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ABSTRACT Wireless sensor networks (WSNs) have captivated substantial attention from both industrial
and academic research since last few years. The major factor behind the research efforts in the field ofWSNs
is their vast range of applications, such as surveillance systems, military operations, health care, environment
event monitoring, and human safety. However, sensor nodes are low potential and energy constraint devices;
therefore, energy efficient routing protocol is the foremost concern. In this paper, a new Cluster-Tree routing
scheme for gathering data (CTRS-DG) is proposed that composed of two layers: routing and aggregation
and reconstruction. In aggregation and reconstruction layer, a dynamic and a self-organizing entropy based
clustering algorithm for cluster head (CH) selection and cluster formation is proposed. Data is aggregated
and compressed at CHs based on compressive sensing technique. In routing layer, a new proposed algorithm
to form the routing tree as backbone of the network is proposed. The routing tree is used to forward the
compressed data by CHs to the base station (BS). Finally, as a phase of aggregation and reconstruction
layer, an effective CS reconstruction algorithm called Bee based signal reconstruction (BEBR) is proposed
to improve the recovery process at the BS. BEBR utilizes the advantages of the greedy algorithm and Bees
algorithm to find the optimal solution of reconstruction process. Simulation results reveal that the proposed
scheme outperforms existing baseline algorithms in terms of stability period, network lifetime, and average
normalized mean squared error for compressive sensing data reconstruction.

INDEX TERMS Average normalized mean squared error, clustering-tree based, compressive sensing,
entropy coefficient, bees algorithm, network lifetime, stability period, wireless sensor network.

I. INTRODUCTION AND MOTIVATION
A Wireless sensor network (WSN) consists of spatially dis-
tributed devices known as sensors. Each senor can perform
some basic processing such as gathering sensory informa-
tion and communicating with other connected sensors in the
WSN [55]. Routing schemes can be classified based on the
logical used topology into flat-based, cluster-based, chain-
based and tree-based routing. In flat-based routing, messages
are flooded to find the route between sensor nodes. In Chain-
based routing, chain is constructed to connect all the nodes
in WSN, where the successor node aggregates the received
data from the predecessor with its data and then transmits
the aggregated data to its successor toward BS. In tree-based
protocols, a child parent relationship is established, where
all nodes send their data to their parents and the parents re-
transmit the received data after performing process on data
(if possible) toward the root node or BS [12], [24], [35], [49].
In cluster-based protocols, nodes are organized into groups

called clusters. In each cluster there is one CH that is
responsible for receiving data from cluster members (CMs)
and performs some operations on that data then forwards
it direct or indirect to BS. Low-Energy Adaptive Clus-
tering Hierarchy (LEACH) [17] is the first cluster-based
protocol.

LEACH has many variant versions such as [18]–[22], [27],
[39], and [41]. Salim et al. [39] proposed intra-balanced
LEACH protocol to extend LEACH by balancing the energy
consumption in WSNS. A heterogeneity-aware energy effi-
cient clustering (HEC) algorithm is suggested in [41]. HEC
selects CHs based on the three network lifetime phases. A dis-
tributed energy-efficient clustering scheme for heterogeneous
WSNs (DEEC) is presented in [36]. To overcome the limita-
tion of DEEC and the lifetime of the network, a Cluster-head
Restricted Energy Efficient Protocol (CREEP) is proposed
in [45]. A three level heterogeneous networkmodel forWSNs
is proposed in [44]. An enhanced developed distributed
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energy-efficient clustering (EDDEEC) with heterogeneous
network model is proposed in [25] that is established on three
energy levels of sensor nodes. Modified Enhanced Devel-
oped Distributed Energy-Efficient Clustering (MED-DEEC)
algorithm has been presented in [42]. A distributed unequal
cluster-based routing (DUCR) proposed in [30]. DUCR uses
multi-objective optimization technique to assign CMs to an
appropriate CH so that the load is balanced. The work in [16]
proposed a distributed energy-efficient clustering protocol
(DCE) for heterogeneous WSNs. DCE is based on a Double-
phase CH Election scheme.

Panag and Dhillon [19] proposed dual head static clus-
tering algorithm (DHSCA) to balance consumed energy of
sensor nodes and prolong the lifetime of the network. In [20],
a heterogeneous routing protocol based on the adaptive
threshold sensitive distributed energy efficient cross layer
routing protocol is proposed. Weighted probability is used
to elect CH. In [21], a decentralized hierarchical cluster-
based routing algorithm for WSNs is proposed. Clusters are
formed in such a way that CHs have the most competency in
forwarding task of intra-cluster and inter-cluster transmission
tree. In [22], multi-hop communication protocol is proposed
for finding optimal clusters particularly, when the sensing
field is split into hexagonal and voronoi clusters. In [10],
an energy efficient concentric circular clustering protocol
(EECCCP) has been proposed. EECCCP divides network
field into zones of concentric circular and considers energy
heterogeneity normal and super nodes having flat topology
while advance nodes having clustering topology. Enhance
Threshold Sensitive Stable Election Protocol (ETSSEP) [43]
is proposed in [43] for heterogeneousWSNs. In ETSSEP the
level of residual energy and minimum number of clusters per
round are the main parameters to select the CHs. The average
energy of the network, remaining energy of nodes and dis-
tance between BS and nodes are the main parameters to elect
the CHs as proposed in Distance based Enhance Threshold
Sensitive Stable Election Protocol (DETSSEP) [38]. In gen-
eral, clustering approach reduces the size of collected data by
keeping only significant information by applying data aggre-
gation techniques at CHs and it also reduces communication
overheads and due to effective allocations of resource as a
result, decrease the overall energy consumption and reduce
the interference among sensor nodes [55].

There are some works that take the benefits of both cluster-
based and tree-based techniques such as [5], [6], [11], [50],
and [54]. In Cluster-Tree-based Data Dissemination (CTDD)
[5], first it forms the clusters inside the grids, then it forms
the tree structure over clusters, where, each CH is treated as
a tree node in WSN. In [50], a cluster-tree data gathering
algorithm (CTDGA) to reduce the energy consumption is
proposed. In [11], a Velocity Energy-efficient and Link-aware
Cluster-Tree (VELCT) scheme for data gathering in WSNs
is proposed. VELCT constructs the Data Collection Tree
(DCT) based on the CH location. VELCT reduces the energy
exploitation and the end-to-end delay by effective usage of
the DCT.

In the proposed scheme, we design two layers routing
scheme for gathering data by taking the benefits of both
cluster-based and tree-based techniques. The first layer is
for data collection and aggregation based on clustering tech-
nique and the second layer for forwarding aggregated data at
CHs using tree based technique. All previous works consider
special attributes of sensor nodes, e.g., remaining energy,
distance to BS, . . . etc. as criteria for selecting CHs, ignoring
the cluster load, i.e., the number of cluster members that can
be served by CH or the number of sensor nodes that can be
supported by the CH. In our proposed scheme, we consider
cluster load as a criterion for selecting CHs combinedwith the
remaining energy, distance to BS and the degree of neighbor-
ing sensor nodes. Moreover, we introduce a new method to
predict the remaining energy of each sensor node at the end
of the next round to select the most appropriate sensor nodes
that can continue as CH. In the proposed scheme, three-level
energy heterogeneity of sensor nodes are used as in [3] and
the entropyweight coefficient is used to come upwith optimal
selection of CHs.

Information entropy theory such as administration entropy,
environment entropy, and economy entropy [51] have been
employed in many discrete areas. Entropy indicates the valu-
able information produced by the data, as a result it can be
used to determine the weights. The entropy value becomes
smaller when the analyzed objects have fairly big difference
between each others on a given specific criterion. However,
the weight of the criterion should be smaller when the differ-
ence between objects is smaller (larger entropy value). In this
paper, clustering algorithm can be adopted in terms of entropy
as a election criterion.Moreover, we consider selection of CH
node as a decision problem based on multiple criteria such
as residual energy, sensor node density, and distance to the
BS. Hence, we have multiple alternatives, i.e., set of sensor
nodes where each alternative consists of multiple criteria,
i.e., sensor node’s information and selection decision need
to be made according to these critaria. For this situation,
Multi-Criteria Decision Analysis (MCDA) methods such as
Weighted Product Model (WPM) [48] is utilized for address-
ing the decision problem and the entropy weight coefficient
is used to assess the weight of different criteria [4].

A general Compressive Sensing scenario is presented as
follows: a WSN has N sensor nodes that deployed to sense
data in a region and send the collected data to CH or BS.
Sparse signals are the main assertion to use CS. In CS, if the
measurements number is M and the sparse level is S. BS
requires M ≥ S logN/S to reconstruct the original data x
from the CS measurement y where y = 8x, y ∈ RM×1 and8
isM × N ,M � N , CS random matrix (Bernoulli, Gaussian,
etc.). In cluster-based WSNs, two main scenarios of using
CS method exist: plain CS and hybrid CS. In plain CS [7],
[8], [33], [40], using CS matrix, each node compresses and
sends samples vector of size M to its CH and then each CH
compresses and sendsM samples to BS. The main disadvan-
tage of plain CS, each sensor node sends M samples in spite
of its data size is < M , which leads to unnecessary higher
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traffic. Hybrid CS is proposed to overcome the drawback of
plain CS [28], [53], where every CH determines either to use
CS or not, according to the collected data size. It will use CS
only if the data size≥M . In this paper, we compress the data
using hybrid CS after adapting the cluster size and propose
a new algorithm to reconstruct the original data at BS with
minimum Average Normalized Mean Squared Error. The
main contributions of the current work can be summarized
as follows:

1. We consider selection of CH node as a decision
problem based on multiple criteria. Remaining energy,
distance to BS and Intra-to-Inter Distance Ratio of
neighboring sensor nodes are used as criteria for select-
ing CHs.

2. WPM is utilized for addressing the decision problem
and the entropy weight coefficient is used to assess the
weights of different criteria.

3. We introduce a new algorithm to predict the remaining
energy of each sensor node at the end of the next round
to select the most appropriate sensor nodes to continue
as CHs in the next round.

4. In order to improve the reconstruction process, we pro-
pose a new efficient reconstruction algorithm based on
Bees Algorithm to reconstruct the original sensors data
from the compressed samples.

5. Extensive performance analysis of the proposed
scheme and comparison with baseline approaches
to demonstrate the effectiveness of the proposed
scheme. Our simulation results reveal that the proposed
scheme can manage power consumption better than
existing algorithms and achieves the desired results
for WSNs.

The remainder of this paper is structured as follows: The
Information Entropy description is presented in Section II.
Section III describes the proposed algorithm. In section
IV, the performance analysis and results are presented.
Evaluations indicate that the proposed approach efficiently
solves the problem and exceeds other existing algo-
rithms. The conclusion of the proposed work is given in
Section V. Used notations through the paper are given
in Table 1.

We assume that N static sensor nodes with a unique ID for
each ID are randomly deployed in a region R of size M ×
M . Each sensor node knows its communicating neighbors,
including their identifications and coordinates, which can be
gathered statically via hello message, or periodically if fre-
quent changes occur in the topology. In this paper, we assume
energy heterogeneity of sensor nodes, i.e., different energy
values of sensor nodes.

II. INFORMATION ENTROPY
Entropy in information theory uses the discrete probability
distribution to represent the amount of uncertainty. Let X be
a discrete random variable with alphabet χ and probability
mass function p(x) = Pr{X = x}, x ∈ χ . The entropy
H (X ) of a discrete random variable X is defined by [9] as

TABLE 1. Table of notations.

follows:

H (X ) = −
∑
x∈χ

p(x)log2p(x) (1)

Theminimum entropy is 0 and it occurs when one of the prob-
abilities is 1 and the rest are 0s, while the entropy achieves the
maximum value (Hmax = log2(n)) when all the probabilities
have equal values of 1

n , where n is the number of outcomes.
Entropy indicates the valuable information produced by the

data, as a result it can be used to determine the weights. The
entropy value becomes smaller when the analyzed objects
have fairly big difference between each others on a given
specific criterion. However, the weight of the criterion should
be smaller when the difference between objects is smaller
(larger entropy value). Consequently, the entropy coefficient
method is a target empowering method to determine the
weight by calculating the entropy weights of each criterion
based on determining variation degree with respect to every
criterion value [23], [37], [46], [51].

Using the local information of the sensor nodes such as
residual energy, a clustering algorithm can be adopted in
terms of entropy as the election criterion. Such a new algo-
rithm is energy efficient. Moreover, we consider selection of
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CH node as a decision problem based on multiple criteria
such as residual energy, sensor node density, and distance
from the BS. Hence, we have multiple alternatives, i.e., set
of, sensor nodes where each alternative consists of multiple
criteria, i.e., sensor node’s information and we need to make
selection decision. For that, one of Multi-Criteria Decision
Analysis (MCDA) methods is used to solve the decision
problem with multiple criteria. In our proposed strategy,
WPM [48] is utilized for addressing the decision problem
and the entropy weight coefficient [4], [23], [46], [51] is
used to assess the weight of different criteria. Our simulation
results reveal that the proposed strategy can manage power
consumption better than existing algorithms and achieves the
desired results for WSNs.

III. CLUSTER-TREE ROUTING SCHEME
FOR DATA AGGREGATION
In this section, we describe Cluster-Tree routing scheme
(CTRS-DG) for data gathering. CTRS-DG has two layers:
aggregation and reconstruction and routing. The aggregation
and reconstruction layer includes three phases: (1) Head Elec-
tion and Cluster Formation phase: In this phase, we propose a
new dynamic and self-organizing Entropy Based Clustering
algorithm to select CHs and form clusters; (2) Aggrega-
tion phase: where, data will be aggregated and compressed
at each node based on compressive sensing technique; and
(3) Reconstruction phase: we propose a new efficient BEE
based Reconstruction algorithm (BEBR) to reconstruct the
original data from the compressed data. The phases of routing
layer are as follows: (1) Setup phase: In this phase, we pro-
pose a new algorithm to form the routing tree as a back-
bone for the network; (2) Data Transmission phase: where,
every CH selects its parent based on rank value which is
computed based on the distance from BS and the remaining
energy of CH. The compressed data at CHs will be routed
to BS using routing tree. Figure 1 show block diagram of
the proposed scheme. First we discuss our proposed Entropy

FIGURE 1. Block diagram of the proposed scheme.

Based Clustering Algorithm (EBCA). EBCA is a dynamic
distributed and self-organizing clustering algorithm that pro-
longs the lifetime of the network andminimizes the consumed
energy in the network. Then, the description of the phases of
the proposed scheme is given.

A. EBCA: ENTROPY BASED CLUSTERING ALGORITHM
In our proposed scheme, WPM along with Entropy Weighted
Coefficient Method (EWC) is used for resolving the election
decision problem based on the following criteria for node sj.

• Residual energy (E(sj)): E(sj) is the most important
feature of every sensor node where the network lifetime
mainly depends on the residual energy among the sensor
nodes.

• Distance to BS (D(sj)): D(sj) is important to be consid-
ered where as more distance to BS implies more energy
consumed to transmit packets to BS.

• Intra-to-Inter Distance Ratio (DR(sj)): The objective
of DR(sj) is to minimize intra-cluster distance between
CHs and respective CMs; and maximize the minimum
inter-cluster distance between two distinct CHs. As clus-
ter’s intra-distance and inter-distance are judging the
soundness of the clustering methods provided by the
routing protocol algorithm [2]. To achieve this objective,
the criteria function is defined as ratio of total Euclidean
distance of CHs to their CMs and minimum Euclidean
distance between any pair of CHs. Intra-distance to inter-
distance ratio is given by

DR(si) =

∑
sj∈N (si) d(si, sj)

minsj∈N (si){d(si, sj)}
. (2)

Here, N (si) is the set of neighbor nodes of si.

In next section, we adapt WPM which is a Multi-criteria
decision analysis method (MCDA) [48] to address the elec-
tion of CHs problem.

1) WEIGHTED PRODUCT MODEL (WPM)
In WPM, each alternative (A1,A2, . . .) is compared with
others by multiplying a number of ratios for each criterion
(ci). Each ratio is raised to the power equivalent of the relative
weight (w) of the corresponding criterion. In order to compare
two alternatives AK and AL using WPM; the following prod-
uct (P) has to be calculated for m number of criteria and n
number of alternatives:

P(
AK
AL

) =
m∏
j=1

(
aKj
aLj

)wj . (3)

Here, K 6= L,K ,L = 1, 2, . . . , n, aij is the actual value of
the alternative Ai in terms of jth criterion and wj is the weight
of importance of the jth criterion. If the ratio P(AKAL ) ≥ 1,
then it implies that the alternative AK is more useful than the
alternative AL . The best alternative is the one that is better
than or at least equal to all others.
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The alternative approach of WPM is the decision maker
where we use only products without ratios as follows [48]:

P(AK ) =
m∏
j=1

(aKj)wj . (4)

In this formula, the term P(AK ) indicates the performance
value of alternative AK when all the criteria are evaluated
under the WPM model. The weights wj of different criteria
are calculated using entropy coefficient method that will be
described in the next subsection.

2) ENTROPY WEIGHT COEFFICIENT METHOD (EWC)
The entropy coefficient method is applied to determine the
weights for the criteria. The main steps of calculating the
weights of m criteria and n alternatives are as follows:
• Calculate the entropy of each criterion i = 1, . . . ,m that
can be derived from Equation 1.

Hi = −
1

log2n

n∑
j

pijlog2pij (5)

Here, pij =
ci(sj)∑m
j ci(sj)

, j = 1, . . . , n, and ci(sj) is the
performance value of alternative sj. If pij = 0, pijlog2 pij
will be 0.

• Calculate the entropy coefficient weight (wi) of each
criterion i:

wi =
(1− Hi)

m−
∑m

i Hi
. (6)

Here, 0 ≤ wi ≤ 1 ,
∑m

i=1 wi = 1.

3) CLUSTER HEAD ELECTION DECISION
The election decision of CH is made by executing the follow-
ing steps (The pseudo-code of this procedure is presented in
Algorithm 1).
• Using EWC, compute the weight of each criterion.
• UsingWPM, compute the product valueP of each sensor
node sj considering E(sj), D(sj) and DR(sj) criteria as:

sj.P = (sj.c1)w1 × (sj.c2)w2 × (sj.c3)w3 . (7)

Here, w1, w2, w3 are the weights for the criteria c1 =
(E(sj)sj.Eo ), c2 = 1 − D(sj)∑

i=1,i 6=j(D(si))
, c3 = 1 − DR(sj)∑

i=1,i6=j(DR(si))
respectively.

• Sensor nodes with highest P values will be elected as
CHs.

B. SETUP PHASE
• Backbone tree construction Step: In this phase, BS
constructs the backbone tree. The backbone tree is
described as follows:
1. Initially each node i sets its parent to null and level

to a large number.
2. BS (sr ) sets its level to zero then broadcasts BUILD

message to its neighbors. The BUILD message
contains node ID, energy level, and level.

Algorithm 1 Election Procedure (EP)
1: Input: S: Set of sensor nodes and
k: number of CHs.

2: Output: k sensor nodes with highest P values.
3: S(j).ci: criterion value of sensor node j for criteria i
4: m: number of criteria
5: n: number of alternatives (sensor nodes in S)
6: for i = 1 to m do
7: for j = 1 to n do
8: pij =

S(j).ci∑n
u=1 S(u).ci

9: end for
10: Hi = − 1

log2 n

∑n
j pijlog2 pij

11: end for
12: for i = 1 to m do
13: wi =

(1−Hi)
m−

∑m
i Hi

14: end for
15: for j = 1 to n do
16: S(j).P =

∏m
i=1(S(j).ci)

wi

17: end for
18: Return the top k nodes of S with highest P values.

3. Each node s that receives the BUILD message will
do the following:
(a) If the received level value is less than its level

value (s.level), s adds the owner of BUILD
message to the set of candidate parents C and
set s.level to BUILD.level + 1

(b) If the received level value is greater than or
equal to its level value (s.level), the received
message will be dropped.

(c) Finally s broadcasts only once a BUILD mes-
sage with its own level, energy level and ID to
its neighbors.

4. s calculates the rank value of each node in C based
on the distance to sr and the remaining energy
using the following equation:

rank(s) =
Eremaining

d(s, sr ) ∗ Einitial
(8)

This guarantees that the node with higher residual
energy and minimum distance to the BS will have
higher rank. If multiple parents have the same rank,
the node with the higher residual energy is selected
as a forwarding node. Parent receives the data from
other nodes and forwards it directly to the next hop
without aggregation.

5. Node s sets its parent to the node with the highest
rank in C .

C. HEAD ELECTION AND CLUSTER FORMATION PHASE
1. Initial Step: BS participates in CHs’ selection only in

the first round (r = 1). The election process starts
by executing the selection procedure (Algorithm 1)
considering the criteria, E , D and DR, i.e., the BS calls
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EP(Si, ki) procedure where Si is the set of all nodes at
level i in WSN. BS sends BECH message to k nodes
with the highest P values at each level.
As previously discussed, CS method uses random
matrix such as Gaussian matrix as a measurement
matrix. The measurement matrix is used in the com-
pression and reconstruction process. The random
matrix is generated using seeds. In our approach, BS
generates and broadcasts a global seed ξ to the entire
network. The generated seed is used by each CH to
compress its cluster data and by BS to reconstruct the
original data. Upon receiving ξ by each CH j (CHj),
using ξ and the unique identification of CMs (node
IDs), CHj generates the corresponding series of coef-
ficients of its CMs. These coefficients will be regener-
ated at the BS for reconstruction process where BS has
the identifications of all nodes and ξ .
After receiving BECH message, the elected CHs
announce their role by broadcasting advertise message
CHADV and then each CH forms its cluster by executing
cluster formation phase below.
For the subsequent round operations, each elected CH
decides to stay or retract its role according to the results
of executing Cluster Head Election Step.

2. Cluster Head Election Step: The consumed energy by
CH involves the consumed energy by receiving data
from its CMs, aggregating data, and forwarding data
to the BS. As a result, we employ energy prediction
technique to predict the CH failure due to energy deple-
tion. If we assume that N sensor nodes are uniformly
dispersed among k clusters in the topology. Thus,
on average, there are N/k sensor nodes per cluster (one
CH and (N/k)-1 CMs). Consequently, the total energy
consumption by the CH (eCH ) for a single round is
calculated as follows [17]:

eCH = (
N
k
− 1).ERx(l)+

N
k
.l.EDA + ETx(l, dtoBS ).

(9)

CMs only need to transmit data to its corresponding
CH. Thus, the total energy consumption by a CM (eCM )
during a single frame is calculated as follows:

eCM = ETx(l, dtoCH ). (10)

Here, dtoBS is the mean distance between CH and BS,
and dtoCH is the average distance between CMs and
their CH. In an area with sizeM ×M , dtoBS and dtoCH
is given by [36]:

dtoCH =
M
√
2πk

, dtoBS = 0.765
M
2
. (11)

The total energy consumption for a cluster can be cal-
culated as follows:

Econsumed = eCH + eCM . (12)

According to the current energy of a node s and Equa-
tion 12, the energy consumption ratio (Eratio) is calcu-
lated as follows:

Eratio(s) = Econsumed/Eresidual(s). (13)

Depending on the ratio Eratio, each node determines
whether it has the ability to act as a CH or not.
Equation 13 shows that the more the total remaining
energy, the smaller the ratio Eratio is. Each CH calcu-
lates its Eratio and the ratio for each CM. The nodes
with ratio less than energy threshold value are added to
candidate set ψ . Then, CH executes Algorithm 1 based
on the setψ , then in order to take a decision for the next
round. CH has three cases (Algorithm 2, steps 26-38):

(a) If the list of candidate CHs (ψ) is empty,
i.e., none of CMs or current CHs can be a CH
for the next round because Eratio is smaller than
the predefined threshold energy value (Ethreshold ).
In this case, the current CHs inform their CMs to
send their data directly to the BS. By this way,
we avoid unreliable and un-predicted behavior
of the network by avoiding forming clusters and
using the remaining energy of the remaining sen-
sor nodes, they may succeed to send its data to
the BS.

(b) If ψ contains only one CH candidate, this CH
remains working as a CH for the next round.

(c) If ψ contains more than one CH candidates
(|ψ | > 1), as a result CH has to execute the
election procedure EP with the set ψ (EP(ψ, 1))
to take a decision.

If the cardinality of ψ is larger than one, then CH
has a set of alternatives. The first alternative is to stay
working as CH, and the second alternative is to select
one of its CMs to work as a CH. CH executes the
election procedure EP considering ψ members and the
three criteria, E , D and DR. The product value of each
member in ψ is computed and compared, then the
sensor node with the highest product value P will be
selected as the next CH (Algorithm 2, Step 34).
Each CH sends BECH message to the elected CHs.
The elected CHs announce their role using CSMA. The
advertising short message CHADV contains the ID of
CH. Then, cluster formation step is executed.

3. Cluster Formation Step: Each CHi broadcasts adver-
tisement message CHADV which includes the identifier
and the location of the CH to neighbors. To ensure that
the concise information will be sent to the BS, each
non-CH node selects the CH with minimum communi-
cation cost. After the CH announcement, according to
the distance between each non-CH and the selected CH,
each non-CH determines to which cluster it should join
by sending JOINRequest message to the selected CH.
The collected data by CMs will use the reverse path
of the forwarding advertisement message.
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Algorithm 2 EBCA
1: GCM (ch): List of CMs of ch.
2: ψ : List of sensor nodes to be nominated as CHs.
3: {CH Side.}
4: if BECH message received. then
5: Advertise your role as CH by transmitting CHADV

message.
6: Wait for JOINRequest messages from neighbor sensor

nodes.
7: end if
8: if JOINRequest message received from sj then
9: Add sensor node sj to GCM (si).
10: end if
11: Transmit TDMA schedule to CMs.
12: if Data received from GCM (si) members then
13: Perform data compression using CS and send the result

tO BS.
14: end if
15: Calculate Eratio for cluster i.
16: if Eratio < Ethreshold . then
17: Add ch to ψ .
18: end if
19: for each sensor node cmi ∈ GCM (si). do
20: if Eratio(cmi) < Ethreshold . then
21: Add cmi to ψ
22: end if
23: end for
24: if |ψ | = 0 then
25: CH informs GCM (si) members to send directly to BS.
26: Relinquish your role as CH and send directly to BS.
27: else
28: if |ψ | = 1 and si ∈ ψ then
29: si decides to remain working as CH.
30: else
31: if |ψ | > 1 then
32: si executes the election procedure by calling

EP(ψ, 1)
33: si transmits BECH message to the next CH node.
34: end if
35: end if
36: end if
37: {non-CH Side}
38: if CHADV message received from sj. then
39: send JOINRequest to sj that requires minimum commu-

nication cost.
40: wait for data request message.
41: end if
42: if data request message received. then
43: Transmit your data to the CH along with (ID, Eresidual .

)
44: end if

D. AGGREGATION PHASE
Normally, each CM sends only its collected data to the cor-
responding CH in its allocated time slot. However, in our

proposed algorithm, the data message of CM includes local
information such as ID, residual energy. This local infor-
mation can be employed to localize the CH rotation in the
subsequent rounds.

The task of CMs is to collect the original data and transfer
it to CHs. The CHs collect local information, reduce the
correlation between CMs, and eliminate the redundancy to
increase the transmission rate. BS gets the gathered-data,
reconstructs the compressed data and makes decisions. In this
phase, we adopt hybrid CS method where the node sends its
data without CS to its CH which determines either to use
CS or not, according to the collected data size.

FIGURE 2. (a) A WSN network graph, (b) Cluster tree based example.

For clarification, In Figure 2(b) nodes 6, 7, 8, and 9 as CMs
transmit their data x6, x7, x8, and x9 to their CH CH10. Based
on the global seed ξ and the IDs of its CMs, CH10 generates

the corresponding series of coefficients 8i =

 81,i
...

8M ,i

 ,
i = 6, 7, 8, 9, 10
for node 6, 7, 8, 9 and 10 that will be used to compute the

measurement. CH uses 8i, i = 6, 7, 8, 9, 10 to decrease
the amount of sent data. CH gathers its information, and add
themwith CMs information by computing

∑
i=6,7,8,9,108ixi.

The results then routed to BS using Data transmission
Phase

At the end of this phase, using piggybacked CM informa-
tion, each current CH decides whether it would continue as
CH or give up its role (as explained in Head Election and
Cluster Formation Phase).

E. DATA TRANSMISSION PHASE
After each CHi generates its compressed data, it calculates
the rank value of each node in the parent set based on the
distance to BS and the remaining energy using equation 8.
Then, it transfers the data to the parent node with higher
rank. The parent node receives the data and repeats the same
process to transfer the data to BS. The same operations are
performed by every CH. Finally, BS collects the compressed
data and get the original data by applying the Reconstruction
Phase.
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F. RECONSTRUCTION PHASE
CS method utilizes the sparsity property in the full IoT
sensors signals, due to the high correlations between IoT
sensors’ data, to reduce the signal size from N to M such
that M � N . So one of the biggest CS method challenges
is to reconstruct the full signal (N ) from the sub-sampled
vector (M ). The reconstructiion algorithms can be divide
into two categories [15]: 1) convex relaxation algorithms and
2) Greedy algorithms (GA). The convex relaxation recon-
struction based algorithms depend on relaxing the problem
of the following equation:

x = arg min‖x‖0 subject to y = 8x (14)

into convex problem by replacing non-convex L0 by the
convex L1 norm so Equation 14 can be rewritten as follows:

x = arg min‖x‖1 subject to y = 8x (15)

Then, Equation15 can be solved using any convex problem
solvers such as L1-magic toolbox [13]. Although the con-
vex reconstruction based algorithms have the stability and
the ability to reconstruct the full signal correctly, but they
suffer from highly complex computations that make them not
suitable for IoT.

On the other hand, Greedy reconstruction based algorithms
provide the same reconstructions performance with low com-
putation that make them suitable for IoT. Greedy recon-
struction based algorithms can be divided into two types:
Reversible and Irreversible GA. Detection of the support-
set using matched filter detection and then, the estimation
of the original signal based on the detected support-set by
solving the least square problem are common steps for the two
types. However, during irreversible greedy, like OMP [47]
algorithm, once it adds one element to the support set (for-
ward step), this element remains in the sets till the end of
the search. In contrast, reversible greedy algorithms, like
COSAMP [32] and SP [52] algorithm, gives itself the ability
to remove any elements (backward step) that have been added
to the support set during the search.

The greedy reconstruction based algorithms have gained
significant attention for CS signal recovery. However,
the greedy reconstruction based algorithms often doesn’t pro-
vide optimal solutions to CS reconstruction problem [15].
Bees algorithm [34] is a famous meta-heuristic optimiza-
tion algorithm, and it proved its efficiency in finding global
solutions for a lot of problems such s combinatorial opti-
mization and selection problems. The basic idea of Bees
search inspired by the natural behavior of honey bees to find
the nest site between many sites by considering both speed
and accuracy (optimal solution). This analogues to finding
the optimal solution in an optimization process. The Bees
algorithm can be described in Figure 3.

First, Bees are initialized by sending number n of bees
(scouts bees) to the selected food sites randomly. The fitness
value of each site will be calculated and then all the values are
sorted from the biggest to the smallest. Bees selects the bestm

sites which have the highest fitness values to start neighbor-
hood search. The Bees divide the best sites according to their
fitness values into elite sites (e) and non-elite sites (m− e).
The local search starts by searching around the best sites

such that Bees assign more number of bees to search in the
elite sites and send m− e bees to search in the non-elite sites.
The bee population will be updated by the bee which has the
highest fitness value. Then Bees perform a random search
on other (n − m) sites which called non-best sites. Finally,
Bees sort all the new sites location decently according to their
fitness values and repeat the previous processes till the global
optimum is found or the stopping criteria are reached.

In this section we aim to integrate between the advan-
tages of greedy algorithm (fast and easy implementation) and
the advantages of Bees to find the optimal solution to the
reconstruction process. The new algorithm called BEE Based
Signal Reconstruction algorithm (BEBR). BEBR consists of
three steps: initialization, search and stop criteria. BEBR
starts like any greedy based algorithm by selecting the K
largest amplitude components of y8t , where t means the
transpose of thematrix8, to initialize the support setH . Then
BEBR executes Bees search to select q columns from matrix
8 such that the setQ = H ∪q has the minimum fitness value.
The value of q is assigned as q = b0.7 Mc − 7K/9 as used
in [15]. The BEBR uses the set Q to estimate the signal x ′

by solving the least square problem. The support set H is
updated by K largest amplitude components of x ′. Finally,
BEBR checks the stopping criteria to decides either to stop
and return x ′ if the number of iterations exceeds themaximum
number or y − 8x ′ ≤ 0, or repeating the search step with
the new value of the support set H . Before describing BEBR
algorithm, some operations (initialization operations) that are
used in the algorithm are defined as follows:
• Solution orthogonality removal

resid(y,8Q) , y− yp, where yp = 8t
Q8

†
Qy (16)

• Correlations search

supp(x, k),
(
the set of indices corresponding to k

largest amplitude components of x
)

(17)

1) FITNESS FUNCTION
We propose the following fitness function which is used
by BEBR for the selection process: According to [14],
if the sparsity Level K satisfying K < Spark(8)/2, where
Spark(8) represents number of linear independent columns
of matrix8, then, CS reconstruction problem can be approx-
imated by:

argminx‖8x − y‖2, such that ‖x‖0 ≤ K (18)

From the greedy reconstruction based algorithms, the sig-
nal x can be estimated by solving the following least square
problem:

x ′ = 8†
Qy, such that x ′N−Q = 0 (N = 1, 2, ....n) (19)
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FIGURE 3. Flow Chart of Basic Bees Algorithm.

Here,8Q is a sub-matrix frommatrix8 and8† is the pseudo
inverse of matrix 8. We can only obtain the exact signal x,
i.e., x ′ ≈ x if and only if 8Q8

†
Qy = y. Then we can obtain

‖8Q8
†
Qy − y‖2 = 0, therefore, the fitness function can be

defined as:

F(Q) = ‖8Q8
†
Qy− y‖2 (20)

2) BEBR ALGORITHM DESCRIPTION
Here, we describe BEBR algorithm to solve the problem of
CS reconstruction (see Algorithm 3).

During the initialization step all Bees parameters such as
number of scouts bees nscouts, size of elite site e, size of non-
elite sites (m− e) and population size n are initialized. Then,
BEBR creates the bee solutionmatrixB, whereB is q×nscouts,
as random matrix of integers in the range [1,N ] such that N
is the number of matrix 8’s columns.

The set Q is initialized by adding the indices of the largest
K amplitude components of 8ty. The fitness value will be

calculated for each row i of B. Finally, the solutions are
sorted in descending order and then set BestSol = fittest bee
solution.

During the search step, BEBR executes Bees to find the
best bee solution (BestSol = q columns) that nears the
estimated signal to the original one. After that, the set Q is
updated as the union between H and the new BestSol. Based
on this new Q, the estimated signal x ′ is computed.
Finally, the support H is updated by selecting the indices

of the K largest amplitude components of x ′. The last two
steps are repeated until the Stopping Criterion is met, i.e., if
the number of iterations ≥ Tmax or the value of E is smaller
than or equal to θ = 10−5.

IV. SIMULATION RESULTS
Our algorithm is simulated usingMATLABR2015a. 100 sen-
sor nodes are randomly deployed in a two-dimensional plane
region with size 100 × 100 m2 with BS is placed at the
center. The radio model and the energy parameters are used as
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Algorithm 3 BEBR Algorithm
1: Initialization Step:
2: Input: sparsity level= K , CS matrix= 8, q, measurement

vector =y , and Maximum number of iterations =Tmax .
3: initialize Bees supp.
4: for Each row i of matrix B do
5: Q=Union (H,i)
6: F= fitness value of each row i 8Q using Equation 20.
7: end for
8: Sort the set F in descending order.
9: BestSol = The position of the fittest bee.
10: T=1
11: Search Step:
12: while Stopping criterion is not met do
13: for Each Elite site (m) and non-Elite site (m-e) patches

do
14: Recruit the forager bees to find new solutions.
15: Q=Union (H, new solution)
16: Evaluate the solution of each patch.
17: end for
18: Assign the remaining bees to search randomly and

evaluate their fitness values.
19: BestSol= The position of the fittest bee from each

patch and updates the matrix B.
20: Q=Union(H,BestSol)
21: x ′ = 8†

Qy and x
′
N−q = 0

22: H= supp(x ′,K ) Equation 17.
23: Stopping Criteria Step:
24: E= resid(y,8H ) Equation 16.
25: if E ≤ θ ||T ≥ Tmax then
26: Stop;
27: end if
28: T = T + 1
29: end while
30: Output: x ′ = 8†

Hy and x
′
N−H = 0

in many previous works such as [3], [17], and [36]. The main
parameters and their values of the simulation are provided
in Table 2. The used performance metrics are as follows:

1. First node dies (FND): the time from the beginning of
the experiment until the first sensor node dies.

2. Last node die (LND): the time from the beginning of
the experiment where all sensor nodes are on until the
last sensor node dies.

3. Number of alive sensor nodes per round: The number
of alive sensor nodes in the WSN after each round.

4. Average remaining energy per round: the total remain-
ing energy of all sensor nodes divided by the number
of nodes.

The scheme has been tested using different random topolo-
gies. We assume that the total energy of the network is 102J .
In the next subsections we evaluate our proposed scheme

based on performance metric and compare the performance
results with a number of existing baseline algorithms.

TABLE 2. Simulated parameters.

A. LIFETIME AND RESIDUAL ENERGY EVALUATION
The evaluation and comparison with the baseline algorithms
will be according to the following two cases:

1. Case 1: Perfect Data Aggregation: where all individ-
ual signals can be combined into a single represen-
tative signal [17]. In this case we compare the per-
formance results of the proposed scheme CTRS-DG
with SILEACH [1], CREEP [45], and SEECP [31]
algorithms that consider perfect data aggregation.

2. Case 2: Routing based CS Aggregation: in this case
we compare the performance results of the proposed
scheme CTRS-DG with SEP-CS [26] and LEACH-CS
[29] algorithms.

1) CASE 1: PERFECT DATA AGGREGATION
The stability period is defined as the duration from the begin-
ning of the experiment until the first sensor node dies. In the
first test, we evaluate the proposed scheme based on first node
dies, last node dies, number of alive nodes per round and the
average residual energy per round and compare the results
with the baseline algorithms CREEP, SEECP and SILEACH.

Figures 4 and 5 show that the proposed scheme CTRS-DG
enhances the stability period compared with CREEP, SEECP
and SILEACH up to 27%, 37% and 49% more, respectively.

Figure 6 shows the number of alive nodes in the network
per round in CTRS-DG, CREEP, SEECP and SILEACH. It is
clear that the number of alive nodes in the proposed CTRS-
DG are more than those of CREEP, SEECP and SILEACH
algorithms.

Figure 7 shows that the average of residual energy of sensor
nodes decreases as the number of rounds increases. It is
clear that the consumed energy by CTRS-DG is less than
the consumed energy by other algorithms. I.e., the proposed
schemeCTRS-DG enhances the LND and FNDofWSNs bet-
ter than CREEP, SEECP and SILEACH because the weights
are calculated and updated based on the current status of
sensor nodes in each round. Moreover, CTRS-DG considers
cluster load as a parameter during CH election process and it
predicts if the current CH can continue its task as a CH until
the end of the next round or it must be replaced by one of
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FIGURE 4. Stability (First node dies) in CTRS-DG, SILEACH, CREEP, and
SEECP algorithms.

FIGURE 5. Last node dies in CTRS-DG, SILEACH, CREEP, and SEECP
algorithms.

its CMs which leads to balance the energy level of the sensor
nodes in the network and prolong the lifetime of sensor nodes
with low energy level by working as CMs only. The results
show that the worst network lifetime is in SEECP because
SEECP considers only energy level as the only parameter for
CH selection process.

2) CASE 2: ROUTING BASED CS AGGREGATION
In the second test, we evaluate the proposed scheme based
on first node dies, last node dies, number of alive nodes
per round and the average residual energy per round and
compare the results with the baseline algorithms LEACH-CS,
and SEP-CS.

Figure 8 shows the lifetime and the percentage of alive
nodes in the network per round in CTRS-DG, LEACH-CS,
and SEP-CS algorithms.

It is clear from Figures 9 and 10 that the first and the
last nodes in CTRS-DG live more than those of LEACH-CS

FIGURE 6. Number of alive sensor nodes per round in CTRS-DG, SILEACH,
CREEP and SEECP algorithms.

FIGURE 7. Average residual energy per round in CTRS-DG, SILEACH,
CREEP, and SEECP algorithms.

and SEP-CS algorithms, i.e., CTRS-DG reduces the energy
consumption over all sensor nodes because the proposed
scheme handles the CHs selection as a decision problem
using a number of criteria which leads to the best selection
of CHs and so save energy consumption.

Figure 11 shows that the proposed scheme has the max-
imum residual energy after each round compared to other
algorithms, i.e., in each round, the energy consumed by
CTRS-DG is less than the energy consumed by LEACH-CS
and SEP-CS algorithms because CTRS-DG selects the most
suitable CHs based on the updated weights which considers
the network status at each round. Moreover, Each neighbor
node joins the CH that in its transmission range this leads to
reduce the energy consumption for transmitting data where
each node is in the same transmission range of other cluster
nodes.

B. EFFECT OF ENERGY HETEROGENEITY
In this test, the goal is to evaluate the performances of CTRS-
DG, SILEACH, CREEP, and SEECP in the two scenarios
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FIGURE 8. Number of alive sensor nodes per round in CTRS-DG with CS,
LEACH-CS and SEP-CS.

FIGURE 9. Stability (first node dies) in CTRS-DG with CS, LEACH-CS, and
SEP-CS.

FIGURE 10. Last node dies in CTRS-DG with CS, LEACH-CS, and SEP-CS.

of energy heterogeneity: predetermine and random. In pre-
determine energy heterogeneity, three different initial energy
values of nodes are considered. Table 3 shows the ratio of

FIGURE 11. Average residual energy per round in CTRS-DG with CS,
LEACH-CS and SEP-CS.

TABLE 3. Energy setting of sensor nodes.

sensor nodes and their corresponding energies. In random
energy heterogeneity, initial energy of nodes are assigned to
a random value with total 102 unit to the network.

FIGURE 12. Stability (first node dies) in CTRS-DG, SILEACH, CREEP, and
SEECP with predetermine and random energy heterogeneity.

Figure 12 shows the network lifetime in terms of FND is
enhanced for random energy heterogeneity than predetermine
energy heterogeneity while it is decreased for SILEACH,
CREEP, and SEECP because in CTRS-DG, entropy coeffi-
cient method handles the diverse of node information and
updates the weights based on each node criteria while the
other algorithms do not handle this diverse. Figures 12 and 13
show that in case of predetermining or random energy
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FIGURE 13. Last node dies in CTRS-DG, SILEACH, CREEP, and SEECP with
predetermine and random energy heterogeneity.

FIGURE 14. FND and LND for different BS Locations.

heterogeneity, the performance of the proposed CTRS-DG
exceeds the performance of SILEACH, CREEP and SEECP
for FND and LND.

C. EFFECT OF BS PLACEMENT
In this test, our goal is to address the effect of BS locations
on the performances of the proposed scheme by running the
programs with different placements of the BS in the network.
We consider 100 sensor nodes with fixed communication
range at 30 m are deployed randomly on 100 m×100 m area,
and the different placements of BS are as follows: corner of
the network (Location 1), middle of an edge of the network
(Location 2), and center of the network (Location 3).

Figures 14, 15 and 16 show that the FND and LND, average
residual energy and number of alive sensor nodes per round
for different locations of BS. We can note that FND and LND
are enhanced because as the BS moves to the network center
leads to decrease the length of the paths to the BS and so
reduce energy consumption for sensor nodes to forward data
to the BS.

FIGURE 15. Number of alive sensor nodes per round in different network
locations of BS.

FIGURE 16. Average residual energy per round versus BS locations.

D. EVALUATE BEBR ALGORITHM
In this test, we evaluate the performance of BEBR reconstruc-
tion algorithm and compare the results with OMP, COSAMP,
SP, FBP, BA and PSO algorithms. The experiments consid-
ering reconstruction of computer-generated signals for dif-
ferent nonzero coefficient distributions, including Uniform
and Gaussian distributions. We investigate reconstruction via
Gaussianmatrix. The simulations are performed inMATLAB
environment and repeated over 500 times using randomly
generated K sparse samples of length N = 100 from which
M = 60 random observations are selected via the observation
matrix 8.
Performance Metrics: Average Normalized Mean Squared

Error (ANMSE)is used to measure the accuracy of recon-
struction algorithms. ANMSE is computed as the average
ratio of ‖L‖2 norm of the reconstruction error to ‖x‖2. We
applied an individual observation matrix8 for each test sam-
ple whose entries were drawn from the Gaussian distribution
with mean 0 and standard deviation 1/N .
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FIGURE 17. ANMSE results over sparsity for Gaussian sparse vectors in
CTRS-DG, COSAMP, OMP, FBP, SP, BA and PSO Algorithms.

FIGURE 18. ANMSE results over sparsity for Uniform sparse signals in
CTRS-DG, COSAMP, OMP, FBP, SP, BA and PSO Algorithms.

Figure 17 shows ANMSE results when the sparse signal’s
non-zero values are drawn fromGaussian distribution. BEBR
algorithm clearly provides lower ANMSE compared with
COSAMP, OMP, FBP, LP and SP. In addition, ANMSE in
BEBR is started to increase only when K ≥ 53 while in
COSAMP, OMP, FBP, SP, BA and PSO algorithms, ANMSE
is started to increase when K ≥ 22, K ≥ 19, K ≥ 26,
K ≥ 33, K ≥ 45 and K ≥ 37 respectively as shown
in Figure 17 because BEBR combines the advantages of
greedy reconstruction based algorithms and BEE algorithm
to find the best reconstruction solution.

Figure 18 shows ANMSE results when the sparse sig-
nal’s non-zero values are drawn from uniform distribution.
It shows BEBR algorithm provides the lowest ANMSE com-
pared to COSAMP, OMP, FBP, SP, BA and PSO, because in
each round, BEBR supports the search space with the best q
columns that helps to find the best solution. ANMSE started
to increase whenK ≥ 53,K ≥ 25,K ≥ 21,K ≥ 33,K ≥ 47,

FIGURE 19. ANMSE results over different lengths of measurement vector
M for Uniform sparse signals using a single Gaussian observation matrix
for each M in CTRS-DG, COSAMP, OMP, FBP, SP, BA and PSO Algorithms.

K ≥ 47 and K ≥ 43 in BEBR, COSAMP, OMP, FBP, SP, BA
and PSO respectively.

Finally, we evaluate the performance of BEBR with differ-
ent lengths of measurement vector M . Sparse signals drawn
from uniform distribution with lengthN = 100 is used andM
values ranges from 10 to 60 with step size 1. Figure 19 shows
that BEBR still provides the lowest ANMSE values compared
with COSAMP, OMP, FBP, SP, BA and PSO algorithms.

V. CONCLUSION
In this paper, we have proposed a cluster-based tree routing
Scheme for Data Gathering in IoT based heterogeneous wire-
less sensor networks for periodic applications. The roposed
scheme includes a dynamic, distributive, and self-organizing
clustering algorithm that benefits from the advantage of the
local information of sensor nodes that can be measured in
terms of entropy as criteria for CH election and cluster for-
mation. It also includes a new proposed algorithm to form
the routing tree as backbone of the network and an effective
CS reconstruction algorithm to improve the recovery process
at the BS. Our simulation results show that the proposed
scheme exceeds the baseline algorithms CREEP, SEECP,
and SILEACH in terms of reducing energy consumption and
prolonging network lifetime. Moreover, proposed scheme
exceeds CS based baseline algorithms LEACH-CS and SEP-
CS in terms of reducing energy consumption and prolong-
ing network lifetime. The new proposed BEBR algorithm
to reconstruct the original data exceeds the baseline algo-
rithms COSAMP, OMP, FBP, SP, BA and PSO in terms of
ANMSE. The proposed scheme achieves our goals to pro-
long the network lifetime and improves the reconstruction
performance.
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