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ABSTRACT Water is a precious resource that should be managed carefully. However, due to leakages
in water distributed networks (WDNs), a large amount of water is lost each year that suggests the need
for reliable and robust leak detection and localization system. This paper attempts to review the current
technologies for leakage detection in WDN as well as several proposed intelligent methodologies (such as
support vectormachine, neural network, and convolution neural network) over the past few years. The current
methodologies and their limitations are discussed. Uncertainties involved in the implementation of WDN
leakage detection are also discussed, and several suggestions to overcome such uncertainties are provided
for future implementations.

INDEX TERMS Water distribution networks, leakage, localization, review.

I. INTRODUCTION
Water is a critical and essential resource supporting our daily
activities for sustaining our ecosystem. In any city, water is
distributed through a highly sophisticated network commonly
known as the Water Distribution Networks (WDNs). These
networks may experience deterioration that causes leakage
due to several factors. They can be categorized into inter-
nal or external factors. Internal factors are damages on the
pipe itself such as pipe corrosion, pipe age, pipe defects, and
poor workmanship. The external factors are damaged due to
the external or third party such as mechanical damage caused
by excessive pipe load (traffic above the road), excavation,
ground movement and climate conditions [1]–[4].

Due to such damages, water loss through leakage had been
reported to be approximately 20% to 30% of the total water
supplied in different countries [5]–[11]. This is regarded as a
costly problem due to the wastage of natural resources [12].
In some cases, total damage cost had been reported to reach
several million US dollars [13] as water lost through the
pipe can damage the environment including nearby infras-
tructure, causing service disruption and increase unnecessary
energy cost and carbon footprint [14]. Therefore, effective
leak detection and localization system have the potential to
save a large quantity of water as well as money.

Leakages can be classified into reported, unreported leak-
age or background leakage [12], [15]. Reported burst event is
usually visible on the ground as they can be easily detected
by maintenance personnel or the public. Unreported burst
event exhibits the same type of leakage as the reported burst
event without surfacing to the ground. On the other hand,
the background type leakages are small leakages that are
difficult or cannot be detected through normal methods such
as leakage through creeping joints [16]. Some literature may
refer to burst leakage as burst event and background leakage
as leakage [9], [17], [18]. This type of small leakage may
often go unnoticed resulting in significant losses [18], [19].
Among the leak detection system, it can be classified into
passive and active systems. The former requires direct visual
inspection or monitoring of sites. The latter comprises of an
analysis of signals such as acoustic signals, vibration, flow,
and pressure measurement [4], [20]. An active system can
be further classified into mainly transient-based approaches,
model-based approaches, and data-driven approaches [17].

In regards to the WDN leakage detection and localization
technologies, several authors had published reviews and their
insights. Adedeji et al. [12] published their review of leakage
detection methods classified into external (acoustic emission,
gas injection, fiber optics sensing, magnetic induction and
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FIGURE 1. Overview of Current Leak Detection Technologie.

ground-penetrating radar methods) or internal (balancing,
model-based, pressure or flow monitoring, signal processing
approach and statistical analysis) based methods targeted
towards pressurized piping system. Li et al. [21] also did a
rather similar review as Adedeji et al. [12] but categorized
into non-numerical, numerical and time domain, frequency
domain analysis.

Wu and Liu [22] presented their review on data-driven
approaches for burst detection in the water distribution sys-
tem that include the performance capabilities and limita-
tions. Datta and Sarkar [23] presented their review which
included methodology on blockage and leakage detection.
Their review focuses on the process and measurement
principles that are used for the pipeline faults detection.
Colombo et al. [24] presented their findings on transient
based methods that presented a summary of current and
past work. They also described state of the art in the area.
Liu andKleiner [25] did a review on the inspection techniques
and technologies towards condition assessment of water dis-
tribution and transmission mains. Finally, Obeid et al. [26]
published their comprehensive survey on software and hard-
ware solutions proposed for water pipeline infrastructure
monitoring.

There is a lot of reviews written in the area but remains
incomplete.

The researchers [12] focused on the summary of different
categories of leak detection which can be said for Datta and
Sarkar [23]. Some methodologies reviewed by Li et al. [21]
was more than a decade old with some new methods during
the time of publication. Similarly, methodologies reviewed
by Colombo et al. [24] was around a decade ago even though
it was comprehensive. Since Wu and Liu [22] focused
their review on data-driven approaches, the paper did not
include recent progression and methodology in other cate-
gories. Liu and Kleiner [25] focused on the current tech-
nologies for detection and did not include any review or
survey for proposedmethodology by other authors. Similarly,
Obeid et al. [26] provided a summary of currently available
technologies and focused on the development of a wireless
sensor node platform for detection.

Therefore, the focus of this paper is to provide the latest
review on published methodologies. This paper aims to pro-
vide a noteworthy contribution to the literature by

1) providing an extensive survey on the newer published
methodologies targeted towards WDNs (up to last five
years) which include where, how, the detection rate of
methodologies proposed;

2) identifying and discussing the limitations of proposed
methodologies;

3) proposing solutions or recommendations for the reader
to avoid/overcome the limitations.

The paper starts with the introduction of the current leak
detection technologies. Followed by the survey on different
published methodologies and their detection rate. After that,
the paper presents a discussion and suggestions for common
limitations present in literature. Finally, the paper ends with
a conclusion.

II. CURRENT LEAK DETECTION TECHNOLOGIES
The review of current leak detection technologies will begin
with the passive system followed by the active system.
An overview of the different types of technologies available
is given in Figure. 1.

A. VISION UTILIZATION
The oldest and perhaps unsystematic passive leak detection
system is to observe any indication of ponding at ground sur-
face or anomalous vegetation growth that suggest a possible
leaking pipe [24].

B. SENSOR UTILIZATION
As technological advances, more accurate leak detection is
carried by using manual sticks or portable measurement
devices. These devices can detect sound or vibration pro-
duced by water leaking from pressurized pipes [27]. Sub-
sequently, with the availability of remote-controlled robots,
detection of pipe leakage can be carried out using a Closed
Circuit Television (CCTV). The CCTV system comprised
of a remote-controlled pan, and a camera is mounted on a
robot traveling between two manholes inside the pipeline
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FIGURE 2. CCTV Inspection (Image from M. TUCKER & SONS).

FIGURE 3. Acoustic Emission Detection Method for Pipe Leakage.

controlled by certified operators [25], [28]. However, such
passive systems have several drawbacks as such practices
are time-consuming, labor intensive and have low reliability
in detecting leaks as accuracy is dependent on the user’s
experience [12], [27].

Other methods include acoustic emission technique,
ground penetrating radar, tracing substance injection, the use
of IR thermography, monitoring of a District Metering
Area (DMA) through flow and pressure sensors, fiber optics
sensors and Remote Field Eddy Current (RFEC) technique.

Acoustics emission technique relies on propagating elastic
waves released from an active source [29]. Since escap-
ing liquid creates an acoustic signal as it passes through a
defect, this phenomenon makes the acoustics emission tech-
nique a suitable candidate. When a leak occurs, the acous-
tic signal propagates along the pipeline which is picked
up by the acoustic sensors installed along the pipeline,
if the received signal by one sensor is stronger and has a
higher magnitude then the location of the leak can easily be
identified [12].

This technique has the advantage of detecting a leak in
real time [29], high detection and localization accuracy [12]
and is generally faster than other methods such as tracer gas,
infrared (IR) thermography, ultrasonic and electromagnetic
scanning [30]. However, signals are influenced by the type
of pipe materials, changing sound propagation conditions
from one pipeline section to another [8]. External sources
such as background noise also affect the signal [4]. It is
also not applicable for long pipelines as it requires a great

FIGURE 4. Ground Penetrating Radar Operating Principle (Image from
SiteScan).

number of sensors which increase the cost significantly [12].
Furthermore, many acoustics techniques are insensitive to
large leaks as they do not generate enough vibrations in the
high frequencies [24].

The operating principle of a ground penetrating radar is
to capture an image of the pipe underground where the
electromagnetic signatures of leak regions would manifest
themselves in the captured images. The source of a leak
can then be located through a direct interpretation of the
images [31].

However, this detection method is influenced by the type
of soil where the pipes are buried in. The results showed
that reflections beneath the leak regions are comparatively
weaker than surrounding soil medium for most homogeneous
soil and may not be possible to observe void phenomenon
for most inhomogeneous soil. Furthermore, the applicability
of this method for deeply buried pipes is limited, as either
the moisture of soil or the inhomogeneity within the soil
may not provide sufficient signal power levels above the
noise floor [31]. In addition, it is difficult to interpret the
results [12].

For tracing substances injection, it is an effective and
proven method and can detect even the smallest of leaks with
low false alarm. Another pipeline with in-built sensors is usu-
ally inserted along with the pipeline that requires monitoring
so when leakage occurs; the sensors can alert the engineers
immediately [32].

However, there may be a need to filter or cleanse the water
before use which complicates the pipeline distribution net-
work. In addition, it may risk environmental contamination in
the presence of leak [8]. Furthermore, for large low-pressure
applications where tracer gas is used, the high volume of gas
required makes this method impractical [12]. Finally, instal-
lation of in-built sensors together with existing underground
distribution system requires much manual labor to excavate
the ground that is quite impractical.

As for infrared thermography, the method relies on the
measurement of IR radiation across spatial surfaces and
energy transfer theory to identify thermal anomalies for
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FIGURE 5. Tracing Substance Injection [32].

FIGURE 6. IR Thermography on Water Leakage (Box indicate leak
location, arrow indicate leak flow, star represent the same landmark in
different pictures [35].

FIGURE 7. Example of a DMA [18].

FIGURE 8. Fiber Optical Sensing Cable [48].

different application [33]. Due to the fact that water leakage
causes temperature differences in the vicinity of the leak,
IR camera can detect leaks by capturing the thermal profile of
the surface above the pipeline [34]. Bach and Kodikara [35]

FIGURE 9. Example of an RFEC Probe In a Pipe [46].

provided an in-depth explanation of howwater leakage can be
detected via the temperature differences of the water leakage
and the surrounding soil.

Although detection of leaks using IR thermogra-
phy has a low success rate, the results presented by
Bach and Kodikara [35] on leakage detection was not impres-
sive. The leak detection rate was only 59% (16 out of 27).
As explained [21], IR thermography is affected by many
factors such as weather conditions, soil and pavement surface
conditions. To increase the likelihood of detection, thermal
contrast should be at the maximum between leakage and the
surrounding environment [35]. Thus, detection can only be
carried out during a pre-sunrise condition when the influ-
ence of solar radiation is negligible. Moreover, the reliabil-
ity of detection depends on the thermal sensitivity of the
device [35]. The user’s experience also plays an essential role
as an IR camera is susceptible to noise such as the reflection
of light and the angle of capturing the image. A certain level
of expertise is also required to analyze the image.

A DMA is a subsection of a large complex distribution
network. This sectorization is done through the closure of
valves or disconnection of network pipes with the inlet and
outlet flow metered [36]–[39]. It allows continuous mon-
itoring of inlet and outlet flow measurements. The subse-
quent analysis then calculates the level of leakage within
a DMA [39]. If a leak occurs, flow rate increases while a
transient pressure drop can be observed [40]. It allows real-
time alert of any leakage present in DMA.

The optimal approach in the analysis of DMA flows is
when the flow is at a minimum. This window occurs at night
time when consumer demand is low. Hence, the leak magni-
tude over the total DMA flow is at the highest rate [41], [42].
However, the boundary and size of a DMA depend on the
topographic conditions and the number of water users. It can-
not be too large as it will be hard to locate the leakage [40].
Therefore, the partitioning of the WDN into DMAs is crucial
for identifying the most vulnerable areas to schedule leak
detection activities [36].

Distributed fiber optics sensors are often adopted for the
detection of leakage. It has superior immunity to electrical
noise, long-term measurement stability, corrosion resistant
properties and provides long-distance sensing capabilities
with manymeasurement points through one optical fiber line.
These make it suitable for pipeline monitoring [44], [45].
As leakages from pipeline cause local temperature anomalies
in the vicinity, fiber optics installed which take temperature
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measurements over the entire pipeline can detect this leakage
in a short time [46], [47], [51].

Despite the success of fiber optics, this methodology can
only be deployed for monitoring linear pipelines. Moreover,
the cost of implementing such a system is high [12].

RFEC technique utilizes low-frequency alternating current
and through the wall transmission to inspect pipes and is done
by passing a probe through the pipe wall. This technique
allows the detection of both external and internal defects not
visible to the naked eye caused by corrosion [48], [49].

AlthoughRFECprovides reliable information on corrosion
defects, it cannot detect leakage or small corrosion pits that
can result in a larger area of corrosion and leakage. Leaking
through corrosion pits are better inspected by other leak
detectionmethods [49]. In addition, this method is only appli-
cable to conducting materials where the network is accessible
to the RFEC probe.

C. TRANSIENT-BASED APPROACH
A leak is a hydraulic phenomenon. Thus, a transient pressure
wave is an ideal parameter for such a task [24]. A tran-
sient pressure wave refers to a pressure wave that is short-
lived [50]. In the presence of a leak opening; there is a drop in
pressure in the surrounding medium [52] that produces such
transient pressure wave phenomenon. The transient based
method usually extract information about the presence of leak
from measured or modeled transient pressure traces within a
pipeline network [12].

As mentioned by researchers [8], these methods are not
straightforward in their application beyond pipeline net-
works such as the inverse transient analysis [53] that analyze
the pressure data collected during the occurrence of transi-
tory events via minimization of the difference between the
observed and the calculated parameters [54].

Detecting negative wave pressure relies on regular data
collection and has high transmission cost. Such a method
may be influenced by background noise or other events in
a complex network [22] Negative pressure waves generated
can be influenced by length, the diameter of pipelines and
fluid properties. It has low detection accuracy in case of a
microporous leak, or for liquid with high elastic coefficients,
densities, or viscosities [56].

Few researchers [22] and [24] emphasized the fact that
earlier literature on transient based approaches has not
been validated in the real system. It was also reiterated
by Adedeji et al. [12], that most of those transient methods
could not be used for the real-time application. Moreover,
such methods also rely heavily on complex simulation mod-
els or investment in a large number of sensors [57].

D. MODEL-BASED APPROACH
The model-based approach usually involves the use of math-
ematical functions or formulas to represent or replicate the
operation of a pipe network. It can determine the approx-
imate leakage location [17] by comparing pressure mea-
surement with their estimation obtained using the hydraulic

network model [40]. The condition is that the model should
be a good representation of the network. Perez et al. [38],
Adachi et al. [58], Meseguer et al. [59] based on some of
the mathematical functions for their implementation of the
model-based approach.

The law of conservation of mass states that under steady
state condition without the presence of a leak, the inflow
of water must be equal to the outflow of water. In pres-
surized water distributed pipelines, there is no storage of
water [32], [38]. This condition can be written as

f (x) = mi − mo (1)

where mi is the mass of water flowing in and mo is the mass
of water flowing out. Theoretically, for f (x) equals zero then
the pipe has no leakage and vice versa.

In the conservation of energy, it states that the total energy
of an isolated system remains constant since energy cannot
be created and destroyed. Therefore, the energy difference
between two points in a pipeline is the difference between
the energy added to the flow and frictional and heat losses
written as follows [38].

1e = ei − efh (2)

where ei is the energy added by the pump, efh is the energy
loss through friction and heat and 1e is the difference in
energy. The relationship between pipe flow and energy loss
caused by friction can be represented by

efh = Kqr (3)

where K is the pipe coefficient, q is the pipe flow, and r is an
exponent of value 2 [60].

The nodal demand at a junction is modeled as

dn(t) = bdnpa,n(t)D(t) (4)

where di(t) is the demand at a node n at a time t , bdn is the base
demand of node n, pa,n(t) is the value of pattern a associated
to the node n at a time t and D(t) is the sum of supplied water
to the systemmeasured at the network inputs and storage units
at the time t [38].

Leak size can then be modeled as

L = Cepγ (5)

where L is the leak size, Ce is the emitter coefficient, p is the
pressure at the node and γ is an exponent of value 0.5 for
detectable leaks and burst on metallic pipes [61].

Although the conservation of mass theory is simple, cost-
effective and very sensitive, the changes in the flow pres-
sure can suffer from false detections [26]. It is unable to
localize leaks [62] and needs more sophisticated equations.
However, the drawback of using more sophisticated equa-
tions to reflect real-time condition is the need for humon-
gous data for calibration and is rather computationally
expensive [38]. Furthermore, the network topology changes
with the addition or elimination of any element (pipes,
nodes or tanks). Consumers’ demand is also hard to deter-
mine and be considered [63], [64]. As a result, constructing
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and maintaining well calibrated hydraulic models are quite
challenging for water companies and can only be handled by
experts [12], [17], [22].

Another major drawback in a model-based approach is
the uncertainty of model parameters such as the condition
of the pipe. Leakage detection methods often based on the
assumption that pipe condition remains unchanged. However,
as pipe ages, roughness coefficient increases and results in
a decrease in pipe diameter. Therefore, for a more realistic
representation, any leakage detection model should include
this factor [12].

Furthermore, some of the published methods were only
tested on simple networks using synthetic data [22]. They
could not apply directly to WDN as the use of nonlinear
equations do not describe the actual behavior of the hydraulic
systems [36].

E. DATA-DRIVEN APPROACH
The data-driven approach relies on the collection of data to
perform signal processing and statistical analysis for leak
detection. The advantage of this approach is as follows.
It does not require any specific in-depth knowledge about
the system. It only needs to learn from the historical data
collected coupled with any statistical or pattern recognition
tools [57].

The main disadvantage of this method is a large amount
of data is needed to develop a classification or predictive
model [22]. Moreover, anomaly data caused by burst or leaks
may be scarce [65] that result in minority data. In addi-
tion to the problem of minority data, modeling of classi-
fication or predictive model may be further hampered by
missing data, anomaly data from sensors, and communica-
tions and data noise [22], [65]. Hence, these suggest the
need to have some hydraulic system knowledge in order
to validate the data collected which must be reliable and
conceivable.

As burst induced data differs significantly from data gen-
erated from water consumption, burst induced data are usu-
ally deemed as outliers [17]. The classification models are
usually trained with this condition. However, due to seasonal
change or festive season, water consumption will fluctuate.
Water consumption peaks in summer due to the seasonal
increase of residential population as well as an increase in the
per capita water consumption due to higher temperature [66].
Thus, causing the classification model to have a lot of false
alarms if the seasonal fluctuation is not taken into considera-
tion [17], [22], [57]. However, as observed in [66], the night
inflow follows a consistent trend and do not varies signifi-
cantly during seasonal change. Thus, night inflow should be
taken into consideration to improve the detection rate and
accuracy.

III. PROPOSED METHODOLOGIES IN LITERATURES
The proposed methodologies in literature can be classi-
fied into the following categories; Prediction, Classification,

Clustering, Model-Based, Statistical and Transient Signal
Analysis. Among, the categories, prediction, classification,
clustering and statistical methods can be grouped into the
data-driven approach.

A brief overview of the methodologies surveyed is pre-
sented in Table 1. It gives the information of the proposed
algorithm and the DMA used for testing. As seen in Table 1,
methodologies proposed are tested on different DMA using
different sets of data and do not necessarily include both
leakage detection and localization.

Reviews of the surveyed methodologies are given in the
next few subsections and summaries of their limitations are
shown in Table 2 and 3.

A. PREDICTION
The idea of such a category is to perform a series of water
demand/consumption/flow rate prediction ahead of time. The
series of prediction is then analyzed in conjunction with
actual readings to detect any discrepancies caused by abnor-
mal flow [67].

Jung and Lansey [68] employ a Nonlinear Kalman Fil-
ter (NKF) to identify the system operational condition, esti-
mate nodal group demands, and detect bursts. Jung and
Lansey [68] seek to overcome solutions that are limited to
networks supplied by gravity or under consistent operating
conditions.

Their methodology begins with field measurements col-
lection (pipe flows and pressure heads are generated from
a hydraulic model of a real system for conditions with and
without bursts) followed by using nonlinear Kalman filter to
estimate the group nodal demand. There are two methods
that Jung and Lansey [68] suggested to use in conjunction
with NKF for anomaly detection. They are namely: Cumula-
tive Sum (CUSUM) and Hotelling T2. The former does not
require pipe flow and pressure head estimates. But it will
provide a long-term impact after a burst. The latter requires
estimation of pipe flow and pressure head, but it provides a
short-term impact after a burst.

Although the proposed methodology produced promising
results, it was only tested on consistent operating condition
with a simple hydraulic change. Additional investigation is
needed to assess other types of operational changes, such
as complex combinations of tank open/closure and pump
operation. Jung and Lansey [68] also assumed hydraulic
model is correctly modeled. The system parameters such
as pipe roughness coefficients are known with certainty,
and high demand events have not occurred. Such assump-
tions may not be realistic and valid for the real systems.
Firstly, having a hydraulic model that represent the real sys-
tem perfectly is impossible as there are several parameters
that are hard to determine. Secondly, roughness coefficient
changes as pipe age. Such a parameter cannot be known with
certainty.

Karray et al. [69] also utilize Kalman Filter (KF) in
their work to provide a reliable solution for inspecting

VOLUME 6, 2018 78851



T. K. Chan et al.: Review of Current Technologies and Proposed Intelligent Methodologies

TABLE 1. Proposed methodologies over the past five years.

pipe infrastructure. They proposed a Predictive Kalman
Filter (PKF) that handles data compression to identify leak-
age. Karray et al. [69] explained that their PKF is a predictor

combined with KF to reduce the communication cost of
the wireless sensor network. The KF adopted estimates the
pressure variation caused by leaks. If the difference exceeds
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TABLE 2. Summary of proposed methodologies’ limitations (part 1 of 2).

the permissible threshold, an alarm is raised. To locate the
position of the leak, Karray et al. [69] suggested a method
hybridizing the physical principle of leak wave propagation

and the time difference of arrival, as water leaks, it cre-
ates a pressure wave along the pipeline. Karray et al. [69]
will choose the two sensors to detect the leak based on the
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TABLE 3. Summary of proposed methodologies’ limitations (part 2 of 2).

previous KF. Then making use of the following equation to
estimate the leak location.

x =
L − C1t

2
(6)

where x is the distance from the nearest sensor node, L is the
distance between 2 sensors, C is the wave propagation speed,
and1t is the time difference of pressure signal arriving from
the nodes.

The main issue with this methodology is that it was only
tested on a small testbed. Furthermore, it is only applicable
to above ground pipelines with limited use for underground
pipelines. In addition, caution has to be taken when using
estimated wave speed to calculate TDoA. A study carried
out by Srirangarajan et al. [50] shown that a 10% error in
wave speed estimation can result in a maximum 20% error
in localization.

Laucelli et al. [70] proposed an Evolutionary Polynomial
Regression (EPR) paradigm for event detection that aims to
reproduce the behavior of a WDN using online data recorded

by low-cost pressure and flow devices. As explained by
Laucelli et al. [70], the behavior of a WDN is represented
by the average flow rate. If the observed values of water
consumption are higher than the maximum flow rate pre-
dicted, then such value is an anomaly. In the case study,
Laucelli et al. [70] assumed a probability density function to
represent the possible behavior of the network statistically.
To give more weights to predicted values, predictions are
characterized by a normal distribution with average predicted
flow rate and a standard deviation. The observed flow rate
is then used to calculate the cumulative probability. If the
value exceeds the threshold (value is based on all cumulative
probability of maximum predicted flow rate for each time
step), then an anomaly is detected.

However, as explained by Laucelli et al. [70], the pres-
ence of a significant leak can mask the occurrence of small
leaks. Thus, small leaks can only be detected after the
significant leak is resolved. As methodology relies on pre-
dicted and observed value to detect an anomaly, the degree of
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exceedance is dependent on the requirements and experience
of water utility operators and network consumption history.
Thus, if an unexpected water demand occurs, it would be
classified as an anomaly since the degree of exceedance
depends on network consumption history.

Ye and Fenner [71] suggested a weighted least squares with
Expectation-Maximization (EM) algorithm for burst detec-
tion in UK water distribution system and investigated the use
of inlet flow measurement for burst detection at the DMA
level.

To model the dynamics of flow pattern by a simpler and
effective function, Ye and Fenner [71] proposed to resample
the flow measurement into two-dimensional parallel flow
sets to check the flow rate at the different time of the days.
In the paper, Ye and Fenner [71] decomposed the parallel flow
set into a weekly mode to minimize the standard deviation.
By using the EM algorithm, unlabeled flow data are manually
separated into normal or burst data. The EM algorithm uses
a set of weights to represent the importance of each data
points to the model and model parameters are estimated
based on weighted least squares. The algorithm starts with
equal weights to estimate the model parameters. After the
estimation, weights are updated by examining the model
fitting error. After weights are updated, model parameters are
re-estimated again. This iterative process only stopped after
the model parameters converge or a defined minimum error is
reached. Burst can then be detected if the difference between
actual and prediction passes a threshold.

However, Ye and Fenner [71] did not take into account
unexpected water demand that may cause false alarms. More-
over, small leakages will not raise the alarm if the burst size
is smaller than the normalized standard deviation. Although,
Ye and Fenner [71] claimed their method could adapt to
unplanned network configuration, the tuning time is sub-
jected to the length of data points fitted to the model. Thus,
adjustment usually takes some time before the model is reset.
Lastly, the methodology is highly sensitive towards sensors’
noise and faults.

Romano et al. [57] presented their methodology that can
detect pipe burst or events that possess the similar abnormal
pressure or flow variation at a DMA level. The objective
of [57] was to develop a faster and higher reliability detection
system. Their methodology makes synergistic use of arti-
ficial intelligence techniques, statistical data analysis tools,
Statistical Process Control (SPC) techniques and Bayesian
inference systems for inferring the probability of a pipe burst
or other events. Their methodology consists of three subsys-
tems which inspects the data at a different level. The first
subsystem (Discrepancies Based Subsystem) measures the
difference between the actual value of pressure/flow signals
values and predicted pressure/flow signals values by ANN.
A statistical limit is set to detect an occurring event. The sec-
ond subsystem (Boundary Based Subsystem) also focused
on identifying a pressure or flow variation. But it can only
identify medium or large deviations. In this subsystem, check
are done for incoming data that exceed statistical boundaries.

The third subsystem (Trend Based Subsystem) focus on the
identification of pressure or flow deviation caused by devel-
oping events. A control chart is used to monitor how the mean
of pressure or flow measurements relative to the particular
hour window changes over time and determine any out of
control situation. These three subsystems will generate their
analysis results and used as input for the Bayesian inference
system.

The main drawback of [57] is the extensive use of sensors.
Firstly, this methodology is highly sensitive towards sensors’
noise or faults; unnecessary noisy data can result in a false
alarm. Secondly, detection of the leak will be delayed if
the pressure sensor is located far away from the leak as
demonstrated in [57]. Such a system also relies on a large
amount of historical data that may be unavailable in a new
network system. Also, to account for the fluctuation of water
demand, ANN has to be constantly retrained and updated to
maintain the level of prediction accuracy.

Moreover, it does not take unexpected water demand into
account [17]. Such a scenario will result in a false alarm [68]
since the system condition differs from the state where the
control chart is developed. Finally, such a system will ulti-
mately rely on the operator’s decision, confidence and exper-
tise to define the suitable probability threshold value for
leakage detection (trade-off between true and false alarm).

B. CLASSIFICATION
In a classification problem, a classifier is trained based
on a feature set that best identifies the unique characteris-
tics of different event types to categorize future event into
normal or abnormal event [72]. Kang et al. [27] proposed
an ensemble Convolution Neural Network-Support Vector
Machine (CNN-SVM) and graph-based localization for leak-
age detection in the water distribution system. Their moti-
vation was to improve the detection and localizing accuracy.
In their method, features extracted from CNN are used as
inputs to a Multi-Layer Perceptron (MLP) and SVM. The
outputs from SVM was converted to a probability using
Platt’s trick. Subsequently, the results from the two clas-
sifiers are combined using a method which multiplies the
probability of each model with their corresponding weight-
ing factors [27]. In localization, the graph-based algorithm
from Srirangarajan et al. [50] was used with two proposed
changes. First, a method to search for the nearest node to
the leak location which reduces computational time. Sec-
ond, imposing the search range limitation of the virtual
node. By using a generalized cross-correlation with a max-
imum likelihood weighting function, Time Difference of
Arrival (TDoA) was calculated. Subsequently, using the man-
ually estimated wave speed and length of pipe, the location
of the leak can be estimated using the same formula as [68]
(refer to equation 6).

The drawback of the proposed CNN method is feature
extraction could not remove noise well. In addition, the
proposed method required considerable computational time.
Localization algorithm did not take into account external

VOLUME 6, 2018 78855



T. K. Chan et al.: Review of Current Technologies and Proposed Intelligent Methodologies

noise as burst were emulated inmidnight where they expected
noise to be minimal. Thus, this methodology may not be
applicable outside the time window (midnight) [92]. Finally,
incorrect estimation of wave speed to calculate TDoA will
affect the localizing accuracy.

Mounce et al. [73] proposed pattern matching and asso-
ciative artificial neural networks for water distribution time
series data to identify anomaly and classify its event type.
The primary goal was to test the applicability of pattern
matching in the domain of leak detection. Data collected
from different sensors are first processed so that they can be
compared. Key variables for different event type need to be
identified, and profiles from past events must be placed in
the library. For every new incoming data, a similarity-based
search will be performed so that similar-shaped profiles of
different amplitudes are matched. If the matched is over a
given threshold, the user will be alerted.

However, such a methodology requires a vast amount of
historical anomaly data to build the knowledge or library.
It also requires a certain level of expertise to extract pro-
files that are indicative of different events. Most importantly,
Mounce et al. [73] mentioned that overall performance was
not as good as using outlier detection based methods for
WDN time series data.

Tao et al. [18] suggested the idea of using an artificial
immune network to detect burst. The main drive was to test
the applicability of artificial immune network that has been
successfully applied in other fields. In this work, multi-level
ANN was used. The first level was to identify the occurrence
of a leak and the second level was to estimate the magni-
tude and location of leaks. In the paper, the methodology
was described in four steps, data collection, data processing,
features extraction and training of the classification model.
After the artificial immune system network is established,
it requires further calibration through other burst data until
accuracy meets a satisfactory level. Once the network is done,
the location of the burst is identified through the principle of
nearest neighbors.

The prerequisites of such methodology are a well cali-
brated hydraulic model and a vast amount of historical data.
The lack of such prerequisites will significantly hamper the
accuracy of this methodology. In addition, the methodology
cannot detect small leak events as demonstrated in the first
case study [18]. The localization accuracy is also influenced
by the placement of sensors. The result can only suggest the
possible leak zone. Therefore, requiring a further inspection
to locate the exact leak point.

C. CLUSTERING
This type of approach belongs to the unsupervised method-
ology as clustering does not require knowledge of all leaks
for a practical application of algorithm [74]. The idea of this
category is to divide the WDN or data into different clusters.
It is followed by adopting another strategy to identify the
possible leak zone or leakage. Wu et al. [75] motivation
were to develop an unsupervised clustering based method

that detects bursts inside a DMA with multiple inlets and
outlets. Their leak detection methodology consists of two
steps. The first step was to identify outliers from all data.
The second step was to differentiate the leak from other types
of outliers. Data from a specific time in a consecutive time
series was extracted to form new data series and transformed
to reduce variation. Clustering of vectors was then based on
evaluating similarities; a vector is considered an outlier if it
does not belong to any cluster. In their paper, the clustering
algorithm adopted by Rodriguez and Laio [76] is clustered
by fast search and density peaks. Once outliers are identified,
burst identification is carried out by comparing outliers with
mean of vectors.

mean = (m1,m2,m3, . . . ,mn) (7)

where n is the number of the flow meter in a DMA, mi is the
mean value of column i in a detection matrix where an outlier
is detected, and the outlier is defined as

x = (x1, x2, x3, . . . , xn) (8)

Wu et al. [75] suggested if x-mean was more than 0 with
n number of anomalously large element then it was due to
warm/sunny weather or festive season. If x-mean was less
than 0 with 0 number of anomalously large element then it
was due to sudden cold/wet weather. If outlier belongs to
neither of the categories, then it was considered as a leakage.

Although clustering excludes the prediction process, it still
needs a large amount of historical data to generate a daily
series. Secondly, Wu et al. [75] extracted data at a spe-
cific time where variation in flow is at minimal (6 am in
the morning). It makes their method only applicable in the
morning [92]. In addition, such a method is unreliable when
daily flow changes significantly due to factors such as sea-
sonal change [17]. The comparison of x-mean is also not
exhaustive enough. Mean vector calculated cannot reflect the
overall variation of flow measurement with insufficient data.
It also does not take into account unexpected water demand.
As demonstrated [75], large consumers increased the demand
unexpectedly and were classified as a leakage event.

Wu et al. [17] then extended his work to address issues in
his proposed methodology [75], namely, to reduce demand of
historical data to omit data cleaning process and to account
for weather changes, festivals and periodic changes in water
demand. The essence of the methodology remained the
same that utilized the clustering algorithm by Rodriguez and
Laio [76], But the distance measurement was changed to
cosine similarity instead of Euclidean distance. As explained
by Wu et al. [17], when events such as weather changes,
festivals are reflected as normalized vectors, they usually
have an almost similar angle as vectors from similar time
frame from different seasons with higher amplitude. As such,
cosine similarity will be able to classify them as the same
cluster, thus reduces the number of false alarms.

Although Wu et al. [17] reduced false alarm caused by
weather changes, festivals and periodic changes in water
demand, they are still unable to address the issue caused by
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unexpected water demand. In addition, whether this method
can detect small burst remains unknown. As compared to the
previous methodology [75], the true positive rate did not have
any improvement while the false positive rate has a slight
improvement.

Zhang et al. [77] proposed to use multiclass SVM to
improve the effectiveness and efficiency of leakage detection
in large-scale WDN. Their methodology began with divid-
ing the network into several leakage zones using k-means
clustering. Each zone was labeled as a multilevel category
label for multiclass SVM.Monte Carlo method was then used
to generate leakage events that were analyzed by hydraulic
model simulation. The results of the leakage event were then
used as training samples. The trained multiclass SVM can
identify likely leakage zone according to field observed flows
and pressures. As SVM is a binary classification problem,
Zhang et al. [77] used one against one method for multi-
class classification that involves training of multiple SVM
with training samples from different categories. Although
Zhang et al. [77] rely on a supervised method to detect the
leak zone, it first clusters theWDN into different clusters thus
it belongs to the clustering cateory.

The drawback of this method is the number of clusters to
divide the network. As the choice of initial cluster is random
and if relatively isolated points are chosen, it will cause a
big impact on the clustering classification. Moreover, there
is a user’s dilemma in choosing the number of clusters. More
clusters would mean higher localization accuracy but would
have the possibility of more suspected leakage zones. By hav-
ing more clusters, the user has to train more SVM models
causing higher computational cost. Furthermore, since this
method only identifies the possible leak zone, other methods
will need to be used to identify the exact leak location.

Soldevila et al. [40] proposed a mixed model based and
data-driven approach for leak localization in water distri-
bution networks to avoid complications faced when using
model-based leak detection method. The hydraulic model
using EPANET hydraulic simulator was modeled [40]. The
model was assumed to represent the WDN after the cali-
bration. The model was then used to generate data in the
residual space for each possible fault and different operating
and uncertainty condition. Nodes that leak had a similar effect
on the pressure sensors were grouped as the same class. Then,
the data were used as training data for the classifier which is
the K-nearest neighbors.

Soldevila et al. [54] then proposed a Bayesian classifier
for leak localization in a water distribution network. This
methodology was built on the earlier methodology whereby
a hydraulic model has to be built. This data was then
used to calculate probability density functions. In the online
stage, Bayesian classifier provides the time-dependent poste-
rior probability of every possible leak. The only difference
with the earlier methodology is that a Bayesian classifier
was used. The results showed that the Bayesian classi-
fier is more accurate than the previously used K-nearest
neighbors.

The issue with both methodologies [40], [54] is they are
based on too many assumptions that may not hold for real
systems. Soldevila et al. [40], [54] assumed that pressure sen-
sors are installed in inner nodes of the network, the hydraulic
model is perfectly tuned, and leaks only appear on the net-
work nodes. Firstly, the methodology cannot be used without
pressure sensors. Secondly, the hydraulic model cannot be
modeled perfectly due to unknown parameters. Thirdly, leaks
can occur on pipes instead at the nodes. Such a method can
only suggest a possible leak zone near the identified leaking
node and other methods will have to be used for pinpointing
the exact leak location.

Rajeswaran et al. [78] proposed a graph partitioning algo-
rithm for leak detection in water distribution network capable
of localizing the leak. Their motivation was to improve leak
detection rate in a vast network. The idea [78] is to divide
the water network into smaller networks using a graph par-
titioning algorithm. Subsequently, the flow rate (inflow and
outflow) of each subnetwork was measured and compared
using the flow balancing law. If inflow equals to outflow, then
there is no leak. Otherwise, there is a leak.

Rajeswaran et al. [78] assumed that all flowmeasurements
do not have noise and the flow balancing equation will
result in zero without leakage. It is not true as sensors’ data
will have the presence of noise. Thus, there is a need to
establish a statistical threshold for sensors’ error. However,
such implementation will give rise to a false alarm and miss
detection. In addition, this methodology is a very iterative
process and does not seem to be feasible for a large water
distribution network even though the motivation is to improve
leak detection rate in a vast network. Furthermore, since
the methodology relies on flow balancing law, it suggests a
need for a large number of flow sensors. Most importantly,
Rajeswaran et al. [78] did not validate their methodology in
a real system.

D. MODEL-BASED
The model-based method involves the use of mathematical
functions or formulas to represent or replicate the oper-
ation of a pipe network. It can determine the approxi-
mate leakage location by comparing pressure measurement
with their estimation obtained using the hydraulic network
model.

Perez et al. [38] presented a model-based methodology
using pressure sensors. The methodology was built on
the principles of model-based diagnosis and attempted to
enhance fault isolation by using fault sensitivity analysis.
The methodology started with a simulation of possible faults
using a hydraulic model. Perez et al. [38] then computed
the sensitivity-to-leak matrix that contained the theoretical
fault signatures used by the leak localization methodology.
Pressure measurements were collected to generate residu-
als to compare against the theoretical fault signatures of all
potential leaks. Finally, the most probable node that leaks
will be identified. Detailed equations and formulations can
be found in their paper.
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Similar to the papers [40] and [54], Perez et al. [38] also
assume leaks to occur at nodes although leaks can also occur
at pipes. The methodology can only pinpoint the node nearest
to leak rather than the leak location itself. Further inspection
will conduct to locate the exact leak location. In addition, this
method is hard to model and require a lot of simulations and
calibrations.

Adedeji et al. [16] presented a leak detection and estima-
tion algorithm for loss reduction in water network with the
focus of detecting background leakage. The algorithm incor-
porates a leakage model into a water distribution network
hydraulic simulation model to estimate the network flows.
It included leakage outflow at each node and each pipe. The
algorithm began with the loading and reading of the supplied
water distribution network data. Followed by a hydraulic
analysis through the modeling of water network topology and
solving the resulting model using an iterative Newton-based
methodology. The nodal leakage outflow was then computed
and compared with the defined threshold. If the threshold
was not exceeded, then no leakage was reported. Otherwise,
leakage was reported. All leakage flow at each of the pipes
connected to the node was then computed. If the estimated
leakage flow is high, then the pipe is deemed to be a critical
pipe that needs to be repaired.

The main drawback of this methodology is the hydraulic
model, as well as the leakage model, have to be very accurate
before it can be adopted. Moreover, this methodology was
only tested using simulated data.

E. STATISTICAL
This method relies on statistical theory to analyze collected
data to identify a leak [12], [22]. Loureiro et al. [79] pre-
sented a four steps statistical method to detect a leak. The
main motivation was to develop a detection module that is
easy to implement without using a large dataset. The first
step was the collection of instantaneous or high-frequency
flow data with a time step of fewer than 15 minutes from the
existing Supervisory Control and Data Acquisition (SCADA)
or telemetry system. In the second step, data that involves
the detection and correction of anomalies were validated,
cleansed and normalized to a regular time step. In a DMA
with multiple flow meter for inflow and outflow, normalized
data were combined to estimate the network consumption and
continuously large consumers were filtered to allow the focus
of other outliers. In step 3, the methods to detect an anomaly
in the flow time series were employed. Before applying a
statistical method to detect an anomaly, cluster analysis was
done where data were separated into work days and week-
end days and each day data was then split into 96 15 mins
intervals. Loureiro et al. [79] highlighted that splitting data
into different categories would allow more efficient detection
of an anomaly as evidence shown that most DMA displays
a periodic behavior during the day. Since outlier detection
requires a threshold, a ROC curve was adopted to determine
the appropriate threshold. In step 4, methods were applied to
detect different types of anomalous events.

In the study, Loureiro et al. [79] did not take into account
large consumers or unexpected water demand. In such
events, this methodology may classify them as anomaly and
results in a false alarm. The concept as explained by the
Loureiro et al. [79] is dependent on past observation, true
positive and false positive rate. Thus, similar to [57], it will
ultimately rely on the operator’s decision, confidence and
expertise to define the suitable threshold for leakage alarm.

F. TRANSIENT SIGNAL ANALYSIS
The transient signal analysis builds on top of the detection
of the transient pressure wave. Zan et al. [4] motivation was
to develop a cost-effective wireless sensor network for real-
time monitoring, analyzing and modeling of urban water
distribution systems. Zan et al. [4] utilized the joint time-
frequency analysis of the pressure transient signals for leak
detection. The first step was the use of one-dimensional
wavelet transform to remove high-frequency noise on the
transient pressure signal acquired. Short-Time Fast Fourier
Transform (STFT) was then applied to extract the leak
induced features. To minimize the effect of spectral leak-
age, Blackman Window was adopted to choose the optimal
window for the STFT. The spectrogram was then computed
which shows the signal energy and Gabor transform was
used to remove an unnecessary portion of the spectrogram
while the same BlackmanWindowwas used to denoise. After
which, Zan et al. [4] selected the optimal frequency range
for event detection based on the interpretation of spectro-
gram. For the localization of leak, Zan et al. [4] proposed
an energy-based localization approach based on estimates of
distances between known measurement points and unknown
leak. Zan et al. [4] calculated themean intensity, variance and
standard deviation of given distances and linear regression
was applied to model the relationship. The intensity val-
ues from real pipeline leakage were applied to approximate
the distance between sensor nodes and leak and to validate
the relationship formulation. Once the distance matrix was
obtained, sensors were ranked according to scores. The near-
est sensor to the leak has the highest score.

The limitation of this methodology is the detection capa-
bility of the system is dependent on the spectral resolution
of STFT while localization accuracy is dependent on tem-
poral resolution. This suggests that optimal window time is
critical for this system. Moreover, the burst induced pressure
signals can be influenced by background noise or other events
happening in nearby vicinity for a complex network [22].
In addition, high investment cost is required to install a large
number of sensors with high sampling frequency to collect
transient signals [17]. Although negative wave pressure is
useful in the detection of pipe bursts, it cannot detect a
slow/small leak as it does not generate a distinct pressure
reduction signal [12], [55].

Furthermore, by applying a wavelet transform, there is a
possibility that insignificant pressure wave signal can cause
false alarm [55]. Since localization approach is based on the
distance between measurement points and leak, it implies
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that method can only locate the possible leak zone if the
measurements points are far away. Thus, requiring a further
inspection to locate the exact leak location.

Srirangarajan et al. [50] proposed a wavelet-based leakage
detection and localization method which aim to detect and
localize events in a WDNs based on pressure traces gathered
by a dense wireless sensor network. Raw signals were first
de-noised using wavelet de-noising. A four-level decomposi-
tion was then performed on the denoised signal to identify the
transient event. Subsequently, identified transient events are
further classified into true positive and false positive by using
wavelet coefficients and Lipschitz exponents. For the local-
ization of leak, a graph-based search algorithm was proposed
that utilized the TDoA of burst transient at measurement
points. The first step assumed burst occurs at one of the nodes
and a global search was done to find the nearest node where
the leak occurred. The second step performed a local search
around the nearest node to estimate the most probably leak
location.

Although this methodology is quite promising, it was only
tested on data collected over two hours with nine controlled
events. In addition, bursts were emulated above ground and
did not emulate underground pipe burst. Thus, the applicabil-
ity of this methodology on underground pipe burst remains
unknown. As this methodology relies on capturing transient
signal and wavelet transform, it has the same limitation as the
methodology presented in [4] discussed earlier. Localization
of burst is also highly dependent on the correct estimation of
wave speed. From their results, the average localized error
was not accurate enough to determine the exact location of
burst but only the section of the pipe thus requiring other
techniques to identify the exact location of burst.

Kim et al. [80] aim to overcome the three problems in
detection of small leakage: lack of robustness under the
noisy conditions, low accuracy caused by loss of time infor-
mation, and absence of confidence bound. Kim et al. [80]
proposed a leak detection and localization using interval
estimation for the water distribution network. Kim et al. [80]
only adopted the use of pressure values and aims to detect
small leaks by simulating small leak data based on burst data.
First, measured pressure values were filtered by the KF and
were shifted by subtracting the average pressure followed
by the cumulative integral of the shifted one. As explained
by Kim et al. [80], it helped them to visualize the trend of
pressure drop after a leak had occurred. Floor function with
three parameters and curvature function are then applied.
After the occurrence time was obtained, statistical techniques
were then applied to find the segment containing the leak
point with confidence bound.

Although Kim et al. [80] had a low rate of false alarm,
they did not take unexpected water demand into account, and
such occurrence will result in a false alarm. Subsequently,
localization techniques require the system to have at least four
sensors.

The methodology cannot work if only one sensor is avail-
able. If only two sensors are available, no points exist

for verification. If three sensors are available, the confidence
of interval estimation is very low. Again, this method faces
the same limitation as [4] and [50] when it comes to using
pressure drop to detect leaks. Finally, the methodology was
only validated using modified data.

Christodoulou et al. [81] aimed to address the automatic
detection of water losses in WDN through dynamic analy-
sis of time series. Christodoulou et al. [81] proposed using
wavelet change point detection for the detection of anoma-
lies in WDN. The water consumption time series was first
processed macroscopically to identify the time periods of
concern and thenmicroscopically to zoom in on possible con-
sumption anomalies. At the macroscopic level, the original
signal was transformed using a continuous wavelet transform
with Daubechies wavelets. Change-point detection was then
applied, and detected anomalies were then converted into
change point scores.

Change-point detection refers to the identification of
whether a change (or several changes) has occurred in a time
series and the time when such change occurs. Change-point
detection methods may relate to changes in the mean,
variance, correlation, density, or slope of the signal [82].
The change point detection method was not discussed in
detail in [81]. At the microscopic level, the identified major
change points were then examined to confirm the findings.
Such methodology also did not take into account unex-
pected water demand and had not been tested on a real
system. As explained earlier, the use of the wavelet transform
may amplify an insignificant signal affecting the subsequent
analysis [55].

IV. ACCURACY ASSESSMENT
This section will provide a discussion on the accuracy assess-
ment that the authors used to access their algorithms. It is
important to state that not all authors provide a measure-
ment to assess their methodologies. Other accuracy assess-
ments which are useful will also be discussed. From the
surveyed literature, themost commonly used accuracy assess-
ments were the True Positive Rate (TPR), False Positive
Rate (FPR) and Receiver Operating Characteristics (ROC)
curve [17], [27], [57], [75], [79].

In the case of leakage in a WDN, a True Positive (TP)
can be referred to as detection of an actual event taking
place. On the other hand, a True Negative (TN) is referred to
correct identification of no actual event taking place. There-
fore, a False Postive (FP) is a false alarm. Whereas, a False
Negative (FN) is a missed detection. TPR can be referred to
as the percentage of how well can a model identify a true
event. On the other hand, Tue Negative Rate (TNR) may be
referred to as the percentage of how well can a model identify
a negative.

Positive Predictive Value (PPV) is the percentage of correct
identification of true event over all event alarms raised. Nega-
tive Predictive Value (NPV) is the percentage of correct iden-
tification of a true negative over all negative alarms raised.
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TABLE 4. Accuracy assessment used by different authors.

TABLE 5. Example of a confusion matrix.

A visual representation of such terminologies can be seen in
a confusion matrix given in Table 5.

The equations to calculate each of the terminologies is
given as follow.

TPR/Recall =
TP

TP+ FN
(9)

TNR/Specificity =
TN

TN + FP
(10)

FPR = 1− TNR =
FP

FP+ TN
(11)

PPV/Precision =
TP

TP+ FP
(12)

NPV =
TN

TN + FN
(13)

Accuracy =
TP+ TN

TP+ TN + FN + FP
(14)

However, accuracy may not be an optimal indicator as it can
be biased when one class’s proportion severely outweighs the
other class’s proportion. For example, dataset contains data
points for both leak and no leak. The leak only has 10 data
points, but no leak has 1000 data points. If a model identifies
all data points as no leak, it still have a high classification
accuracy of 99%. As such, there are other indicators that
eliminate such biases such as F1 score, Cohen’s Kappa, g-
means, Matthew Correlation Coefficient (MCC), and ROC.

The F1 score is simply the harmonic mean of precision and
recall [83], [84] and is given as

F1− score =
2(Precision∗Recall)
Precision+ Recall

(15)

Cohen’s kappa is a statistical measure on the degree
of agreement between two raters taking into account of
chance [83], [85], [86]. In this case, it can be referred to
how well a model agrees with the ground truth. It ranges
from −1 to 1 where the higher the value, the higher the

TABLE 6. Cohen’s kappa interpretation.

agreement between 2 raters. The interpretation is given as
follow [87].

Cohen′sKappa =
Accuracy− Pe

1− Pe
(16)

where Pe can be calculated based on the confusion matrix.
Since the confusion matrix is a square matrix thus Pe can be
computed as follow.

Pe =

∑n
i=1 [(

∑n
j=1 eij)(

∑n
j=1 eji)]

(
∑n

i=1
∑n

j=1 eij)2
(17)

where e is the element in the matrix and indices represent the
position of the element in the matrix. The first alphabet of
the indices (i) represent the row of the matrix and the second
alphabet (j) represent the column of the matrix. Since it is
a square matrix, n can either be the number of rows or the
number of columns. Using the confusion matrix, the equation
can be simplified into

Pe =
(TP+ FN )∗(TP+ FP)+ (TN + FP)∗(TN + FN )

(TP+ TN + FP+ FN )2
(18)

In the context of binary classification, G-means is the
geometric mean of recall and specificity given as

g− mean =
√
Recall∗Specificity (19)

MCC is a correlation coefficient between observed and
predicted classification [88]. It returns a value of −1 to 1.
A MCC of 1 indicates perfect agreement, MCC of 0 is
expected for a prediction no better than random, and MCC
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of −1 indicates total disagreement between prediction and
observation [89].

MCC =
(TP∗TN )− (FP∗FN )

√
(TP+ FN )(TN + FP)(TP+ FP)(TN + FN )

(20)

A ROC curve is a two-dimensional graph with TPR as the y-
axis and the FPR as the x-axis that gives a visual overview
of how well a classifier perform [90]. The closer the line to
the top left border, the better the accuracy with lower false
positive rate. If the plotted curve is a diagonal line across
the graph, it infers that the classifier has no better odds of
detecting something than a random flip of a coin. In the
case of WDN, some authors established a minimum leakage
threshold by finding the threshold along the ROC curve that
maximizes the TPR at the highest acceptable FPR [57], [79].

To compare with different classifiers or different parame-
ters used in the same classifier, one can merely plot the ROC
curve and calculate the AUC. The larger the area, the better
the classifier. The AUC can be approximated by the use of
trapezoidal rule [91] given as

AUC=
1x
2

[f (x0)+2f (x1)+ . . .+ 2f (xn−1)+ f (xn)] (21)

where 1x is the size of each partition.

V. RESULTS BY PROPOSED METHODOLOGIES
This section presents the results tabulated by different
methodologies. The results include the accuracy, the time
taken to detect the event and the rate of false alarm.
As methodologies were applied using different case studies,
a direct comparison between these methodologies is illogical.
Therefore, the discussion on each of their results will be
performed individually.

As discussed earlier, water is a precious resource which
should be conserved. Therefore, a good detection algorithm
should have, 1) a high detection rate, 2) short detection time
and 3) low false positive.

Jung and Lansey [68] achieve high accuracy with low false
alarm but detection time for most events were more than two
hours. Localization accuracy achieved by Karray et al. [69] is
unreliable as the methodology was tested on a small testbed.
Romano et al. [57] obtained around 80% accuracy with and
up to 10% FPR. Two of the events were detected after the
thirteenth hour. Kang et al. [27] had an extremely good detec-
tion and localization accuracy. But results were validated on
data collection at midnight. Tao et al. [18] only achieved
an accuracy of 48.3% when the proposed methodology was
applied to historical data. Wu et al. [17], [75] can only
achieve an accuracy of 71.43% and identifying the possible
leak zone. Zhang et al. [77] had a high detection rate but
did not include any localization accuracy. On the other hand,
Perez et al. [38] had an approximate 300m localization error.
Loureiro et al. [79] used different outlier detectionmethod on
different time windowwith results presented in a range. From
their results, using a larger time window generally achieved

a better accuracy and lowered false positive rate. However,
the false positive rate remains rather high.

Zan et al. [4] and Srirangarajan et al. [50] achieved a
100% accuracy rate with rather good localization accuracy.
Although Srirangarajan et al. [50] had a 10% FPR, it can
be argued that an FP is always better than an FN. How-
ever, they [4], [50] tested their methodology through engi-
neered events and may have different results during a real-life
event.

VI. DISCUSSION
As discussed in Section III, most of the proposed methodolo-
gies have the following limitations.

1) Not validated in real system data or require more inves-
tigation for different types of operating conditions;

2) Unrealistic assumptions (such as pipe roughness coef-
ficients and other system parameters are known with
certainty);

3) Unexpected water demand;
4) Emulated burst instead of a small leak;
5) A large number of sensors required;
6) Localization of leak is not accurate enough.

Trying to overcome these limitations is no easy task, and
the uncertainties and complications that come with it will be
described as follow.

Limitation #1 appears easy to solve since it only revolves
around the different type of fault scenario with different oper-
ating conditions to be decided by the researchers. Although
water utility management personnel can allow a researcher
to create a test event, they will not create a real leak in
an existing pipeline due to the risk and cost involved. Fur-
thermore, they will not allow any experiment to disrupt the
entire water pipelines. However one should always attempt
to validate their algorithms against engineered test events
and historical dataset. By validating an algorithm against
engineered test events, it proves the validity and practicality
of the proposed algorithm. By validating against the historical
dataset. it proves the reliability of their methodology if they
can detect historical events.

The main issue with Limitation #2 is the inability to per-
form modeling if no assumptions can be used in model-based
methodologies. To avoidmaking unrealistic assumptions, one
can attempt to use data-driven methods. The most attractive
characteristic of the data-driven approach is it does not need
any specific in-depth knowledge about the system. Although
the data-driven approach has several disadvantages, they can
be solved orminimized.Methods such as cost-sensitivemeth-
ods [93], [94] or data sampling methods [95]–[97] have been
employed in other domains to solve minority data issues.
Thus it is worthwhile to apply such methods to solve or
minimize the issue of minority data in WDN.

If data-driven methods are used, it is of utmost impor-
tance that data integrity is high [98], [99]. Unfortunately,
during the data collection phase, one will always encounter
missing or anomaly data caused by noise or sensor’s
fault [100], [101].
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TABLE 7. Detection time by different methodologies.

TABLE 8. Accuracy of detection by different methodologies.

Missing data can be estimated using mathematical and
statistical methods. For example, the arithmetic mean,
inverse distance weighting, regression-based analysis meth-
ods, kriging estimationmethod, and gamma distribution func-
tion [102]. One can also delete all records with a missing
value [103]. However, by removing the entire record, there
lies the possibility of removing useful training data.

The noisy data can be handled in three different ways [104].
They are namely: 1) robust algorithm insensitive to noise;
2) removing noise using filtering methods or using out-
lier detection techniques [105], and 3) correcting noisy
instances. In the detection of sensors’ fault, there are

mainly three approaches. They are namely: knowledge-
based, measurement aberration detection and model-based.
The knowledge-based approach relies on qualitative model
handling using heuristic reasoning. The measurement aber-
ration detection method examines the output of a single
sensor for indications of faults. Model-based fault detection
relies on analytical redundancy in the form of dedicated
observers [106].

However, to achieve an accurate classification or predictive
model, a large amount of data is unavoidable [18]. Moving
towards Industry 4.0 or an Industrial Internet of Things era,
the amount of data may not be a concern in the near future.
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TABLE 9. Rate of false alarm by different methodologies.

Therefore, data-driven methods can be seen as the optimal
solution in the near future.

Total water demand can be explained as a sum of water
demand from different aspects [107] given as

DT = DCon + DVol + DUnc + DL (22)

where DT is the total water demand. DCon is consumers’
water demand from controlled orifices (opening degree is
controlled by customers depending on a maximum required
demand over time and pressures in system, example showers,
washbasin). Here, DVol is the demand of volume controlled
orifices (orifices on/off status depends onwater storage filling
levels, example bathtub, industrial process tank), DUnc is
the demand of fire hydrants, sprinklers (maximum opening
degree is set during an event to have the demand allowed by
pressures in the system) andDL is the demand of uncontrolled
orifices attribute to leaks [108].

Assuming unexpected water demand comes only from
industrial process plant when they need a large amount of
water due to a large order from a customer and during an
emergency such as firefighting. Then the unexpected water
demand can happen in DVol and DUnc . If a city is partitioned
into an industrial estate and housing estate then flow meters
installed in the industrial estate can help to identify unex-
pected water demand from a process plant. However, this
method will require a lot more flow meters to be installed
along pipes that can be too expensive to identify a false alarm
due to unexpected water demand. To differentiate between
a firefighting incidence and a burst from a fire hydrant, one
can establish a time window in which the maximum flow
is allowed. However, if a burst occurs, it will only raise the
alarm after the time window has passed which may not be
efficient. These are the complications from just considering
two unexpected water demand. Although researchers [22]
mentioned that a low FPR might be more important than
low detectable burst size, a false alarm is still better than a
missed detection. As a result, it may be negligible to include

unexpected water demand into the equation when developing
an algorithm when the rate of unexpected water demand
is low.

Background leaks are defined as losses below around
500 liters per hour [14], [121]. Thus, the cause of limitation
#4 may be due to the fact that proposed methodologies are
not reliable enough to detect small leaks.

If one assumes a uniform distribution of leakage along a
pipe, then background leak can be model as [16], [109]–[112]

LB =

{
Bk lk (Pk )ak , Pk > 0
0, otherwise

(23)

where LB is the background leak. Bk is the pipe parameter
which is dependent on pipe characteristics and influenced by
external factors.

Giustolisi et al. [111] tested the range of Bk from 1×10−8

to 2 × 10−9 and 1 × 10−6 to 2 × 10−7 for two different
networks. In another study, Giustolisi et al. [112] adopted a
value from 1 × 10−8 to 4 × 10−8 for four different DMA.
Laucelli et al. [113] adopted Bk of 1.073×10−7 for a smaller
network in Italy, Bk of 7.285 × 10−9 for newer part of a
bigger network in Italy and βkof 1.457 × 10−8 for the older
part of the same network. Adedeji et al. [16] assumed the
value of 2 × 10−8 for in their study. Here, lk is the length of
pipe, Pk is the average pressure in the pipe computed as the
mean of the pressure values at the end nodes of the kth pipe.
ak are the leakage model parameter which ranges from
0.5 to 2.5 used by different authors [114]–[117], but
Lambert [115] and May [116] suggested that ak should be
around 1.5 for background type leakage. If the background
leak is modeled as a leakage model, the user will face the
uncertainty ofBk .Moreover, small leaks can be easilymasked
by sensors’ noise. Thus, planning medium-long term inter-
ventions for asset rehabilitation and pressure management
can be an alternative to reduce background leakages [123].

To address Limitation #5, sensors should be installed at
locations that maximize localization accuracy [118]–[120].
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The performance of leak localization is highly dependent on
sensor number and placement within a DMA [41]. Thus,
sensors’ placement becomes an optimization problem to be
solved at the sensor placement stage where there is a trade-off
between a number of sensors and subsequent cost [41]. Lim-
itation #6 can worsen since localization accuracy is highly
dependent on the sensor number and placement within the
DMA.With an optimized minimum number of sensors, users
can identify a smaller possible leak zone instead of the exact
leak location.

VII. CONCLUSION
Water is a precious resource that needs to conserve in the
ecosystem. Any wastage through pipe leakage should be
minimized. In this paper, different technologies for water
pipe leakage were discussed. Proposed methodologies over
the past five years with their limitations were also reviewed
and discussed in details. The uncertainty involved and sug-
gestions were also provided. The main issue in the detection
of water leakage is the stochastic nature of water demand
that is influenced by many factors such as seasonal change
and consumers’ habits. The limited number of sensors can
further hamper the implementations of detection algorithms.
Although results by several different authors display their
prowess in leakage detection, achieving a high leakage local-
ization accuracy remains a challenging task.
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