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ABSTRACT Low-dose computed tomography (LDCT) images are polluted by mottle noise and streak
artifacts. To improve LDCT images quality, this paper proposes a novel total variation (NTV) model.
A weighted coefficient of the regularization term of NTV model is constructed by standard deviation,
gray-level probability and gradient magnitude to smooth LDCT images adaptively, since the standard
deviation and the gray-level probability of detail region are higher than that of the noisy background, and
the gradient magnitude of edges is higher than that of the noisy background. Besides, to preserve details
and edges effectively, the fidelity term of the proposed NTV model is constructed by the block-matching
3d filter because it performs well in details and edges preservation. The experiments are performed on the
computer simulated phantom and the actual phantom. Compared with several other competitive methods,
both subjective visual effect and objective evaluation criteria show that the proposed NTV model can
improve LDCT images quality more effectively such as noise and artifacts suppression, details, and edges
preservation.

INDEX TERMS Low-dose CT, image denoising, total variation, weighted coefficient, edges and details

preservation.

I. INTRODUCTION

X-ray Computed Tomography (CT) has been widely used in
clinical diagnosis and therapy since it was put forward in
the 1970s. CT technology provides high resolution medical
sectional anatomy images compared with other radiological
examinations, but patients receive high radiation doses dur-
ing CT examinations [1]. High radiation doses can lead to
increased likelihood of the incidence of genetic disease and
cancer, and radiation doses in the body of patients accumulate
with age [2]. So, controlling radiation doses and getting
LDCT images are of great significance to patients. Radiation
doses are determined by many scanning parameters, such as
scanner geometry, tube current and voltage, scanning modes,
and so on [3]. Correspondingly, there are many methods to
reduce radiation doses, among which, lowering tube current
is the most commonly used, nevertheless, the reconstructed
LDCT images by this way are badly damaged by mottle noise

and streak artifacts [4]. Based on this, many approaches have
been put forward to improve the quality of LDCT images.
Usually these approaches are divided into three categories:
projection-data-processing approaches, iterative reconstruc-
tion approaches and post-processing approaches.

In projection-data-processing approaches, projection data
are preprocessed, and then the reconstructed images are
obtained from the processed projection data by classical fil-
tered back projection (FBP) algorithm. A lot of researches
have been done on this category. Multiscale least-square
filter [5], bilateral filter [6], statistic-based iterative filter
[7], fuzzy-median filter [8], and total generalized variation
filter [9] were proposed to remove noise in projection data
respectively. The disadvantage of this category is that it
is difficult to get raw projection data. Unlike projection-
data-processing approaches, the main goal of the iterative
reconstruction approaches is to find the optimal solution
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of the objective function with a priori regularization term
concerned with the noise characteristics of projection data.
Different priori terms will lead to different reconstruction
results. Therefore, the key is to construct effective priori
terms. So far, a lot of priori terms have been constructed, such
as the total variation priors [10], [11], the non-local means
priors [12], [13], the compressed sensing prior [14], and the
dictionary learning prior [15]. Unfortunately, the process of
iterative reconstruction approaches always needs much time.

The third one, i.e., post-processing approaches, does not
rely on raw projection data and can be applied to different
scanning systems. In the past decade, a variety of post-
processing approaches were proposed, such as bilateral filter
and nonlocal means [16], a weighted intensity averaging over
large-scale neighborhoods filter [17], a large-scale nonlocal
means (LNLM) filter combined with a multiscale directional
diffusion scheme [18], an artifact suppressed dictionary learn-
ing approach [19], an approach of deep convolutional neural
network [20], a penalized weighted least-squares (PWLS)
algorithm [21], and a filter based on fractional-order partial
differential equations, i.e., FPMTV model [22].

During the last two decades, partial differential equa-
tions (PDEs) have been developed as effective tools for
image denoising and they are widely used in post-processing
approaches. Among them, the PM model proposed by
Perona and Malik [23] and the total variation (TV) model
proposed by Rudin, Osher, and Fatemi [24] perform well in
noise removing, but they suffer from blocky effect seriously.
It is visually unpleasant and mistakenly identified as edges
in the smooth area. To solve this problem, some high-order
PDEs were proposed for image denoising. For example, one
of the most popular four-order PDEs, YK model, was intro-
duced by You and Kaveh [25], and the other two classical
four-order PDEs models were proposed by Lysaker, Lun-
dervold and Tai (LLT model) [26] and Mohammad Reza
Hajiaboli (MRH model) [27] respectively. Although these
fourth-order models do not cause blocky effect, speckle noise
exists in the filtered image.

Besides, to reduce blocky effect, the modified total varia-
tion (MTV) [28] model was also proposed and it can reduce
blocky effect to a certain degree, but there are still two defi-
ciencies: @ The regularization term of MTV model is not spa-
tially smoothing adaptive. @ In addition, the MTV model uses
Gaussian operator to construct the fidelity term, which makes
the model not conducive to edges and details preservation,
because the Gaussian filter blurs edges. Unlike local Gaussian
filter, the BM3D model [29] is a patch-based model in nonlo-
cal areas, and it has been proven to be superior to previous
image denoising algorithms and shows outstanding perfor-
mance in details and edges preservation. Therefore, in order
to overcome these deficiencies of the MTV model, the NTV
model is proposed in this paper by taking the advantage of
BM3D filter. In NTV model, to achieve adaptive diffusion,
the adaptive weighted coefficient of the regularization term
is constructed by standard deviations, gray-level probability
and gradient magnitude, since the standard deviation and the
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gray-level probability can differentiate fine details from noisy
background, and the gradient magnitude can differentiate
edges from noisy background. Besides, instead of Gaussian
filter used in the fidelity term of MTV model, the NTV model
use BM3D filter to obtain the image in the fidelity term. Then,
the NTV model is applied to LDCT images restoration.

The structure of this paper is as follows: in section 2,
we briefly summarize the concepts of TV method, MTV
model and BM3D algorithm firstly, then the NTV model is
proposed and its numerical computation is discussed. Exper-
imental results on LDCT images are given and discussed in
section 3. Conclusions are sketched in section 4.

Il. MATERIALS AND METHODS

A. RELATED WORKS

1) TV MODEL

In general, images can be viewed as functions with discon-

tinuities, so they are always assumed in the Bounded Varia-

tion (BV) space [30] since it allows discontinuities in func-

tions. Based on which, the TV model, a variational model,

was put forward. The definition of BV space is given as:
Definition 1: Let Q@ C R" be an open subset with Lip-

schitz boundary. The function u € L!(). Define BV()

(BV) space as the subspace of functions u if the following

inequality is true:

/ \Dul = sup {/ udivedx ‘w e Cl( R, gl <1 } <00,
Q Q

where fQ |Du| stands for the total variation of u.

With the norm ||ullgy(q) = [q |1Dul + llull 1 (q) BV(£2) is
a Banach space [31].

TV model can preserve edges well while removing noise
by minimizing the following problem:

A
min E(«) = min / |Vu|Q+—/ (u—DXQ, (1)
u u Q 2 Q

where Q C R? denotes the image domain, V is the gradient
operator. f o | Vu|dS2 stands for the total variation of u. I (x, y)
is the input noisy image that needs to be restored, u(x,y)
is the restored image. The first term of the energy E(u) is
the regularization term, and the second term is the fidelity
term. A, a positive weight parameter, is introduced to adjust
the relative weight between the regularization term and the
fidelity term.

In order to minimize energy function E(u), we need to
solve the associated Euler-Lagrange equation of (1). The
corresponding Euler-Lagrange equation of (1) is:

Vu
Mu—1)—V-(—=—)=0 2)
[Vul
The solution of (1) is usually achieved by the steepest

descent method:

ou Vu
5=V'(m)—1(u—l) 3)

where, |Vulg = /|Vu| + B2 is the regularization item of
|Vu|, B is the infinite decimal to avoid O denominator.
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As an improvement on the TV model, the weighted
TV («¢-TV) model was discussed in [32]. Instead of BV
space, the «-TV model is based on the weighted BV(«-BV)
space [33], and the weighted regularization term in the a-TV
model can lead to spatially adaptive image restoration. The
definition of -BV space is given as:

Definition 2: A function u € L!(2) belongs to «-BV space
in Q if:

/ a|Du| = sup {/ udivepdx )(p € Ccl. (2; R™), |p| Sa} <00,
Q Q

where « is a positive valued continuous function on R".
The «-TV model is as follows:

A
minE(u):min/ a|Vu|sz+—/ u—DXQ, @)
u u Jo 2 Jao

the weighted coefficient « is larger away from possible edges
and smaller near a likely edge. Hence the «-TV model is more
beneficial to edges preservation.

2) MTV MODEL

It is known that the TV model tends to yield a piecewise
constant image, and thus can give rise to the staircase effect
in smooth regions of the image. To reduce the staircase effect,
by making use of the structure information of the input noisy
image I(x,y), the MTV [28] model was proposed. MTV
model minimizes the variation of u(x,y) along the tangent
direction of the isophotes of image /(x, y), as follows:

min £() = min fg I ), my)7 (a2

A 2
42 / W—fPde, ()
2 Ja

where,

—f fx
JR+R R +R
(fxvfy) = Vf: f = IGaussian>

IGaussian 18 the result image of [ filtered by the Gaussian filter.
Using the steepest descent method, gradient flow equation
is obtained as follows:

ou 1

i

(tx, ty) = Vu, (ny, ny) = ( )

“xxfyz — 2fcfyttny +
|3 fxz +fy2
—AMu—f) (6

The MTV model performs better than the TV model in
preserving edges while avoiding blocky effect and speckles
noise, but there is still blocky effect.

|(ux , ”y)(”x , ny)

3) BM3D MODEL

Another novel image denoising algorithm BM3D [29], based
on sparse representation, appears to be the state of the art
image restoration algorithm. Next, we recall here its two
basic steps: get a basic estimate and get a final estimate of
the true image. The basic estimate is obtained by means of
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block-matching and hard-thresholding the coefficients of a
3D transform from the input noisy image. The final estimate
is obtained from the basic estimate and by replacing the hard-
thresholding with the Wiener filter, with the difference that
block-matching also takes place on the basic estimate of the
clean image.

B. THE NTV MODEL

For the MTV model, the regularization term is not spatially
adaptive, and the fidelity term constructed by the Gaussian
filter is not conducive to edges and details preservation.
Hence, inspired by the ideas [29] and [32], we propose a
new algorithm, NTV model. In the new model, weighted
regularization term and modified fidelity term are constructed
to preserve edges and details adaptively.

1) STANDARD DEVIATION

Standard deviation reflects the dispersion degree of a data set.
A low standard deviation indicates that the data tends to be
close to the mean of the set, vice versa. In this paper, for a
given pixel u(i, j) at coordinate (i, j), the standard deviation
is determined by its 3 x 3 neighborhood, the computational
formula is as follows:

1 i+l j+l
DG, j) = sqri(zz x Y D (=),

m=i—1n=j—1

2) GRAY-LEVEL PROBABILITY

The gray-level probability [34] PRi (i, j) is decided by its 3 x 3
neighborhood region R;;, defined as:

ui, j)

uR(@i, j)’

where u®(i, j) is the sum of the gray levels in the 3 x 3
neighborhood region R;;.

PRI, j) =

3) THE NTV MODEL

The NTV model proposed in this paper is also based on the
weighted BV (a-BV) space. Suppose that  C R? is an open
subset with Lipschitz boundary. Given image I : Q2 — Risa
LDCT image, which is corrupted by mottle noise and streak
artifacts. The proposed NTV model based on «-BV space is
supposed to restore the estimated image u from /, and it is
described as follows:

min E(x) = min / a\/ |Gy, uy)(ny, ny)T A2
u u Q -

A
+§/ (u — Ipy3p)*dS2, (7)
Q

where (uy, uy), (ny, ny), (fx, fy),f are the same as those in

equation (5). Ipy3p is the result image of I processed by

BM3D filter. A > 0 is the weighted coefficient of the

. . _ 1 . .. . .

fidelity term. o = W is a positive spatially adaptive
k

weighted coefficient of the regularization term, and it controls

the amount of diffusion adaptively. k > 0 is a parameter that
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FIGURE 1. Flowchart of the proposed NTV model.

Fig. 2(b)

Fig. 2(c)

-

>

FIGURE 2. Three enlarged sub-images of the thoracic phantom.
(a) a neighborhood of size 3 x 3 centered around the pixel “A”;
(b) a neighborhood of size 3 x 3 centered around the pixel “B”;
(c) a neighborhood of size 3 x 3 centered around the pixel “C".

determines the contrast of edges and details to be preserved,
Sy is the standard deviation of f, Py is the gray-level proba-
bility of f and |Vf]| is the gradient magnitude of f.

For a given k, the gradient magnitude |Vf| in the noisy
background and the detail region is similar and smaller than
that of edges, so it can’t differentiate the detail region and
the noisy background effectively. Therefore, the gray-level

variance of2 is introduced and it has been confirmed that

the afz of detail region is larger than that of noisy back-
grouﬁd [35], accordingly, the square root of ofz, i.e., the stan-
dard deviation oy, can also differentiate detail region and
noisy background.

In addition, in [34], the gray-level probability was intro-
duced into PM model and the revised model preserves not
only edges but also fine details during smoothing process.
In order to study the value of gray-level probability Py in
different regions, we choose pixels “A”, “B”” and “C” from
the thoracic phantom, as shown in Fig. 2. “A” represents
the pixel in the edges, “B” represents the pixel in the detail
region, and “C”’ represents the pixel in the noisy background.
Fig. 2(a), Fig. 2(b) and Fig. 2(c) are the enlarged 3 x 3
neighborhoods centered around the pixel “A”, “B”” and “C”
respectively. Table 1 shows the gray-level probability values
of the pixel “A”, “B” and “C”’. Itindicates that the gray-level
probability Py of detail region is larger than that of edges and
noisy background.
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P fidelity term of NTV ———
NTV

Denoised image u

, +—»  weighted coefficient }-} regularization term

adaptive

of NTV

1

TABLE 1. The gray-level probability of pixels in different areas of the
thoracic phantom.

pixel gray-level probability
“A” 0.0358

“B” 0.1346

“C” 0

In summary, in the noisy background, standard devia-
tion Sy, gray-level probability Py and gradient magnitude
|Vf| are all low, so « is high, which allows strong diffusion,
and the noise can be removed as much as possible. In the
detail region, standard deviation Sy and gray-level probability
Py are both high, but gradient magnitude |Vf] is low, so «
is smaller than that in the noisy background and so that
the details information can be preserved better. Beyond that,
in the edges, gradient magnitude |Vf| and standard devia-
tion Sy are both high, but gray-level probability Py is low,
so « is also smaller than that in the noisy background and
therefore the edges can also be well preserved. Base on the
above, in order to preserve details and edges while removing
noise and artifacts, the standard deviation Sy, the gray-level
probability Py and the gradient magnitude |Vf| are all used
to construct the weighted coefficient « of the proposed NTV
model.

4) NUMERICAL COMPUTATION
In this paper, the steepest descent method is applied to solve
the optimization problem (7).

The steepest descent method is formulated as follows:
In general, searching for the minimum of problem (7) is
equivalent to solving its corresponding Euler-Lagrange equa-
tion. However, Euler-Lagrange equation is a static nonlinear
partial differential equation, and it is hard to solve. By intro-
ducing time assistant variable ¢, solving the static nonlinear
partial differential equation is changed into solving dynamic
nonlinear partial differential equations. So, the key to solving
the Euler-Lagrange equation corresponding to problem (7)
is to obtain the steady evolution state of dynamic partial
differential equations.
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The corresponding Euler-Lagrange equation of (7) is:
cx(fxzuyy +fyzuxx _fxf:vuxy _fxfyuyx) n Au — Ipm3p) i

0
1 3
A2+ £ 4 (feey — fyir)? 4

(3)
with the initial condition u(x, 0) =1, x € Q.
Numerically, the gradient descent flow (9) of (7) is
obtained by the steepest descent method:
du  a(=fifyltay — ffythyx + [ty + [ 1)

v 1 3
ot 4(}‘;(2 +fy2)z(fxuy _f;)ux)i

AMu — Ipy3p) ©)
4

In order to obtain the solution of (8), i.e., the stable solution

of (9), it is necessary to make the following equation true:
ou
at
Finite differences method is applied [24], [36] to discretize
equation (9). Let Ax = 1 and Ay = 1 be the mesh sizes
of variables x and y, and At be the time step. Suppose that
u(x;, yj, tr) is denoted by uf J thus we have the following
difference operations:

=0 (10)

k k k k
(fk) _ fi+1,j _fifl,j (fk) i fi,j+1 _fi,jfl
ijx = —2 s ij)y = —2 ,
Kk ko Kk
Wk )¢ = Uirj — %im1yj Wk )¢ = Uij1 ~ Uij
L,j/x — 2 ’ i,j’y — 2 ’
kvt _ ok k kvt _ ko k
(uiyj)x =Wy Wy (ui,j)y SUa Ty

k k N+ k + k k N+ k +
(ui,j)xx = (”i,j)x - (”i—l,j)x > (”i,j)yy = (”i,j)y - (ui,j—l)y s
k k k k
(”i+1,j+1+ui71,j71 Uit1j-1 _“ifl,j+1)
4 b
So the iterative numerical solution of model (7) for pixel
u; j on the kth iteration is described as below:

a(_fxfy”xy _fxfy”yx +f;62“yy +fy2uxx)
AF2 +FI ey — fun)

— AMu — Ipy3p)-

k k
(u,',j)xy = (’/l,',j)yxz

k+1 _ k
Wi =+ At(

with symmetric boundary conditions:

k _ k k _ k
U_1j = Upjs  Upyyrj = Up

ko k
Uip 1 = Uo

j=0,1,...,N.

k _ k .
Uinil = Uiy i=0,1,...,M.

where M x N is the image size.

IIl. EXPERIMENTS RESULTS AND ANALYSIS

Fig. 3(a) displays the computer simulated Shepp-Logan head
phantom composed of 256 pixels x 256 pixels. Fig. 3(b)
illustrates the computer simulated pelvis phantom with
252 pixels x 256 pixels. Fig. 3(d) and Fig. 3(e) corresponding
to Fig. 3(a) and Fig. 3(b) show the LDCT images obtained
by performing the FBP reconstruction using low-pass Han-
ning filter with cutoff at 80% Nyquist frequency from sim-
ulated noisy sonogram. In addition, the thoracic phantom,
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FIGURE 3. Simulative phantoms and actual images. (a) original
Shepp-Logan head phantom; (b) original pelvis phantom; (c) processed
HDCT thoracic image by AS-LNLM method; (d)-(e) LDCT images
corresponding to (a) and (b); (f) LDCT thoracic image corresponding to (c).

an anatomical model of a human chest torso, is also used
in our experiment, and it is collected from a multi-detector
row Siemens Somatom Sensation 16 CT scanner with a
tube voltage of 120 kVp. The original thoracic high-dose
computed tomography (HDCT) image is collected with a
higher tube current of 240 mAs. Fig. 3(c) shows the processed
HDCT image using the AS-LNLM (Artifact Suppressed
Large-scale Nonlocal Means) method. In [37], the processed
HDCT image by AS-LNLM method has a better noise and
artifact suppression than the original HDCT images, so it is
used as the reference HDCT image. Both original thoracic
LDCT phantom and processed LDCT thoracic phantom are
the 16th slice of the volume in a mediastinal window. Fig. 3(f)
displays the original LDCT image obtained with a reduced
tube current 30mAs. Fig. 3(c), Fig. 3(f) are composed of
512 pixels x 512 pixels.

A. OBJECTIVE EVALUATION CRITERIA
In order to evaluate the effectiveness of the processed NTV
model, the peak signal-to-noise ratio (PSNR) and the mean
structural similarity (MSSIM) [38] are employed as objective
indices to measure the quality of restoration results.

For a reference HDCT image X and the restored LDCT
image Y, PSNR is described in dB, which is defined with:

PSNR =10-1 2552
=V 8\ mse )
where,

1 MN
_ V)2
MSE—MN;(X, Y2,
1=

M x N is the size of image X and Y. A higher PSNR indicates

the restoration with higher quality and less distortion.
Another evaluation criterion is MSSIM, which is used to

measure the overall structural similarity between X and Y:

1 T
MSSIM(X. Y) = 21: SSIM (xj — y)),
=
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where, x; and y; are the image blocks of size k x k at jth local
window in X and Y, and T is the amount of local windows in
the image. SSIM measures the structural similarity between
xj and yj:
(2px;pty; + c1)(2eov(xj, yj) + c2)

2 2 2 2 ’
(u3; + 15, + c)loy; + oy 4 c2)

SSIM()Cj, yj) =

where,
1 & 1 &
2 2
g =3 D N 0y =17 D (i — ),
i=1 i=1
1 & &
2 2
M,Vj = ﬁ Zyji’ Gyj = m Z(yj,»—llyj) )
i=1 i=1
1
COV(xj, yj) = m(xj - Mx/-)(yj - Myj),

where fiy; is the average of xj, wy, is the average of yj, axzj is
the variance of x;, oy% is the variance of yj, is the covariance
between x; and y;, c1 and ¢; are positive constant.

MSSIM is able to measure the structural information
preservation, and its value locates in [0, 1]. Better preser-
vation of structural information results in higher MSSIM.
MSSIM value closing to 1 implies that the original image
structural information is well preserved, i.e., X is equal to ¥
approximately. In contrast, MSSIM value closing to O implies
that the two images are almost irrelevant.

B. PARAMETER ANALYSIS

To evaluate the efficiency and feasibility of the pro-
posed NTV image restoration method in this paper, sev-
eral methods including modified Perona-Malik (MPM) [39],
MTYV [28], FPMTV [22], K-Singular Value Decomposition
(K-SVD) [40], improved non-local means (INLM) [41],
BM3D [29] and weighted nuclear norm minimization
(WNNM) [42] are served as the comparative methods to
process LDCT images. The parameters involved in MPM,
MTYV, FPMTYV, K-SVD, INLM, BM3D and WNNM are set
according to the suggestions in [22], [28], [29], and [39]-[42].
The parameters in NTV are given under the optimal visual
effects and the best objective evaluation criteria, and for
all LDCT images processed by NTV, we choose: and the
Gaussian filter with the deviation of 0.5. Iteration stops when
MSSIM reaches maximum.

The parameter A and k are decided by MSSIM, PSNR
and the visual effect of the denoised LDCT Shepp-Logan
image. Fig. 4(a) shows the MSSIM value of NTV model with
different A between 0.01 and 1.0 with time interval 0.2. As we
can see from Fig. 4(a), the MSSIM of the NTV model with
A = 1.0 increases quickly and then reaches maximum while
the MSSIM with smaller A converge to the similar-valued
maximum more slowly, which indicates that A = 1.0 leads to
lower computing cost with similar maximum MSSIM value.
But from Fig. 4(b), at the same k, the PSNR value of NTV
with A = 0.5 is higher than that with A = 1.0, so at last we
choose A = 0.5 in the NTV model.
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FIGURE 4. (a) The MSSIM of the NTV model with different; Fig. 4 (b) The
PSNR of the NTV model with different.

TABLE 2. Parameter settings of the proposed NTV method for computer
simulated phantom and actual thoracic phantom.

dt A (e iter k

Shepp-Loganhead ) o5 o5 3 6
phantom

pelvis phantom 0.2 0.5 0.5 66 1

thoracic phantom 0.5 0.5 0.5 31 300

In addition, in this paper, we set k = 6, k = 1 and
k = 300 for the Shepp-Logan head phantom, the pelvis phan-
tom and the thoracic phantom in the NTV model respectively.
In order to intuitively illustrate the values of parameters in
NTV method, we give them in Table 2.

C. EXPERIMENTAL RESULTS

1) THE SHEPP-LOGAN HEAD PHANTOM AND THE

PELVIS PHANTOM

Fig. 5 and Fig. 6 are the Shepp-Logan head phantom and
the pelvis phantom respectively. More specifically, Fig. 5(a)
and Fig. 6(a) are the original Shepp-Logan head phantom and
the original pelvis phantom. Fig. 5(b) and Fig. 6(b) show the
corresponding LDCT images.

78897



IEEE Access

W. Chen et al.: NTV Model for Low-Dose CT Image Denoising

FIGURE 5. Comparative experiments on the Shepp-Logan head phantom.
(a) original phantom; (b) LDCT image; (c) processed image by MPM
method; (d) processed image by MTV method; (e) processed image by
FPMTV method; (f) processed image by K-SVD method; (g) processed
image by INLM method; (h) processed image by BM3D method;

(i) processed image by WNNM method; and (j) processed image by NTV
method. From left to right, the images in the second and third columns
show the zoomed ROIs specified in (a), and all of the zoomed images are
from the corresponding images of the first column.
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FIGURE 6. Comparative experiments on the pelvis phantom. (a) original
phantom; (b) LDCT image; (c) processed image by MPM method;

(d) processed image by MTV method; (e) processed image by FPMTV
method; (f) processed image by K-SVD method; (g) processed image by
INLM method; (h) processed image by BM3D method; (i) processed
image by WNNM method; and (j) processed image by NTV method; From
left to right, the images in the second and third columns show the
zoomed ROIs specified in (a), and all of the zoomed images are from the
corresponding images of the first column.
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FIGURE 7. Comparative experiments on the actual thoracic phantom.
(a) processed HDCT image by AS-LNLM method; (b) LDCT image;

(c) processed image by MPM method; (d) processed image by MTV
method; (e) processed image by FPMTV method; (f) processed image by
K-SVD method; (g) processed image by INLM method; (h) processed
image by BM3D method; (i) processed image by WNNM method; and

(j) processed image by NTV method; From left to right, the images in the
columns 2-5 show the zoomed ROIs specified in (a), and all of the
zoomed images are from the corresponding images of the first column.

Fig. 5-Fig. 6, (c)-(j) show the MPM processed LDCT
images, MTV processed LDCT images, FPMTYV processed
LDCT images, K-SVD processed LDCT images, INLM

VOLUME 6, 2018

TABLE 3. Objective evaluation criteria of various restoration algorithms.

Image Method PSNR(dB) MSSIM
MPM 21.6819 0.5519

MTV 20.8211 0.5593

FPMTV 21.7274 0.5560

Shepp-Logan K-SVD 22.9443 0.5630
head phantom INLM 22.2476 0.5613
BM3D 32.5395 0.8646

WNNM 229184 0.5336

NTV 32.5168 0.8637

MPM 23.5986 0.9053

MTV 21.5544 0.9051

FPMTV 242124 0.8817

pelvis K-SVD 23.7804 0.8900
phantom INLM 23.9446 0.9192
BM3D 30.0305 0.9761

WNNM 24.9672 0.9292

NTV 30.2294 0.9734

MPM 26.2685 0.9220

MTV 26.4869 0.9365

FPMTV 26.5195 0.8802

thoracic K-SVD 27.3768 0.9186
phantom INLM 26.4852 0.9264
BM3D 26.9899 0.9524

WNNM 27.0358 0.9443

NTV 26.9967 0.9532

processed LDCT images, BM3D processed LDCT images,
WNNM processed LDCT images and NTV processed LDCT
images respectively. To study experiment results of these
comparative methods in depth, the zoomed regions of inter-
est (ROI) identified by red squares in (a) are illustrated
in Fig. 5-6, (al)-(j1) and (a2)-(j2). From Fig. 5(b) and
Fig. 6(b), we can see that mottle noise and streak artifacts
severely degrade the images reconstructed under low dose CT
scanning condition. From (c) of Fig. 5 and Fig. 6, we know
that MPM method suffers from the blocky effect (pointed by
red arrows), tends to blur edges (pointed by green arrows),
and contains residual mottle noise and streak artifacts (shown
by blue arrows). Fig. 5(d)-6(d) processed by MTV method
also give rise to the blocky effect as well as the blurry edges,
and there are still some residual mottle noise and streak
artifacts. The denoised LDCT images processed from the
FPMTV method are shown in Fig. 5(e)-6(e), in which the
blocky effect still exists (pointed by red arrows). We can
clearly see that Fig. 5(f)-6(f) processed by K-SVD method,
Fig. 5(g)-6(g) processed by INLM method, Fig. 5(h)-6(h)
processed by BM3D method and Fig. 5(i)-6(i) processed
by WNNM method perform better than those processed by
MPM method and by MTV method in mottle noise and streak

78899



IEEE Access

W. Chen et al.: NTV Model for Low-Dose CT Image Denoising

TABLE 4. PSNR and MSSIM of three ROIs (corresponding to rectangular boxes marked with a red line of the under Shepp-Logan head phantom ) of
processed images using MPM, MTV, FPMTV, K-SVD, INLM, BM3D, WNNM and NTV.

ROIl1

ROI2 ROI3

PSNR MSSIM PSNR MSSIM PSNR MSSIM

LDCT image 13.4347 0.0145 12.1504 0.0155 12.1333 0.0175
MPM 26.4979 0.3229 25.5528 0.2588 21.9571 0.3403
MTV 21.2980 0.1062 21.0594 0.1387 18.5380 0.1682
FPMTV 34.4731 0.8794 32.4888 0.7011 25.5366 0.6397
K-SVD 33.0705 0.6662 26.2197 0.3903 22.8642 0.3467
INLM 34.9728 0.7034 29.0126 0.4752 25.7026 0.4175
BM3D 41.3022 0.9798 35.6162 0.7791 33.0014 0.9051
WNNM 29.4389 0.4933 30.8438 0.4588 26.9184 0.4460
NTV 45.8389 0.9959 35.7142 0.9895 34.4892 0.9331

TABLE 5. PSNR and MSSIM of four ROIs (corresponding to rectangular boxes marked with a red line of the under the actual thoracic phantom ) of
processed images using MPM, MTV, FPMTV, K-SVD, INLM, BM3D, WNNM and NTV.

ROI1 ROI2 ROI3 ROI4
PSNR MSSIM PSNR MSSIM PSNR MSSIM PSNR MSSIM
LDCT image 13.2379 0.0120 13.0254 0.0248 12.6163 0.0351 13.0342 0.0209
MPM 29.5269 0.7498 27.8606 0.7274 31.3831 0.5972 30.9283 0.7435
MTV 28.6396 0.8156 26.8138 0.6777 30.1899 0.6463 31.3440 0.8273
FPMTV 32.4425 0.8915 30.3642 0.8876 32.9581 0.6196 32.3402 0.8851
K-SVD 28.9068 0.3949 27.1623 0.3793 25.2747 0.2735 27.3632 0.4379
INLM 29.6504 0.5867 29.7829 0.7221 31.5270 0.6701 29.7626 0.6292
BM3D 30.9387 0.9361 29.3206 0.9271 34.9992 0.8229 32.8283 0.7909
WNNM 31.8032 0.7772 33.4873 0.8869 27.8779 0.5562 28.2699 0.7475
NTV 32.9887 0.9584 29.8445 0.9404 34.7007 0.8633 33.4751 0.9098

artifacts suppression, but introduce new artifacts (shown by
orange arrows). The problem of edges blurring also can
be seen in Fig. 6(f)-(h). Comparing with the result images
processed by the other methods, Fig. 5(j)-6(j) processed by
the proposed NTV method indicate that NTV has better per-
formance in edges and details preservation and outstanding
mottle noise and streak artifacts suppression ability.

2) THE ACTUAL THORACIC PHANTOM
The actual thoracic phantom is shown in Fig. 7. Fig. 7(a) is
the processed thoracic HDCT image by AS-LNLM method.

78900

Fig. 3 (f) shows the LDCT image obtained with a reduced
tube current of 30 mAs. In order to accurately compare the
result images of various algorithms, four zoomed images of
local regions marked by red boxes in Fig. 7(a) are also shown
in Fig. 7(al)-(G1), (a2)-(j2), (a3)-(j3) and (a4)-(j4). Mottle
noise and streak artifacts can be easily observed in the original
thoracic LDCT image, i.e., Fig. 7(b). Fig. 7(j) is the restored
image by the proposed NTV method. We can observe that
streak artifacts are suppressed effectively and image quality
obtains significant improvement. The reconstructed images
by the MPM algorithm are shown in Figs. 7(c), in which
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TABLE 6. Computation time (in seconds) for different methods.

MPM MTV FPMTV K-SVD INLM BM3D WNNM NTV
Shepp 20.90 18.74 10.12 72.98 7.62 0.9 570.33 1.36
phantom
plevis 15.13 20.63 6.38 121.68 7.11 0.8 493.05 3.01
phantom
Thoracic 50.39 49.39 29.62 56.85 63.48 3.9 394.70 4.88
phantom

there are still some residual mottle noise and streak artifacts
(pointed by blue arrows). Figs. 7(d) and Fig. 7(e) illustrate
that the processed images by the MTV method and by the
FPMTYV model suffer from obvious blocky effect (pointed by
red arrows). Additionally, from Fig. 7(f), Fig. 7(g), Fig. 7(h)
and Fig. 7(i) processed images by the K-SVD method, by the
INLM method, by the BM3D method and by the WNNM
method respectively, we know that they tend to cause new
and residual streak artifacts (shown by orange arrows).

The objective evaluation criteria PSNR and MSSIM listed
in TABLE 3 indicate that the proposed NTV model and the
BM3D model are almost identical, and they are superior
to other comparative models. Moreover, the result images
in Fig. 5-7 show that NTV model has better visual effect than
all the comparative models, including BM3D. That is to say,
the effectiveness of new model is testified by both quantitative
analysis and visual effect.

In order to go deep into experimental results, in TABLE 4,
we list the PSNR and the MSSIM of three ROIs (correspond-
ing to the red rectangular boxes of the Shepp-Logan head
phantom in TABLE 4) of processed images using MPM,
MTYV, FPMTYV, K-SVD, INLM, BM3D, WNNM and NTV
separately. In the same way, TALAB 5 shows the PSNR
and the MSSIM of four ROIs (corresponding to the red
rectangular boxes of the actual thoracic phantom in TABLE
5) of processed image using MPM, MTV, FPMTYV, K-SVD,
INLM, BM3D, WNNM and NTV respectively.

From TABLE 4, TABLE 5, we know that the processed
LDCT images by NTV method generally have higher PSNR
and MSSIM than the other restoration methods.

3) COMPUTATION COSTS

All experiments are simulated on a PC with Intel(R) Pen-
tium(R) CPU 2.90 GHz and 4GB RAM using the MATLAB
2012a language.

TABLE 6 lists the computation time for eight different
methods (i.e., MPM, MTV, FPMTYV, K-SVD, INLM, BM3D,
WNNM and NTV method). We can see that the proposed
NTV method and the BM3D model take less time than the
other methods.

IV. CONCLUSION

This paper proposes a post-processing model (NTV) for
LDCT images restoration. In the NTV model, the weighted
coefficient of the regularization term is constructed depend-
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ing on standard deviation, gray-level probability and gradient
magnitude, because they can differentiate edges and detail
information from the noisy background effectively, which
makes the NTV model achieve a stronger diffusion in noisy
background than that in detail region and edges. In addition,
to preserve image structure effectively, the processed LDCT
images by BM3D filter are used in the fidelity item of the
NTV model instead of the processed LDCT images by Gaus-
sian filter of the MTV model.

Experiments are implemented on the computer simulated
phantom and the actual phantom. Both subjective visual
effects and objective evaluation criteria show that the LDCT
images processed by NTV model have significant quality
improvement, including mottle noise, streak artifacts and
blocky effect suppression, edges and details preservation, and
the relative lower calculate cost. Besides, since the proposed
NTV method does not rely on raw projection data directly,
NTV can be easily applied to almost all the existing CT
systems.

However, some artifacts still exist in the processed LDCT
images by NTV model. In fact, this is a common issue in post-
processing since noise already exists in the raw projection
data. In this case, in the further, projection data preprocessing
strategies might be required to alleviate artifacts of the raw
projection data, then the processed projection data is used for
the proposed NTV method.
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