑N
i=1 (Mi − Ei)

N
(9)

where N is the number of samples, M and E are the measured
and the estimated values of the WS.

III. EXPERIMENTAL RESULTS
In practice wind measurements are mostly available up to
40meters. In such cases theWS is extrapolated to the required
hub height using the 1/7th power law or LWSE. Usually, such
extrapolations deviate significantly from real values. In this
study, WS data was collected by the LiDAR system between
June 15, 2015 and July 4, 2016. The WS data was scanned
every second and was stored as 10-minute averages. Hourly
averaged WS values were calculated at heights 10-120m.
The DNN technique described above was used to estimate
WS at higher heights. Several cases have been considered.
In the first scenario, WS at 10-40m were used to estimate
values at heights 50-120m. In the second scenario, values
at 10-50m were used to estimate WS at 60-120m. Scenarios
continued in the same way until the last scenario where WS
at 10-100m were used to estimate values at 110 and 120m.
The results of the extrapolation process for all scenarios are
given in tables. Detailed results are given in figures for two
scenarios only: one using measurements at 10-50m and the
other using measurements at 10-80m, as representatives of
the performance of the proposed methods.

The extrapolation process in the first scenario was accom-
plished by training a DNN system on WS values at 10, 20,
and 30m as inputs and WS at 40m as the output. The same
trained system was provided with WS values at 20, 30, and
40m as inputs to estimate WS at 50m. Hence, the system
extrapolates WS from three lower measurements to one step
higher. In the next step, the measured WS at 10-40m along
with the newly estimated value at 50m were used to train a
new DNN system with 4 inputs and one output. This trained
systemwas providedwithWSvalues at 20-50m to extrapolate
to the next height at 60m. This process of using measured and
estimatedWS values at lower heights to findWS values at one
step higher height continued until we obtained WS at 120m.

77636 VOLUME 6, 2018



M. A. Mohandes, S. Rehman: WS Extrapolation Using Machine Learning Methods and LiDAR Measurements

TABLE 1. Assessment of estimated WS at heights 50-120m based on measurements at 10-40M.

FIGURE 3. Results for estimation of WS at 120m based on measurements between 10-50m (a) The scatter plot of measured and estimated wind
speed at 120m using DNN, (b) The scatter plot of measured and estimated wind speed at 120m using LWSE, (c). Estimated and measured hourly WS
at a sample range, (d). Average vertical profiles of measured and estimated wind speed values.

Using the same measured WS at 10-40m we extrapolated to
higher heights (50-120m) using LWSE method.

Table 1 shows the error values MAPE, RMSE, and MBE
between the measured and estimated WS values at heights
between 50 and 120m for both DNN and LWSE methods.
The MAPE varied between 2.06% at 50m to 11.66% at
120m, corresponding to the proposed method while between
3.02% and 15.99% corresponding to LWSE based esti-
mations. Similarly, the RMSE values varied from 0.03 to
1.25m/s and 0.04 to 1.92m/s corresponding to DNN and
LWSE methods, respectively. These values indicate that the
error increases with the addition of estimated WSs with mea-
surements between 10-40m in both the methods. However,
the MBE values showed a positive bias for DNN method

(overestimation) and a negative bias (underestimation) for
LWSE approach. The coefficient of determination R2 values
are found to be higher in case of DNN method compared
to that LWSE based estimations an indication of superior
performance.

For the second scenario, measured WS at 10-50m were
used to estimate values at 60-120m following the same pro-
cedure as in the first scenario. Fig. 3(a) shows the scatter
plot of the measured and estimated WSs at 120m using DNN
method with R2 value of 90.28%, while Fig 3(b) shows the
scatter plot for LWSE method with R2 value of 87.44%. The
plot shows a small scatter for lower WS up to 5m/s and then
the scatter increases for higher WS values. The estimated
and measured values at 120m are compared in Fig. 3(c) for
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TABLE 2. Assessment of estimated WS at heights 60-120m based on measurements at 10-50M.

TABLE 3. Assessment of estimated WS at heights 70-120m based on measurements at 10-60M.

TABLE 4. Assessment of estimated WS at heights 80-120m based on measurements at 10-70M.

TABLE 5. Assessment of estimated WS at heights 90-120m based on measurements at 10-80M.

a sample range. In this case, the estimated WSs followed
the trend of measured values closer than that in the first
scenario. This improvement in the estimated WS values is
associated with the addition of one more level of measured
WS at 50m. The average vertical profiles of estimated (using
LWSE, 1/7th power law, and DNN methods) and measured
WS values are compared in Fig. 3(d). The figure indicates that
WS profile obtained using the DNN method is closer to the
measured profile compared to other methods. Performance of
the proposed method and the LWSE are shown in Table 2 for
all the heights.

In the third scenario, WSs at heights 70-120m were esti-
mated using measurements at 10-60m following the same
procedures as in first two scenarios. The error magnitudes
between the measured and estimated values of WS for both
the methods at different heights are summarized in Table 3.
The MAPE values show linearly increasing trends from
0.99% to 7.07% while moving from lower to higher heights
in the case of DNN method, outperforming the values for
LWSE. The RMSE values were slightly higher in case of
LWSE approach compared to DNN method. The estimated
WS values using the DNN and LWSE methods were overes-
timated and underestimated, respectively, as can be observed

from positive and negative values of MBE. The coefficient of
determination R2 values are observed to be higher in case of
DNN estimations compared to LWSE based estimated values.

In the fourth scenario, WS values were estimated between
80 to 120m using the measured WS at 10-70m in a process
similar to the previous three scenarios. The performance
measures at 80 to 120m heights between the estimated and
measuredWS values are provided in Table 4. The error values
showed an increasing trend with height but the magnitude
of these terms was less than those in the previous cases.
In general, lower values of these error terms were observed
in cases of DNN estimations compared to LWSE method.
The MBE values showed underestimation for both methods.
The R2 values were higher in the case of DNN compared to
LWSE, indicating better performance

In the fifth scenario, measuredWS values between 10-80m
were used to estimate values at 90-120m. TheMAPE, RMSE,
MBE, and R2 values are summarized in Table 5, indicating
better performance for the proposedmethod. Outperformance
of the proposed method is also indicated in Fig. 4.

In the sixth scenario, measured values between 10 to 90m
were used to estimate WS between 100-120m. All perfor-
mance parameters were found to be better than previous cases
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FIGURE 4. Results for estimation of WS at 120m based on measurements between 10-80m, (a) The scatter plot of measured and estimated WS at
120m using DNN, (b) The scatter plot of measured and estimated WS at 120m using LWSE, (c). Estimated and measured hourly WS at a sample
range, (d). Average vertical profiles of measured and estimated wind speed values.

TABLE 6. Assessment of estimated WS at heights 100-120m based on
measurements at 10-90M.

as presented in Table 6. Moreover, the table shows that the
proposed method outperformed the LWSE method.

In the seventh scenario, measured WSs between 10-100m,
were used to estimate WS values at 110-120m. The error
values, summarized in Table 7, were lower in magnitude
than those in the previous cases. This is due to using more
and more measured values of WS at lower heights for the
estimation at higher heights.

IV. RESULTS ANALYSIS
In this section we analyze the results presented in the previous
section and compare the performance of DNN with GANN.
Table 8 summarizes the overall performance measures of
DNN with LWSE at hub height (120m) based on measured
values at lower heights. For example, the first column shows

TABLE 7. Assessment of estimated WS at heights 110-120m based on
measurements at 10-100M.

the performance indicators at 120m height based onmeasured
WSs at 10-40m using the DNN and the LWSE methods.
Similarly, the second column shows the results at 120m
height based on measured WS values at 10-50m, and so on
for the remaining columns. The table shows that the MAPE
value is decreased from 11.66% to 9.65%, i.e. a reduction of
about 17%, while estimating the WS by using measurements
up to 50m instead of up to 40m. Almost similar magnitude
of improvements was observed in the cases of RMSE and
MBE values. The R2 value also improved to 90.28% from
84.73%. The rate of decrease in error values slowed down as
the number of measurement levels was increased. Therefore,
this study concluded that measurements up to 50m are needed
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TABLE 8. Comparison of Performance measures between DNN and LWSE methods at 120m.

TABLE 9. Comparison of Performance measures between DNN and GANN methods at 120m.

FIGURE 5. Training of GANN.

to achieve reasonable accuracies (MAPE less than 10% and
R2 more than 90%).

To further analyze the performance of the DNN as com-
pared with other machine learning methods, we compare its
performance with that of a hybrid system (GANN) that uses
Genetic Algorithm (GA) to find a suitable initial weights
and biases values for ANN. The GA is used along with
the Levenberg-Marquart (LM) method to enhance the search
capability for optimum weights and bias values [26], [35].

The combination of the GA and ANN is illustrated in Fig. 5.
The LM algorithm is an iterative approach combining gradi-
ent descent and Gauss-Newton methods to minimize a func-
tion [36]. Parameters change their values at every iteration
according to the following equation

Wk+1
=Wk

−

[
JTJ+ λI

]−1
JT(y−ȳ) (10)

where Wk+1 and Wk are the values of the weights at (k+1)th

and k th iterations, correspondingly. The Jacobian matrix J
contains first derivatives of model output with respect to the
optimizing parameters. Actual and predicted output values
are denoted by y and ȳ, respectively. Increasing the damping
parameter λ decreases the step size, and vice versa. Therefore,
if a step is unacceptable, λ should be increased for a smaller
step. If a step is accepted, λ is decreased in order to proceed
more quickly in the correct descent direction, speeding up the
convergence.

Ten initial populations were considered in the GA where
each population represents a set of weights and bias values for
ANN. Several trials and errors were used to select the algo-
rithm parameters as follows: the number of hidden neurons
equals twice the number of inputs organized in a single hidden
layer, a maximum number of 150 iterations, initial weights
and threshold values ranging between−30 to 30, a crossover
rate of 0.8, and a mutation parameter of 0.01.

Similar to Table 8, the overall performance measures of
DNN with GANN at hub height (120m) based on measured
values at lower heights is shown in Table 9. The table shows
that the performance of DNN is better than the performance
of GANN in all measures.

The trends of the performance measures MAPE and R2 are
displayed in Fig. 6. Depending on the accuracy requirement
for the resource assessment, the number of measurement
levels can be chosen. For example, if an error of around
MAPE=4% is tolerable, then measurements should be made
up to 80m (Fig. 6(a)) and then extrapolated comfortably to the
required hub height of 120m. Similarly, if R2 of around 95%
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FIGURE 6. (a). Trends of MAPE with measurement heights and (b). Trends of R2 with measurement heights.

is required, then measurements should be made up to 60m as
shown in Fig. 6 (b).

V. CONCLUSION
Commonly, the hub heights of modern wind turbines may
be up to 120m. Hence, to carry out wind resource assess-
ment correctly at the hub height, wind speed has to be mea-
sured or extrapolated to that height with minimum possible
error. However, to address financial and technical constraints,
wind speedmeasurements are commonlymade atmuch lower
heights. This is due to the fact that the cost of wind measure-
ment masts increases tremendously with heights. This paper
extrapolatesWS at hub height using measured values at lower
heights. The system was trained to find the WS at the next
higher level. This extrapolated data was used along with the
measured WS at lower heights to find WS at another higher
level. This process was continued until the WS at 120m was
estimated. These estimated WS values were compared with
LiDAR system measured values using MAPE, RMSE, MBE,
and R2 as performance measures. This study concluded also
that measurements up to 50m height are needed for accept-
able accuracy ofWS estimation at the hub height. Simulations
indicate the superiority of the deep neural network when
compared with local wind shear exponent method or with the
standard feedforward neural network.
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