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ABSTRACT In order to forecast the traffic flow more precisely, a novel hybrid model is proposed with
multiple sources of traffic data in the spatiotemporal dimension. In the practical application of the proposed
model, multiple sources of data are captured and fused from five toll collection gates and one remote
microwave sensor based on the correlation analysis. A hybrid model, including the structure of stacked
autoencoders and long short-term memory, is used. Stacked autoencoders are used to extract the spatial
features. Long short-term memory is used to learn the temporal features. The comparisons of the hybrid
model, non-hybrid model, fused data, and non-fused data are provided. The effectiveness of the hybrid
model and the fused data demonstrated the best performance. The fused data presented more effective
forecast, which encourages that the forecasting model could include more data source to improve the
accuracy. Meanwhile, the selection of a suitable model should also be studied for better forecasting result
in consideration of difference feature of the data source. The high-accuracy prediction could contribute to
further traffic control and prompt the development of the intelligent transport system.

INDEX TERMS Fusion, hybrid model, microwave sensor data, traffic forecasting, toll collection data.

I. INTRODUCTION
The accurate and reliable traffic forecasting is highly desired
for travelers, transportation agencies and public [1]–[3].
However, it is hard to precisely predict the traffic flow con-
sidering the complexity of real situation with various distur-
bance [4]. The successful prediction of traffic information
firstly relies on the quality of traffic data obtained onsite [5].
Inductive loop detector (ILD) is the most common device
installed on freeway to capture the information of volume [6].
But more and more reports indicate that data captured from
current ILD are deviated from the ground-truth [7], [8].
Without interference of traffic, non-intrusive traffic detectors
are further developed such as remote traffic microwave sen-
sor (RTMS) and traffic video detector equipment (TVDE).
Fig. 1 shows the situation and the features of three types of
detection equipment. Studies have confirmed the accuracy of
these data is higher and with more detailed records than that
of ILD [2], [9], [10].

Toll collection data is a reliable data source compared to
the measured traffic data [4]. Especially in China, charg-
ing system has been fully-established in the closed large-
regional road network to operate freeway. Huge amounts of
toll collection data, in which every vehicle information with
entrance/exit time/place have been accumulated. The precise
origin and destination information for each vehicle driving
on the freeway are closed related to the traffic flow tendency
within every road segment [11].

Neural networks and regression models are widely used in
prediction of traffic flow and travel time recently [12]–[14].
The combination of the fast-developed deep learning-based
algorithm and massive data accumulation acquired via the
ILD/RTMS/charging etc. in the daily operation of freeway
can obtain more accurate prediction results. However, it is
not an easy task to fuse multiple sourcing data. Each kind
of data source has its own characteristics. It is worth explor-
ing the fusion technology for predicting more accurately in
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FIGURE 1. The geometric map of the Xi’an RaoCheng freeway and the detection equipment in target
section. The traffic condition can be captured by (a) inductive loop detector(ILD): inaccuracy and high
maintenance costs, (b) microwave vehicle detector(MVD): high accuracy and high price, (c) traffic video
detection equipment(TVDE): high accuracy but occasional failure.

consideration of various data characteristics. In this paper,
we proposed a novel hybrid model to predict traffic flow
based on deep learning-based algorithm to fuse spatiotem-
poral traffic information. A hybrid model combined stacked
autoencoders (SAEs) and long-short term memory (LSTM)
are proposed with data fusion. The data collected from the
toll collection was fed into SAEs model to extract the spatial
characteristics, and the data collected from RTMS and TVDE
are fed into LSTM model to learn the temporal features.
The combined spatiotemporal features are utilized to predict
traffic volume.

This paper is organized as follows: Section II introduces
related work of recent deep learning-based algorithm using
in traffic flow prediction. A hybrid traffic forecasting model
are proposed and provided in Section III. Section IV provides
details of experimental results and the performance evalua-
tion of the proposed model. Section V presents a discussion
and concludes the paper.

II. RELATED WORK
With the rapid development of technology recently, the appli-
cation of deep learning approaches to the prediction of traffic
flow has received a great deal of attention from both investors
and researchers [2], [4], [5], [15]. Multi-dimensional data
sources and various models have been proposed to forecast
traffic flow and have achieved higher accuracy. We summa-
rized previous research on traffic flow prediction combin-
ing or not combining multiple data and models.

The short-term traffic flow prediction has been conducted
since the 1980s [15]. There are numerous different prediction
methods that have been used for traffic volume prediction,
such as the Kalman filtering [15], [16], the support vector
machines (SVM) [17], the autoregressive integrated moving
average (ARIMA) [18]–[20], and the k-nearest neighbor [21].
The accuracy of prediction is always affected by many fac-
tors such as upstream flow situation, weather condition and

so forth. The underlying correlation to predict traffic flow
might possibly be improved with the rise of the deep learn-
ing. Huang et al. [4] first applied a deep belief network
(DBN) to capture the spatial-temporal characteristics in intel-
ligent transportation system (ITS). Recurrent neural networks
(RNNs), including a feedback from previous state to current
state, are powerful model for dynamics scenarios [22], [23].
Fang et al. [24] converted spatiotemporal information into
one-dimensional data using RNN. As for LSTM, a variant
of RNN, integrated memory units to disentangle vanishing
and exploding gradients in conventional RNNs, so it can
capture longer features for time series forecasting [2], [25].
The LSTM model with weather conditions highlighted the
significant improvements attainable of multisource data [8],
[26], [27]. Ali and Mahmood [28] synthesized that LSTM
is best suited for temporal traffic data and SAEs can handle
non-liner spatial data effectively. Table 1 shows the review of
different models for prediction.

The SAEs always achieve excellent performance on
extracting deep features [30]. Duan et al. [31], [32] at
first used temporal data to predict and then applied SAEs
model with spatial-temporal data to achieve better accuracy.
In addition, they also evaluated the performance of dissim-
ilar SAEs, which indicated that combining multiple mod-
els with different parameters is of significance for precisely
predicting [32].

Now, with the increase of various data sources and deeply
understanding of the characteristics of deep learning models,
hybrid models are of great potential in the prediction of traffic
flow. Wu et al. [33] established a hybrid model highlighted
the advantages of various deep learning architectures for
traffic forecast. The SAEs model and LSTM model have
been combined to forecast stock price, in which SAEs is
applied to reduce dimensions and LSTM is utilized to forecast
future stock prices [30]. In addition, the convolutional neu-
ral network(CNN) extracting the spatial features and LSTM
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TABLE 1. Literature of models for predicting various traffic status.

capturing the temporal information are combined for predict-
ing [33], [37]. In this paper, hybrid model is also studied for
better prediction of the traffic flow with multiple sources of
data.

III. METHODOLOGY
The traffic condition of target section is inevitably influenced
by spatial or temporal information extracted from related his-
torical data. In what follows, we are interested in mining the
spatial characteristics from upstreamToll Gate(TG) entrances
data, for which we choose the SAEs structure, and extracting
the temporal characteristics within the calibrated data(CTR)
by TVDE data and RTMS data, for which we choose the
LSTM structure.

A. DATA DESCRIPTION
The raw dataset used in this paper was collected from TGs,
TVDE and RTMS on Xi’an RaoCheng freeway in Shaanxi
Province. Charging data of TGs are selected the inner direc-
tion with three traveling lanes in this paper. One of busiest
arterial roads segment is selected with more than 50,000 vehi-
cles passing this road segment per day. The nearest upstream
TG, named Chang An Station, is one of the busiest TG in
Shaanxi Province. The selected cross-section (K53+950) is
located between Chang An Station and Xi Gaoxin Station.
Fig. 2 shows the correlation between target traffic flow data
and upstream TGs entry data. It can be seen that there is
great impact when it is within a certain range from the target
section. From the correlation analysis, other four upstream
TGs, named Yan Tabei, Qu Jiang, Fang Zhicheng and Xiang
Wang, are considered to be contributor to estimate traffic flow
at the cross section. Besides, traveler who is going to pass
the target section would choose another direction if he or she
wanted the shortest path or least cost.

In order to process the original data into candidate data that
could be feed into model straightly, we have to preprocess
the data first. The first step is to filter out the outliers by
the interval between exit time and entrance time. The sec-
ond step is to compute the traffic volume from the original
statistical record by the entrance time. The section volume
data has been calibrated by RTMS and TVDE. The Shaanxi
Province Traffic Management Bureau in China ensures that
the calibrated data is highly accurate as they are used for
monitoring. the traffic flow is aggregated into 15, 30, 45,
60 minutes from the detector, respectively. At the same time,

the same preprocessing is carried out for each toll gate.
Both the target section point and involved upstream TGs are
marked on the indicating map of Xi’an RaoCheng freeway
in Fig. 2. Data are extracted from April to May, 2018 as the
sampling dataset of this experiment. The data were divided
into two subsets: the first six weeks data employed for train-
ing, and the remaining data about two weeks employed for
testing.

B. STACKED AUTOENCODERS
An autoencoder(AE) is a neural network (NN) that attempts
to extract the most prominent features of input data. That is to
say an AE could reconstruct its input with less characteristics.
Three AEs depicted in the top of Fig. 3. Every AE has a three-
layer structure to reconstruct input layer, which contains
encoder part and decoder part [34]. The encoder part is a
mapping from input vector x to hidden representation h, and
the decoder part maps hidden vector h into reconstruction r.
The input vector x has same number units with reconstruction
vector r. After non-linear operation of an AE, the features
among the input data can be obtained in the hidden layers.
The nonlinear transformation is given by:

h(x) = f (w1x+ b1) (1)

r(x) = f (w2h(x)+ b2) (2)

where x represents the input vector, w1 and w2 are the encod-
ing weight matrix and decoding weight matrix, respectively.
b1 and b2 are the encoding bias vector and decoding bias
vector. h(x) is the output of encoding layer. r(x) is the output
of decoding layer.

A stacked autoencoders (SAEs) model is constructed by
multilayer autoencoders to capture significant features from
massive data, which can be used to convert high-dimensional
data to low-dimensional codes. The first layer is input layer
for attaining training set. After the first layer is determined,
the hidden layer of the kth AE is considered as the input
of the kth hidden layer. According to this method, a SAEs
model could be constructed hierarchically. The structure of
SAEsmodel can be seen in Fig.3.Meanwhile, two procedures
are included in training a SAEs model: pretraining and fine-
tuning [31]. Pretraining trains every AE by the greedy layer-
wise unsupervised learning algorithm to optimize the weights
of each layer while fine-tuning adjusts all the parameters in
the SAEs model.
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FIGURE 2. The geometric map of the Xi’an RaoCheng freeway in this figure. The
location of target section and five upstream toll gates are marked. The correlation
analysis between the traffic flow and those upstream toll gates are provided in
the scatterplot matrix.

C. LONG SHORT-TERM MEMORY
In traditional neural networks, there are only fully connected
layers from input layer to hidden layer or from hidden layer
to output layer, but no connections among the nodes in the
same layer, which encompass many parameters and fail to
utilize time series message. Conventional RNNs are afflicted
with vanishing or exploding gradients when the number of
time lags is large [25]. LSTM integrated memory units to dis-
entangle vanishing and exploding gradients in conventional
RNNs [2].

A typical structure of LSTM cell can be seen in Fig.4.
A LSTM cell contains three gates: the input gate, the hidden
gate and the output gate. These gates are more effective to
determine what information to remove or reserve. The mem-
ory units play a significant role in deciding when to forget
previous hidden states and iteratively update hidden states

than traditional RNNs. The mathematic model of LSTM [2]
can be conducted by the equations shown as follows:

It = δ(WiXt + RiHt−1 + bi) (3)

Ft = δ(Wf Xt + RfHt−1 + bf ) (4)

Ot = δ(WoXt + RoHt−1 + bo) (5)

C̃t = tanh(WzXt + RzHt−1 + bz) (6)

Ct = C̃t � It + Ct−1 � Ft (7)

Ht = Ot � tanh(Ct ) (8)

where It , Ft and Ot are the output of input gate, hidden gate
and output gate, respectively; Wi, Wf , Wo, Wz, Ri, Rf , Ro, Rz
are the coefficient matrixes, which connect input and three
gates; C̃t stands for the input state; Ct stands for the updated
state or cell output; Ht is the hidden layer output; δ() and
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FIGURE 3. The SAEs model is consisted of three parts: (a) The input of network is
the data of upstream toll gates; (b) Each layer of network is pre-trained with the
greedy layerwise unsupervised learning algorithm; (c) The output of network are
the extracted spatial features.

FIGURE 4. The structure of LSTM model. The input of model is the calibrated data
by traffic video detection equipment data and microwave vehicle detector data,
and the output of the model are the extracted temporal features.

tanh() are the activation function; and the scalar product of
two vectors or matrixes is denoted by �.

D. HYBRID SAEs-LSTM ALGORITHM
The traffic state has a distinct dependency on spatial or tem-
poral information, whichmeans the current traffic state would
be affected by the state several minutes earlier or upstream
flow. It is hypothesized that the spatial features can be learned
by SAEs model and the temporal characterizes can be cap-
tured by LSTM in this paper. Based on this hypothesis,
we proposed a novel hybrid deep learning model named
SAEs-LSTM to forecast traffic flow of urban expressway.
To this end, a SAEs model is utilized to reduce the dimension
and capture the spatial features of TG data, and a LSTM
model is exploited to excavate temporal correlation from
the calibrated data by traffic video detection equipment data
and microwave vehicle detector data. A graphical illustration
of SAEs-LSTM has been shown in Fig. 5. A merge layer
takes as input a list of tensors, all of the same shape, and

returns a single tensor which has the same shape as input
tensor. An adding merge layer, which adds SAEs output to
LSTM output as the input layer of regression layers, is used
to achieve spatial-temporal features fusion. The regression
layers consist of three fully connected layers to predict traffic
flow. In this experiment, we merged two tensors into a single
tensor. The merged layer can be formulated as:

Ir = SAEso ⊕ LSTMo (9)

where SAEso, LSTMo is the output layer of SAEs and LSTM;
⊕ denotes the add merge function that add the results of two
models; Ir is the merged layer or input layer of regression
layers. The output in the ith hidden layer can be written as:

Hri = relu(WriIri + bri) (10)

where Hri, Wri , Iri, bri are the output, the weight matrix,
the input, the bias of the ith hidden layer; relu is the activation
function and defined as follows:

f (x) = max(0, x) (11)
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FIGURE 5. The structure of hybrid model, which includes a LSTM model to capture
time characteristics from the calibrated series data and a SAEs model to learn space
features from upstream toll gates data.

IV. EMPIRICAL STUDY
A. IMPLEMENTATION
In order to build our proposed prediction model, we selected
two months of data for this study, in which 47 days of data,
from 04/01/2018 to 05/17/2018, are used for training and
14 days of data, from 05/18/2018 to 05/31/2018, are used for
testing. The prediction experiments were adopted in a similar
procedure to the most common used traffic flow prediction.
we aggregated the traffic flow into 15-min, 30-min, 45-min
and 60-min intervals for predicting. Although the window
size horizon is changing with the change of intervals, it is
maintaining 6 hours, which means that 6 hours historical data
are used to perform the traffic flow prediction of the next few
intervals. For example, the traffic flow at (7:15AM, 7:30AM,
7:45 AM, 8:00 AM) are to be predicted if the current time
is 7:00 AM when the prediction horizon is 15 mins. The
following flow data would be predicted by analogy.

The proposed hybrid model, SAEs-LSTM, was compared
with single LSTMand SAEs onmulti-source data. The details
of our hybrid model on 45-min interval, which are divided
into feature extracting layers and regression layers, are listed
in Table 2. Besides, slight modifications have been made in
the hybrid model and single model on dissimilar sources to
make the network achieve the best performance. As an exam-
ple, the LSTM units in hybrid model are [6, 18, 10] when the

TABLE 2. The parameter settings on 45-min interval.

input data is CTR data, while they are [6, 20, 10] when the
input data only TG+CTR data on 30-min interval. The final
effective parameters of hybrid model are achieved by grid
searches. The traffic flow as input data are normalized to be
between 0 and 1 for training hybrid model and single models,
and the output is the true traffic flow. All neural network
models are constructed upon Keras 2.2.2 using Tensorflow
1.9.0 for backend.

B. PERFORMANCE INDEX
In order to evaluate the performances of the proposed models
for traffic flow prediction, three performance indexes are
adopted to measure the error between prediction and mea-
sured data: mean absolute error (MAE), root mean square
error (RMSE) and mean absolute percentage error (MAPE):

MAE =
1
n

n∑
i=1

|yi − y′i| (12)

RMSE =

√√√√1
n

n∑
i=1

(yi − y′i)
2 (13)

MAPE =
1
n

n∑
i=1

|
yi − y′i
yi
| (14)

where yi is the ith actual value, while y′i is the ith fore-
cast value. From the mathematical formulation (), it can be
discovered that MAE and RMSE are more sensitive to raw
traffic flow data on different intervals. In order to overcome
the sensitivity raw data on different intervals, the input data
has been normalized between 0 and 1. And for intuitive
comparison, the MAE and RMSE have been converted into
the number of vehicles per hour in this paper. Meanwhile,
because MAPE based on percentage errors is less affected by
intervals, we combinedMAE, RMSEwith MAPE to evaluate
the performance more precisely in different conditions.
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TABLE 3. The comparison of different models on various prediction horizon.

C. COMPARISON AND ANALYSIS OF DIFFERENT MODELS
In the experiment, we first compared hybrid models with
single deep learning algorithms on different time-interval.
Table 3 shows the results of proposed SAEs-LSTM model,
LSTM model and SAEs model on the intervals of 15-min,
30-min, 45-min, 60-min, respectively. The results of each
model are the arithmetic average under dissimilar data
sources. The MAE and RMSE in different time-interval have
been converted into hourly volume. Fig. 6 shows the MAPE
of different models. The MAPE results of each model come
from dissimilar data sources(TG+CTR, CTR, TG).

FIGURE 6. The Boxplots of MAPE with different model for traffic flow
forecast. The results are obtained by dissimilar data sources.

From Fig. 6, we can see the MAPE in 15-min are worse
than other time intervals. We all know that short-term raw
data fluctuates greatly than long-term. MAPE represents
relative error between true data and prediction data. The
more MAPE may be produced by small prediction error on
shorter time intervals. Because on the longer time intervals,
the larger the denominator of the formula (14) but the numer-
ator changes little, which means that larger MAPE may be
accompanied by smaller errors. Table 3 also reflects this
fact where the MAPE is lager, but the MAE and RMSE are
smaller on 15-min interval than other intervals. The MAE
and RMSE are increasing as the prediction time intervals
increase, which is similar to the results of previous researches.
It can be found that SAEs is than LSTM in shorter time-
interval, while LSTM is than it in long time-interval. Mean-
while, from the results in Table 3 and the results plotted

in Fig. 6, we can see SAEs-LSTMmodel performs better than
LSTM and SAEs both short-term prediction and long-term
prediction. The averageMAEdecreases by 6.26%, 15.4% and
the average RMSE decreases by 7.08%, 14.3% than LSTM
and SAEs. However, the MAPE decreases by 8.78%, 9.88%,
which seems to be small but means that would produce large
error (approximately 351 vehicles, 395 vehicles) on peak
hourly volume(approximately 4000 vehicles). In a compre-
hensive view, the hybrid model, SAEs-LSTM, outperforms
other models, with the lowest MAE, RMSE and a MAPE
of approximately 9.563%. Therefore, the hybrid model we
proposed makes the results more accurate for traffic flow
prediction. The next section of the survey was concerned
with the effect from dissimilar data sources for traffic flow
prediction.

D. COMPARISON AND ANALYSIS OF DIFFERENT
DATA SOURCES
In this section, three types of data sources, including the
combination of TGs data and the CTR data, TGs data, CTR
data, are used to predict traffic volume in terms of four
kinds of time-interval. The results of dissimilar data sources
on different intervals for traffic flow prediction are listed
in Table 4. Similarly, the results of each data source are the
arithmetic average on different models, and the MAE and
RMSE in different time-interval also have been converted
into hourly volume. Fig. 7 shows the MAPE of dissimilar
data sources. The MAPE results of each source come from
different model(SAE-LSTM, LSTM, SAEs).

It can be seen in Table 4 and Fig.7 that the model with
spatiotemporal information outperforms the model with other
data sources not only on average but also in each time-
interval. The boxplot depicted Fig.7 also shows that the
results of model with CTR data are in close proximity to
model with TGs data and CTR data, but they fluctuate greatly
than the latter data source, which means that the model with
spatiotemporal information obtains higher robustness in pre-
dicting traffic flow. The average MAE of TGs+CTR data
decreases by 14.52%, 23.579% and the average RMSE of
TGs+CTR data decreases by 14.078%, 21.719% than CTR
data and toll gate data, respectively. Furthermore, the MAPE
of TGs+CTR data decreases by 10.014%, 33.151% even
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TABLE 4. The comparison of dissimilar data sources on various prediction horizon.

FIGURE 7. The Boxplots of MAPE with dissimilar data sources traffic flow
forecast. The results are obtained by different models.TG = ‘‘the toll gate
data’’ , CTR = ‘‘the calibrated data by TVDE and RTMS’’.

more than other two kinds of data sources. Specifically,
the advantage of the model combining spatial information
and temporal information in predicting is more obvious from
Fig.9.

E. COMPARISON AND ANALYSIS OF DIFFERENT MODELS
AND DATA SOURCES
The circles, triangles and squares in Fig. 9 are used to repre-
sent different models: SAEs-LSTM, LSTM and SAEs. More-
over, the color of purple, red and orange in the figure indicates
different data sources: TG+CTR data, CTR data and TG data.
We have the following findings by comparing different data
sources and different models at the same time:

1) Purple circles in Fig. 9 represents the hybrid model
based on spatial and temporal information. It is evident from
the figure that purple circles are always in the bottom left cor-
ner on the time interval of 30, 45 and 60minutes, which shows
that hybrid models with spatiotemporal information produce
the minimum error. A similar conclusion that the prediction
values presented by red dashed lines are always closer to the
actual measured data presented by blue dotted lines can be
reached in Fig. 8, which means our proposed models yield
the most accurate results for traffic flow prediction.

2) It can also be found that most of purple shapes are in the
bottom left corner(the minimum error area) of each interval.
The models with TG+CTR data perform better than others
with one single data all the time, which means the models
with spatiotemporal information always yield the least pre-
diction error for traffic flow prediction. But LSTM model
with TG+CTR data shows poor results in longer intervals
(45-min, 60-min). This may be caused by the characteristics
of LSTM model and the decrease of the number of training
set with the increase of time interval.

3) Besides the findings described above, that red circles are
always below the orange circles shows the hybrid model with
CTR data performs better than it with TG data all the time,
which indicates that temporal features contribute more than
spatial information for traffic prediction.

4) In addition, the hybrid model with single data
source or multiple data sources applied for single model may
be transcended by single model based on single data source.
For example, hybrid model with CTR data on 45-min and
60-min interval yield more error than LSTM with CTR data
and SAEswithmulti-source data yieldmore error than LSTM
model with CTR data, which is circled in Fig. 8 by blue
lines. But hybrid model based on spatiotemporal information
always has lowest errors shown in Fig. 9 by purple circles,
which means that proposed model with fusion information
can achieve higher prediction accuracy compared with the
combination of single model with multi-source data or hybrid
model with single data. This method also provides a new way
of thinking about both traffic data mining and traffic flow
prediction.

V. DISCUSSIONS AND CONCLUSIONS
In this paper, we proposed a novel hybrid model to achieve
traffic flow prediction based on the multisource original
traffic data which include spatial information and temporal
information. The advantages of hybrid model combine two
models in consideration of each cons and pros. However,
selecting models is worth studying instead of simply using
more models. The selection of models should be suitable for
the characteristics of the data. In this paper, SAEs can be
used to compress data in spatial dimension and train greedy
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FIGURE 8. 15, 30, 45 and 60 minutes traffic flow forecast for two weeks of hybrid model. The blue
dotted lines represent the actual traffic flow and the red dashed lines represent the prediction results.

layerwise with supervised fine tuning. And LSTM is used
to tackle data in the temporal dimension. The combination
of SAEs and LSTM attained high-dimensional data features
than purely used one. In order to evaluate the performance of
the proposed hybrid model, a cross-validation of multisource
original traffic data and two state-of-the-art models, LSTM
and SAEs, were implemented for comparison with the same
dataset. The numerical results demonstrate that the SAEs-
LSTM hybrid model with multisource original traffic data
always outperforms other models with dissimilar data both

in accuracy and robustness, which shows the effectiveness of
hybrid model for the traffic data forecasting with spatiotem-
poral data.

Other than combination of models, we have also taken time
to investigate the strategy of fused data. Especially in the
practical application of the traffic scenario, multiple sources
are used to capture and report the road state on time. The
forecast of the traffic flow is important both for the road users
and administrator. The contribution of the proposed accurate
forecasting are listed:
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FIGURE 9. The traffic flow forecast errors MAE and RMSE on 15, 30,
45 and 60 minutes. TG = ‘‘the toll Gate data’’, CTR = ‘‘the calibrated data
by TVDE and RTMS’’.

1) The forecasting future traffic flow volume relies on
current traffic flow volume and upstream toll collection data.
The prediction traffic volume could be not only the fixed
cross-section on the road, but also any cross-section on the
road. Those traffic flow data are captured from road that
covers all the vehicle driving on the road. The forecasting
result is more accurate than that captured from the floating
cars.

2) When the emergency happens on the freeway, fast and
effective traffic control is extremely important to rescue.
Avoiding congestion is one of the most prominent tasks
to save life and decrease other influence in the emergency
situation. The more precise result could contribute to more
effective strategy for reducing the congestion time. The
administrator couldmake strategy according to the future vol-
ume on the emergency point from the forecasting model. For
example, it is very valuable and helpful for administrator to
decide which entrances of upstream toll collection should be
shut down. Besides, it is of significance for traffic department
that could release the traffic guidance information to avoid the
extent congestion.

3) In this paper, we extract five TGs to improve the
forecasting. The accuracy of the prediction accuracy maybe
further improved if more TGs involved. However, it will cost
more computation resource. There is trade-off between the
accuracy and the computation time. In this paper, we use
the correlation analysis to pick the more related TG. Large-
scale data could be solved with the development of computer
technology.

In future research, the forecasting on arbitrary cross-
section should be carried out to substitute for the current
inductive loop detector and other detection equipment. The
prediction results can be verified by the video detection
equipment. The underlying connection between the spa-
tiotemporal multiple source data would be further identified.
For example, it would take more time for farther toll collec-

tion to influent on the traffic flow. Moreover, the finegrain
vehicle also could be identified and forecasted with more
details.
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