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ABSTRACT Scientific studies on species composition and abundance distribution of fishes have consider-
able importance to the fishery industry, biodiversity protection, and marine ecosystem. In these studies,
fish images are typically collected with the help of scuba divers or autonomous underwater vehicles.
These images are then annotated manually by marine biologists. Such a process is certainly a tremendous
waste of manpower and material resources. In recent years, the introduction of deep learning has helped
making remarkable progress in this area. However, fish image classification can be considered as fine-
grained problem, which is more challenging than common image classification, especially with low-quality
and small-scale data. Meanwhile, well-known effective convolutional neural networks (CNNs) consistently
require a large quantity of high-quality data. This paper presents a newmethod by improving transfer learning
and squeeze-and-excitation networks for fine-grained fish image classification on low-quality and small-
scale datasets. Our method enhances data augmentation through super-resolution reconstruction to enlarge
the dataset with high-quality images, pre-pretrains, and pretrains to learn common and domain knowledge
simultaneously while fine-tuning with professional skill. In addition, refined squeeze-and-excitation blocks
are designed to improve bilinear CNNs for a fine-grained classification. Unlike well-known CNNs for
image classification, our method can classify images with insufficient low-quality training data. Moreover,
we compare the performance of our method with commonly used CNNs on small-scale fine-grained datasets,
namely, Croatian and QUTfish datasets. The experimental results show that our method outperforms popular
CNNs with higher fish classification accuracy, which indicates its potential applications in combination with
other newly updated CNNs.

INDEX TERMS Deep learning, image classification, image recognition, transfer learning, underwater
technology.

I. INTRODUCTION
With the advancement of technology in modern society, peo-
ple have considerably better exploration and comprehension
of our ocean. Meanwhile, abundant ocean resources, which
are newly discovered, are attracting an increasing number of
explorers worldwide [1]–[4]. As a result of constantly exploit-
ing and utilizing our limited ocean resources, the biodiversity,
especially fish diversity in marine ecosystem, is exposed to a
tremendous threat [5]–[7]. Therefore, effective methods and
techniques should be introduced for detecting and estimating

fish quantitative distribution in situ, such as the image-based
fish classification [8], to provide a good environment to the
fishes, as well as the marine ecology.

Thus far, remote and diver-based videography is used by
an increasing number of marine researchers to collect fish
images in situ [9]–[11]. Traditionally, marine experts must
classify and analyze each image manually, which is time-
consuming while requiring professional ability. Therefore,
feature extraction methods based on image processing tech-
nology have been proposed to classify fish images efficiently.
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In this way, three main features, namely, color-based, geo-
metric, and texture features, have been extensively used for
fish image classification [12]–[18]. Badawi and Alsmadi [12]
attempted to recognize fishes by using color-based features,
which are intuitively easy to be distinguished; however, they
ignored the fact that color features become distorted as depth
and light change, thereby rendering their method less per-
suasive [19]. Meanwhile, shape and texture features, which
can display the outline of fishes, are relatively stable and
insensitive to the aforementioned factors. Thus, these features
can be generally used in recognition. Larsen et al. [17] ana-
lyzed these two features to determine fish classes effectively.
Rova et al. [18] used a deformable template object recog-
nition method to improve the accuracy of texture-based
classification.

Besides, more and more classifiers have also been devel-
oped for fish image classification. Wang et al. [13] attempted
to classify fishes through a two-level codebook learning by
using shrinking coding coefficients. Saitioh et al. [16] per-
formed detailed experiments to prove that a combination
of bag of visual words and geometric features could aid in
obtaining accurate results. Chuang et al. [20], [21] proposed
a hierarchical partial classification algorithm that was applied
to each level of species hierarchy to recognize underwater fish
species. Shiau et al. [22] and Hsiao et al. [23] adopted a max-
imum probability of partial ranking method based on sparse
representation-based classification to identify fish species.
Roberts et al. [8] introduced a machine learning framework,
such as support vector machines (SVMs), as underlying clas-
sifiers [24], [25]. Khotimah et al. [26] used decision tree
algorithm to establish automatic classification of tuna fish.

Despite the aforementioned handcrafted low-level fea-
tures, as well as conventional machine learning tools,
such as SVMs and PCA, convolutional neural networks
(CNNs) composed of only several convolutional and non-
linear layers have shown many advantages on visual
tracking [27], [28], saliency detection [29], and image pro-
cessing [30]–[32]. AlexNet [33] with deep CNNs obtained
the highest classification result in comparison with conven-
tional methods in the ImageNet Large-Scale Visual Recogni-
tion Challenge (ILSVRC) 2012 [34]. VGGNet [35], which
increased the depth of a network, achieved good accu-
racy in the ILSVRC 2014. Meanwhile, GoogLeNet [36]
achieved the highest result in the ILSVRC 2014 because
of its improved utilization of computing resources inside
a network. Thereafter, residual networks (ResNets) [37]
with a depth of up to 152 layers won the first place
in the ILSVRC 2015 image classification task. In 2017,
SENets [38] refreshed the score in ILSVRC, wherein
the top five errors were reduced to 2.251%. In addition,
several enhancements of squeeze-and-excitation (SE) net-
works, such as SE_Inseption_v4, SE_Inception_resnet_v2,
and SE_ResNeXt_v1_50, can achieve better results.

Recent works have also introduced CNN-based meth-
ods to address the fish image classification problem.
Meng et al. [10] designed an underwater drone with

panoramic camera, which used LeNet [39], AlexNet [33], and
GoogLeNet [36] in fish recognition. Qin et al. [40] designed
a deep architecture composed of convolutional layers, spatial
pyramid pooling, and linear SVM classifier to achieve accu-
rate real-world fish dataset recognition.

However, the aforementioned works did not consider that
fish image classification is a fine-grained classification and
that acquiring human-labeled large-scale fish dataset is dif-
ficult. Fine-grained image classification, such as of fish,
dog [41], bird [42], and flower [43] species, remains a chal-
lenging task and more difficult than common image classi-
fication because objects from similar subordinate categories
may have marginal visual differences that are difficult to
distinguish by humans [42].

Several recent works have developed a great progress in
investigation of fine-grained image classification with large-
scale datasets, which benefit from the increasing emphasis
on identifying critical object parts [44]–[48]. Particularly,
bilinear CNNs (B-CNNs) [46] has integrated part localization
into a two-stream deep learning framework and can be trained
end to end.

Small-scale fine-grained image classification remains a
challenging task because CNNs cannot develop professional
skill from limited images, (e.g., only 10 samples per cat-
egory). Furthermore, image distortion occurs when images
have low quality, e.g., Figure 1 from the Croatian fish
dataset [49]. Hence, low-resolution images cannot achieve
ideal classification results. However, many image classifica-
tion tasks in real world often suffer from limited data with
low quality. Different from the previous studies, this work
presents a method that preferably focuses on addressing these
issues.

On the basis of a B-CNN framework, our method enhances
data augmentation, develops a new network block, and
designs a new fine-tuning strategy to classify low-quality
small-scale and fine-grained images. By comparing popular
CNNswith Croatian andQUTfish datasets for fish classifica-
tion, the experimental results show that our method performs
better in terms of classification accuracy. Our method can be
also combined with other newly updated CNNs for yielding
better results in the future.

The rest of this paper is organized as follows. Section II
provides the details of our method for fine-grained image
classification on small-scale datasets. Section III describes
our used datasets and experimental results, and Section IV
concludes the paper.

II. METHODOLOGY
We improve the transfer learning by the following three
parts (see Figure 2 for details about the structure of our
method). Firstly, for network architecture, we combine the
proposed refined SE blocks and B-CNNs to promote fine-
grained feature extraction capability. Secondly, we use super-
resolution reconstruction to enhance the quality of images
for data augmentation. Finally, we propose pre-pretraining
strategy to learn professional domain knowledge. We will
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FIGURE 1. Difficulty of Croatian fish dataset [49]: low-quality and fine-grained classification with large
intra-class and small inter-class variances.

describe our improved transfer learning method in detail in
the remaining part of this section.

A. NETWORK ARCHITECTURE
The network architecture can be presented in quadruple as

N = ([fa, fb],B,F), (1)

where fa and fb are feature functions of two CNN streams
that contain our refined SE blocks, B indicates the bilinear
pooling, and F indicates the classification function. In our
network architecture, images preprocessed by our enhanced
data augmentation are initially passed through two streams
of CNN, that is, A and B, to produce localized features.
Then, these features are multiplied using the outer product
and pooled together to obtain the bilinear vector. Finally,
the features are fed into the classification functionF yielding
predictions.

1) REFINED SE BLOCK
Generally, CNNs have strong informative feature extraction
capability by combining spatial and channel-wise informa-
tion. Many existing works have boosted representational
power and improved classification accuracy via spatial
encoding enhancement. Hu et al. [38] recently formulated
a feature recalibration method to establish channel interde-
pendency by designing a novel architectural unit, namely,
SE block, for adaptively recalibrating channel-wise feature
response. SE block represents each channel with one single
point by using global average pooling. Inspired by the idea
of the SE block, we propose refined SE block to acquire
more accurate information which represents each channel
with more points rather than only one point. Specifically,
our refined SE block modifies the squeeze operation by
dividing each channel into quadrants with crosshairs rather
than pooling the entire channel (see Figure 3 and Figure 4

for details). We will explain our refined SE block in more
detail below.

First, we initially squeeze global spatial information of
each channel into a descriptor to determine the relationship
among channels. The process is achieved by the SE block [38]
through global average pooling of the entire channel to gen-
erate channel-wise statistics. And, as shown in Figure 4,
we divide each channel into quadrants with crosshairs and
represent it with four channel-wise statistics. More specifi-
cally, these four statistics, namely, z1, z2, z3, z4 ∈ RK , are
created by squeezing the transformation output U through
spatial dimensions W × H , where the element k of z can be
calculated by:

zk1 =
1

W × H

H
2∑
i=1

W
2∑
i=1

uk (i, j), (2)

zk2 =
1

W × H

H∑
i=H

2 +1

W
2∑
i=1

uk (i, j), (3)

zk3 =
1

W × H

H
2∑
i=1

W∑
i=W

2 +1

uk (i, j), (4)

zk4 =
1

W × H

H∑
i=H

2 +1

W∑
i=W

2 +1

uk (i, j). (5)

Then, similar to [38], we implement the excitation oper-
ation by adopting a gating mechanism and ReLU function
(represented by δ) to utilize the information produced by
squeeze operation completely (see Figure 3 for reference),

s = σ (L2δ(L1e(z))), (6)

where s indicates the output of the excitation operation;
e refers to reshape operation that aims to change the shape
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FIGURE 2. Complete classification pipeline of our improved transfer learning with refined squeeze-and-excitation networks.

of z (the output of squeeze) from 1 × 4 × C to 1 × 1 × 4C
(Figure 4), δ denotes the ReLU function [50]; σ means the
sigmoid activation, L1 ∈ R

4C
r ×C , and L2 ∈ R4C× 4C

r ,
where reduction ratio r = L2

L1
(We use r = 4 in this paper,

and the choice of the parameter r and another parameter p
are discussed in Section III-B). To increase the generaliza-
tion capability, we embed two fully connected (FC) layers
(see Figure 3 for reference) interleaved with nonlinearity, that
is, one FC layer with one-fourth of the length of z (4C) and
parameters L1, a ReLU, and another FC layer with the same
length as z and parameters L2.

Finally, we regard sk (the output of excitation) as the most
important information of each channel after feature selection.
Then, we complete the recalibration of the original feature on
the channel dimension by multiplying sk and feature map uk.
Finally, we reshape the output of scale back to the dimension
1× 1× C as the final output of the block.

2) REFINED SE BLOCK MEETS B-CNNs
Generally, B-CNNs [46] adopt two VGGNets (M-Net [51]
andD-Net [35]) truncated at the convolutional layer as feature
function. However, our network uses two D-Nets, which can
achieve the same benefits as the second-order pooling [52],
which is popularized for semantic segmentation and image
classification. Moreover, we embed our refined SE block into

the convolutional layers, including conv1, conv2, conv3,
and conv4, to enhance the feature extraction capability
of B-CNNs. Hence, a convolutional layer X̃ processed by the
refined SE block S is calculated as follows:

X̃ = S(X), (7)

where X can be any layer of the CNNs.
This combination allows the network to recalibrate each

channel of any convolutional layer before being sent to the
subsequent convolutional layer. In this way, B-CNNs can
balance the contribution of each channel in the convolutional
layer. Similar to [46], we adopt bilinear pooling to combine
feature outputs of each location. The bilinear pooling opera-
tion of the input image I at location l is defined as follows:

B(l, I, fa, fb) = fa(l, I)T fb(l, I), (8)

where fa and fb are the outputs of two streams of CNN, that
is, A and B. Thereafter, the bilinear features will be initially
aggregated by sum pooling, then passed through a signed
square root and l2 normalization, and finally fed into the
classification function F yielding predictions.

Similar to most image classification works, B-CNNs
are also pretrained on the ImageNet dataset [34] when
domain-specific data are scarce. Furthermore, we use the
CNNs that are pre-pretrained on the dataset composed of
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FIGURE 3. SE and refined SE blocks.

FIGURE 4. The ‘‘Quarter & Pooling’’ and ‘‘Reshape’’ of refined SE block.

Fish4Knowledge (F4K) project [53] to learn professional
domain knowledge (see Section II-B).

B. FINE-TUNING ON PRE-PRETRAINING
Many existing works for image classification often use pre-
trained model on the large-scale dataset (e.g., ImageNet [34])
when domain-specific data are scarce. However, pretrained

method remains limited in learning professional skill on sev-
eral computer vision tasks, such as fine-grained image clas-
sification. To further improve the performance of CNNs on
small-scale datasets, we explore a ‘‘pre-pretraining’’ strategy
to learn professional domain knowledge from small-scale
datasets.

We initially pre-pretrain our network on the ImageNet
dataset, then pretrain it on the F4K dataset, and finally fine-
tune it on a small-scale fine-grained dataset (i.e., Croat-
ian or QUT fish dataset). In this way, the network learns
the common classification information during the first pre-
pretraining process, acquires domain knowledge during
the second pretraining process, and masters the fine-grained
discriminative information during the fine-tuning process.
This strategy enables the network to learn the features of
the target dataset accurately and comprehensively, which can
effectively improve the representation performance of neural
networks on small-scale datasets.

C. ENHANCED DATA AUGMENTATION
In addition to the proposed pre-pretraining strategy, we also
propose our enhanced data augmentation to enlarge the
dataset through super-resolution reconstruction with high
quality.

Generally, we need to resize the input image before sending
it to the network. Hence, the more complex the network is,
the greater size we need. Nevertheless, the method based on
the linear interpolation adopted by most image classification
works may result in image distortion, especially when using
images with low resolution. To address this problem, we for-
mulate a method dubbed enhanced data augmentation which
consists of super-resolution reconstruction and general data
augmentation.

Specifically, we use the method of super-resolution recon-
struction based on generative adversarial network (GAN)
to enhance image quality. Ledig et al. [54] presented a
super-resolution generative adversarial network (SRGAN),
which is feasible for improving image quality. To achieve
better super-resolution results, SRGAN used a perceptual
loss function composed of adversarial and content losses.
The adversarial loss was generated by a discriminator to
render the generated image close to the natural image.
Meanwhile, the content loss was generated from the per-
ceptual similarity of an image, not the similarity in pixel
space. By using SRGAN, we can effectively improve the
resolution of the dataset and reduce the image distortion
problem.

Moreover, on the basis of the super-resolution reconstruc-
tion, we employ two types of general data augmentation,
namely, flip and rotation. For the flip type, we flip each
image horizontally and vertically. For the rotation type,
we rotate each image in 90◦, 180◦, and 270◦ clockwise.
Thus, we achieve additional high-quality images through
the enhanced data augmentation. Our network architecture
can obtain improved generalization by the enhanced data
augmentation.
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FIGURE 5. Data distribution per category of QUT fish dataset.

TABLE 1. Data distribution per category of the Google Flowers dataset for
training and testing.

III. EXPERIMENTAL EVALUATION
We experimentally compare the popular benchmark CNNs
to verify the effectiveness of our method. Section III-A
describes the data distribution of the dataset and evaluation
protocol used in our experiments. The evaluation of the
refined SE block is provided in Section III-B. Section III-C
provides the details of our compared experiments with popu-
lar CNNs to validate the effectiveness of the proposed pre-
pretraining strategy. Section III-D presents the compared
experiments of various types of B-CNNs with different data
augmentation methods to prove the validity of the proposed
network architecture and enhanced data augmentation.

A. DATASET AND EVALUATION PROTOCOL
We implement a series of experiments by using five datasets
for evaluation.

First, we use the CIFAR-10 [55] and Google Flowers
datasets, which are commonly used in computer vision and
image classification, to illustrate the effectiveness of our
refined SE block. The CIFAR-10 dataset consists of 50,000
32×32 training images and 10,000 test images in 10 classes.
Each class of Google Flowers is randomly assigned to train-
ing and test sets with the proportion of 4 : 1. The data distribu-
tion of the Google Flowers dataset is listed in Table 1. In these
two datasets, we use a fivefold cross-validation scheme with
the mean classification accuracy results in all the comparison
experiments.

TABLE 2. Data distribution per category of the Croatian fish dataset for
training and testing.

We adopt the Croatian fish [49] and QUT fish datasets [56]
to verify the effectiveness of our pre-pretraining strategy.
The Croatian fish dataset contains 794 images of 12 fish
species for image classification experiments. The samples
of this dataset are shown in Figure 1. Data distribution per
category of this dataset for training and testing is shown
in Table 2. This dataset is suitable for validating the effective-
ness of the improved transfer learning with refined squeeze-
and-excitation networks for the classification of low-quality
small-scale and fine-grained images. Moreover, we select the
top 60 largest classes from the QUT fish dataset to further
validate the generalization of our pre-pretraining on the fish
image classification. The number of images per category
varies from 16 to 26. Figure 5 shows the data distribution
per category of the QUT fish dataset with 1 : 1 splitting for
training and testing, and Figure 6 shows several samples of
this dataset. We adopt a twofold cross-validation scheme to
verify the pre-pretraining strategy and use average accuracy
as our final results.
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TABLE 3. Experiments of popular CNNs embedded with SE and refined SE blocks for image classification on CIFAR-10 and Google Flowers datasets. The
values in bold font indicate the best results.

FIGURE 6. Samples of the QUT fish image dataset.

In addition, we use a middle-scale dataset, namely,
F4K dataset [53], to pretrain our pre-pretrained network.
Different from Croatian and QUT fish datasets, the F4K
dataset contains 22,370 fish images with relatively high qual-
ity; thus, it is feasible for a pre-pretrained model of the
Croatian or QUT fish dataset. In the experiments, the total
images are divided into two subsets, namely, 4/5 for training
and 1/5 for testing.

B. EVALUATION OF THE REFINED SE BLOCK
We provide a detailed explanation related to the motivation
and structure of our refined SE block in Section II-A1.
We implement three pairs of comparison experiments on
two commonly used datasets, namely, CIFAR-10 and Google
Flowers datasets, of image classification in a computer vision
system to validate the generalization of the refined SE block.

As shown in Table 3, three popular neural networks embed-
ded with SE blocks are used as baselines. We replace the
SE blocks with our refined SE blocks. The results show
that the accuracy of the three networks is improved on both
datasets, thereby validating the effectiveness of our refined
SE block.

Besides, we test other forms for refining SE block based
on SE-ResNet-34. Specifically, the refined SE block can be
changed by two factors of r and p: r represents the reduc-
tion ration and p indicates the number of points extracted
from the channel. To explore the power of different kinds of
refined SE block, we designed a series of experiments using
CIFAR-10 validation set to find the optimal form listed
in Table 4, and it can be seen that, with the increase of p,
the amount of parameter size increases significantly while the
accuracy keeps stable relatively. Therefore, we consider that
the choice of r = 4 and p = 4 is optimal in our work.

TABLE 4. Accuracy on CIFAR-10 validation set and parameter sizes of
refined SE-ResNet-34 at different r and p (accuracy / parameter size).

C. EVALUATION OF IMPROVED TRANSFER LEARNING
We perform comparison experiments on various popular
CNNs, including AlexNet [33], VGG-16 [35], Inception-
v4 [36], and ResNet-50 [37], to prove the effectiveness of our
pre-pretraining strategy.

We divide four groups of comparison experiments on
each CNN model (Table 5) as follows: (1) training from
scratch without any transfer learning on the Croatian or QUT
dataset (the blank ImageNet and F4K items in Table 5);
(2) pretraining the model on ImageNet and fine-tuning the
parameters on the Croatian or QUT dataset (the marked
ImageNet and blank F4K items in Table 5); (3) pretraining
the model on the F4K and fine-tuning the parameters on the
Croatian or QUT dataset (the blank ImageNet and marked
F4K items in Table 5); and (4) pre-pretraining the model
on ImageNet (the proposed strategy), then pre-training the
model on F4K, and finally fine-tuning the parameters on the
Croatian or QUT dataset (the marked ImageNet and F4K
items in Table 5).

As shown in Table 5, we enumerate the results of the
four groups of comparison experiments on four popular CNN
models. Besides, we also list the results from Croatian [49]
and QUT [56] datasets as baselines as well as the state-of-the-
art results for comparison [57], [58] in Table 5. On the basis
of these experiments, the pre-pretraining strategy effectively
improves the accuracy on Croatian and QUT fish datasets
by mastering the fine-grained discriminative information of
species. Therefore, this strategy can be helpful for small-scale
image classification.

D. EVALUATION OF OUR METHOD ON B-CNNS
To prove the effectiveness of our network architec-
ture (see Section II-A) and enhanced data augmentation
(see Section II-C), we implement three groups of comparison
experiments on various types of B-CNNs by using differ-
ent data augmentation methods and SRGAN, as presented
in Table 6.

Table 6 shows the compared image classification results
of B-CNNs, B-CNNs plus SE blocks, and B-CNNs plus
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TABLE 5. Experiments of popular CNNs with and without pre-training
and pre-pretraining for the image classification on Croatian and QUT fish
datasets. The results in bold font indicate the best performance of a
specific CNN model.

TABLE 6. Results of the compared image classification of B-CNNs,
B-CNNs plus SE blocks, and B-CNNs plus refined SE blocks on the
Croatian fish dataset. The results in bold font indicate the best
performance of a specific CNN model.

refined SE blocks on the Croatian fish dataset. Using either
the data augmentation or SRGAN has a limited role in the
classification performance. However, when they are com-
bined, the improvements are remarkable, thereby indicating
that data augmentation and SRGAN are complementary. Fur-
thermore, the combination of B-CNNs and refined SE block
by using the enhanced data augmentation achieves the best
performance with a 2-3% improvement by enhancing the
feature extraction capability.

The comparison experiments of B-CNNs, B-CNNs plus
SE blocks, and B-CNNs plus refined SE blocks are performed

TABLE 7. Results of the compared image classification of B-CNNs,
B-CNNs plus SE blocks, and B-CNNs plus refined SE blocks
on the QUT fish dataset.

on the QUT fish dataset. Notably, we do not use the SRGAN
on this dataset because of the relatively high image quality of
the QUTfish dataset. As shown in Table 7, the accuracy of the
refined SE blocks improves from 2.27% to 71.8% in compar-
ison with B-CNNs plus SE blocks, which demonstrates the
generalization capability of our proposed method.

IV. CONCLUSION
In this study, we propose an improved transfer learning
method with refined squeeze-and-excitation networks for
fine-grained fish image classification on small-scale datasets.
This method enables the network to learn the features of
the target dataset accurately and comprehensively. Thus,
it achieves better performance in fish image classification.
The experimental results show that our method outperforms
other popular CNNs with the highest classification accuracy.
Moreover, the accuracy can also be improved further if better
CNN network architecture is adopted. In future study, we will
combine our method with the newly updated deep CNNs for
other fine-grained image classification applications.
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