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ABSTRACT Flywheel bearing is a key mechanical part of a satellite. Its health plays an important role in the
fatigue life of the satellite. However, it is rather difficult to diagnose the health state of the bearings due to the
complex satellite system. This paper attempts to propose a three-direction correlation dimension method to
diagnose the bearings of a satellite flywheel at three typical states based on K-medoids clustering technology.
A set of spatial spheres representing different bearings are modeled to recognize these three states of the
bearings. To avoid misdiagnosis or loss of the bearing state, a twice-cluster scheme is employed. A series of
tests is carried out to observe the effectiveness of the proposed method. The result shows that the proposed
method is capable of diagnosing the different states of the bearings and its accuracy is higher than 99% at
given conditions.

INDEX TERMS Bearing, clustering, correlation dimension, fault diagnosis, K-medoids.

I. INTRODUCTION
Satellite flywheel is a core component of space vehicles in
charge of attitude control. It is supported by bearings and
provides stable rotating actuation. A flywheel bearing usually
consists of one pair of angular contact ball bearings. Some-
times it operates in abnormal conditions, accompanied with
strong vibration, rising fiction moment and undesirable high
temperature during service. These phenomena may lead to
serious damage or even failure of vehicle. In order to prevent a
space vehicle from disastrous events, it is essential to monitor
the health state of the flywheel bearings.

By far, plenty of researches have been focusing on health
monitoring and fault diagnosis of bearings [1]–[4]. Most
of them are based on vibration signal processing technol-
ogy [5], [6] via extracting fault features of bearings from
some aspects [7]. Such feature extraction methods include
time domain parameter method [6], fast Fourier transform
(FFT) [8], envelope spectrum analysis [9], short time Fourier
transform [10], Wigner-Ville distribution [11], wavelet
transform [12] and empirical mode decomposition (EMD)
[13]–[15], etc. They are beneficial to improve the accuracy

of fault diagnosis of bearings. The detailed discussion on
them can refer to the literatures [16], [17]. However, some-
times these methods do not satisfy the special requirements
in applications. For example, Tandon and Nakra [18] con-
formed that the fault frequency can be directly extracted from
the spectrum analysis only when the rolling bearing failure
is very serious. Wang and Liang [19] pointed out that the
typical envelope spectrum analysis based Hilbert transform
needs to choose the center frequency, band of bandpass filter
reasonably and suffers to window effect. Rafiee et al. [20]
denoted that the selection of mother wavelet function,
decomposition level of signals and time-frequency resolution
of signals are impediments in wavelet transform analysis.
Hoseinzadeh et al. [21] employed the spline fitting method
in EMD to conduct spectrum analysis, but the result is not
satisfying and some difficulties like mode mixture and end
effect are to be overcome. Aforementioned research denotes
that even though some techniques have been proposed in
literatures for feature extraction, it is still challenging to
own a diagnostic tool for real-world monitoring because of
the complexity of bearing vibration response and operating
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conditions [22]. Moreover, these methods usually require rich
knowledge and experience in engineering.

It is well known that the bearing exhibits strong nonlinear
dynamic characteristics. Some researchers have devoted to
investigating nonlinear feature of vibration signals to diag-
nose bearing fault. Sadooghi and Khadem [23] discussed the
statistical traditional and nonlinear features with support vec-
tormachine (SVM) for extracting features. Based on the time-
frequency manifold technique, He [24] proposed a nonlinear
time-frequency feature for bearing fault pattern classifica-
tion. Through chaotic theory, Soleimani and Khadem [25]
introduced chaotic features such as correlation dimension,
the largest Lyapunov exponent and approximate entropy for
chaotic vibrations of rolling bearings. Fu [26] pointed out
that fractal theory could be used to diagnose bearing failure.
Logan and Mathew [27] presented an innovative work on the
actual diagnosis of bearing faults by correlation dimension,
and they also discussed the calculation of the correlation
dimension. Later, they [28] analyzed the optimum values of
the time delay embedding and correlation integral parameters
based on vibration acceleration data from a rolling element
bearing. According to SVM, Yang et al. [29] applied combi-
nation of the capacity dimension, information dimension and
correlation dimension to evaluate fault conditions of rolling
bearings. Currently, fractal theory has been widely adopted
to describe the nonlinear feature of rolling bearing. However,
few literatures have focused on the aerospace rolling bearing
with superior property and light load. Since the nonlinear
characteristics of the bearings are significantly different from
those of ground-mounted bearings, the method of extraction
of nonlinear feature for satellite bearings is still worth study-
ing even further.

In order to provide a promising tool to recognize or mon-
itor the states of bearings in satellite flywheels, this paper
attempts to propose a three-direction (3D) correlation dimen-
sion method based on clustering technology without any
information on geometric, physical and kinematic parameters
of bearings and flywheels. A series of vibration tests on
bearings at three typical states, including normal bearing, a
bearing with a fault occurring at outer ring and a bearing
with a fault occurring at cage, are carried out. Then the fea-
sibility of one-direction (1D) and 3D correlation dimension
analysis based on vibration tests are conducted. Introducing
K-medoids clustering into 3D correlation dimension analysis,
a model of spatial state spheres representing different states of
bearings is established. Furthermore, the model is improved
by a proposed twice-clustering approach and verified by the
experimental results of satellite flywheels in different states.

II. CHARACTERISTIC ANALYSIS OF SATELLITE BEARING
BASED ON CORRELATION DIMENSION
A. BASICS OF CORRELATION DIMENSION
The correlation dimension estimation was put forward by
Grassberger and Procaccia [30], so called G-P algorithm.
In chaos theory, it is a measure of the dimensionality of the
space occupied by a set of random points, often referred

to as a type of fractal dimension [31]. It is a popular tool
to estimate the distance between all pairs of points in the
investigated set. Since the correlation dimension is simple and
easy to be implemented, it is commonly used as a parameter
to describe the feature of a fractal structure in plenty of
applications [32], [33].

A correlation dimension D2 is defined by [34]

D2 = lim
δ→0

ln
∑

i P
2
i (δ)

ln δ
(1)

where δ is a random variable and Pi is a cumulative distribu-
tion function with respect to δ, denoting the probability that
the trajectory visits the ith element of the partition. Thus the
correlation dimension indicates the relative amount of points
whose distance is less than δ [35].
A delay embedding attractor is constructed in an embed-

ding space of dimension m with a suitable time delay τ .
Then the estimation expression of D2 in the m-dimensional
reconstructed space can be written by

D2 (m) = lim
r→0

∂ lnCm (r)
∂ ln r

(2)

with the correlation integral Cm(r) given by

Cm (r) =
2

Nm (Nm − 1)

Nm∑
i,j=1
i 6=j

H
(
r − ri,j

)
(3)

where H (x) is the Heaviside step function{
H (x) = 1, x > 0
H (x) = 0, x ≤ 0

(4)

The variable Nm is the number of embedded points in
m-dimensional space and r the distance parameter. The vari-
able rij represents the distance between two reconstructed
vectors. It is calculated by using maximum norm [36] in this
study.

Correlation dimension calculation highly relies on selec-
tion of embedding dimension m and time delay τ [28], [33].
A general way to choose m is the ‘saturation’ method,
in which the appropriate embedding dimension m can be
assessed by computing the correlation dimension D2 for
m ∈ {1, 2, ..., n} until the variation of D2 ceases. Another
parameter, time delay τ , can be chosen according to autocor-
relation function Rxx(t) where the function firstly drops to a
certain fraction of its initial value, e.g. 1/e (e is the base of
the natural logarithm). The details on how to obtain these two
parameters can refer to literature [34]. Because the waveform
of signals obtained from the antifriction bearing behaves self-
similarity in a segment of time history, it is probable to utilize
the fractal dimensions for fault diagnosis of bearings [37].

B. GROUND VIBRATION TESTS
In order to find out whether the fractal dimension analysis is
applicable to the fault diagnosis of a satellite bearing, a series
of tests on flywheel bearings at the real ground operation
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FIGURE 1. Experimental setup of satellite bearing test system.

FIGURE 2. The time domain waveforms: (a) x direction; (b) y direction;
(c) z direction.

environment are carried out. Fig. 1 shows the experimental
setup consisting of one satellite flywheel, four 3D accelera-
tion sensors and one set of data acquisition instrument. Two
satellite bearings are installed inside the satellite flywheel
and the acceleration sensors are attached on the surface of
the bracket nearby the shaft of flywheel and parallel to it.
In this figure, the horizontal, vertical and axial directions are
represented by x, y and z directions respectively.

Prior to tests, the bearings of 15 flywheels which have
already operated for several years are examined carefully.

FIGURE 3. The amplitude spectrums: (a) x direction; (b) y direction;
(c) z direction.

It is found all bearings are at three states, including normal
bearings, the bearings with faults occurring at outer ring and
bearings with faults occurring at cage. Thus the target of this
study is to provide a reliable way to recognize these three
typical states of bearings.

Select three flywheels to conduct the tests. Each of them
contains the bearings characterized by one typical state men-
tioned above. In tests, the 3D vibration signals originating
from each bearing sample are picked up to observe whether
the distribution of the correlation dimension of bearings at
different states has a special rule.

The sampling time of the vibration signals is 20 s. The
correlation dimension is calculated at each segment of 0.2 s.
Hence totally 100 correlation dimensions are derived for one
bearing. To observe the feature of the vibration signal signif-
icantly, the waveforms of the signal obtained from a normal
bearing sample in 1 s is shown in Fig. 2. And Fig. 3 shows its
amplitude spectrum at different directions. It can be seen from
these figures that the characteristics of the signal are distin-
guishing in various directions. Hence the dynamic response
in various directions must be different. So do the correlation
dimensions.

VOLUME 6, 2018 78485
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FIGURE 4. Correlation dimensions of tested bearings: (a) x direction;
(b) y direction; (c) z direction.

C. CHARACTERISTICS OF THE CORRELATION DIMENSION
UNDER TYPICAL SURROUNDINGS
Based on (2), correlation dimensions in x, y and z direc-
tions can be calculated respectively. In each direction, totally
100 correlation dimensions for one bearing at a certain state
are calculated.

Fig. 4 compares the variation trend of the correlation
dimension in x, y and z directions, in which the coordinate
N represents the number of samples. These samples, num-
bered from 1 to 100,101 to 200, 201 to 300 in each figure,
are those obtained from a normal bearing, the bearing with
outer ring fault and the bearing with cage fault respectively.
It is shown in the figures that the amplitudes of correlation
dimensions of bearings under different states are significantly
different and fluctuate heavily at all directions. In addition,
the correlation dimensions of one bearing at different states
are overlapping and their variations are irregular in differ-
ent directions. These phenomena might originate from the
complex vibration signals. Though the correlation dimension
of the vibration signal varies with bearings under different
states, it is not probable to recognize the state of a bearing
by using the correlation dimension in any direction directly

FIGURE 5. Correlation dimensions of vibration signals of bearings at
three states.

FIGURE 6. Spheres of three bearings built up by using K-medoids method.

because the overlapping or irregular correlation dimension
may easily lead to escape of diagnosis or misdiagnosis.

III. DIAGNOSIS OF BEARING STATE BASED ON 3d
CORRELATION DIMENSION CLUSTERING METHOD
A. 3D CORRELATION DIMENSION AND k-MEDOIDS
CLUSTERING METHOD
Resulting from characteristic analysis on correlation dimen-
sion of bearings, 1D correlation dimension of vibration
signals is not applicable to fault diagnosis of bearings. How-
ever, the 3D correlation dimensions of bearings at different
states are observed to distribute at different spatial regions,
as shown in Fig. 5. To take advantage of characteristic
of 3D correlation dimension, a scheme based on a clustering
method to diagnose the states of bearings is proposed in this
study.

Clustering is a way of grouping a set of objects in such a
way that objects in the same group, called a cluster, are more
similar in some sense to each other than to those in other
groups [38]. K-medoids, as one of most popular clustering
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FIGURE 7. Diagnosis result based on 3D K-medoids method: (a) A normal bearing; (b) A bearing with a fault at outer ring; (c) A bearing with a fault at
cage; (d) State spheres.

algorithms, is a classical partitioning technique of cluster-
ing that clusters the data set containing No. a objects into
b clusters known a priori [39]. It attempts to minimize the
distance between points labeled to be in a cluster and a point
designated as the center of that cluster. K-medoids chooses
datapoints as centers and works with a generalization of
the Manhattan Norm to define distance between datapoints.
Since K-medoids is applicable to small sampling clustering
analysis and effective to reduce disturbance of noise and
outlier [40], [41], it is used in this study to recognize the
satellite bearings under different states.

Using K-medoids method, the cluster center of 3D corre-
lation dimensions of bearings at normal state is determined.
Taking the maximal Euclidean distance between sampling
point and each center as the radius, a sphere centered in clus-
ter center is established. Similarly, two spheres representing
the other two states of bearings are obtained. Fig. 6 shows all
these three spheres resulting from K-medoids method. The
parameters of the clustering spheres are listed in Table 1.

TABLE 1. Parameters of the spatial state spheres.

It is shown in Figs. 5 and 6 that 3D correlation dimension
is advanced to 1D correlation dimension in fault diagnosis
of bearings because the state sphere based on it is capable
of recognizing different states of bearings. However, these
spheres are spatially overlapped with each other. It means
some correlation dimensions are located inside two or more
spheres simultaneously.

Carry out the vibration test of Section II (B) again on three
states of bearings. Each sample is tested in 10 s and then its
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TABLE 2. The independence of parameters of state sphere on different selected items.

FIGURE 8. Flowchart of fault diagnosis of bearings.

correlation dimension is calculated at every 0.2 s. As a result,
50 dimensions for each bearing are obtained. Fig. 7 shows the
diagnosis result based on the established state spheres. It is
seen that the most test data locate inside their corresponding
spheres. However, some test data belong to two or more state
spheres simultaneously. This phenomenon is the same with
the result of Fig. 6. It means current method may lead to
misdiagnosis or loss of a fault.

B. IMPROVEMENT OF THE DIAGNOSIS METHOD
It is analyzed from the clustering algorithm that overlapping
of the states spheres is probably due to the extra border
caused by some outlier when determining the radii of the
spheres. In order to reduce the effect of the outliers, this study
proposes a method to improve the aforementioned scheme by
building up a new spatial state sphere based on the clustering
centers. To authors’ knowledge, the data during such process
may reduce the effect of data fluctuation. A flowchart of

FIGURE 9. Correlation dimensions of three typical states of bearings used
for validation: (a) x direction; (b) y direction; (c) z direction.

the proposed method is shown in Fig. 8 and the detailed
procedure on diagnosis of a bearing is described as follows:

(1) Build up the 3D state sphere.

Choose a bearing at a known state. Randomly select
l items from any 3D correlation dimension set contain-
ing k correlation dimensions to run K-medoids cluster-
ing. Repeat it n times, n clustering centers are obtained.
Group these clustering centers as a new set to run cluster-
ing again, called twice-cluster, the center of these clustering
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FIGURE 10. The state spheres at sampling 5000 times: (a) l = 10;
(b) l = 20; (c) l = 30.

centers O is created. Then calculate the Euclidean distance
between this center and all clustering centers, and define
the maximum one as R. Use the twice-cluster center O as a
sphere center and the maximum Euclidean distance R as the
radius to build up a 3D sphere. This sphere can be utilized to

FIGURE 11. The established spatial state spheres: (a) The 3D correlation
dimension distribution; (b) three spatial state spheres.

represent the state of the satellite bearing. Repeat the same
process to build up spheres for other bearings at different
states.
(2) Diagnose the state of the bearings
Carry out vibration test for the bearing to be diagnosed.

Calculate the correlation dimensions based on its vibration
signals and then create a data set containing k correlation
dimensions. Run K-medoids cluster n′ times to obtain n′

clustering centers. If most of these centers, for example 90%,
locate in any state sphere built up previously, the state of
bearing is identified to be the same with it. Otherwise it is
recognized to an unknown state of bearing. In this study,
a parameter P is defined to denote the diagnosis accuracy,
which is represented by the percentage of real data localized
in the state sphere.

IV. EXPERIMENTAL VALIDATION
To evaluate the effectiveness of the proposed method,
the independence of the established spatial state sphere on
the cluster parameters is checked prior to method validation.
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TABLE 3. The independence of parameters of state spheres on different sampling times.

The number of correlation dimensions obtained from the
previous vibration test is 50 for each state of bearing.
Fig. 9 shows the correlation dimensions of three typical states
of bearings at x, y and z directions respectively. Randomly
select l = 10, 20 and 30 items respectively from the 3D cor-
relation dimension sets of different states of bearings and run
twice-cluster sampling process N = 5000 times to establish
state spheres, as shown in Fig. 10. It is seen that the state
spheres at condition l = 10 are overlapped, but others are not.
Table 2 shows the independence of state sphere parameters
on selected number l. The coordinates of centers of spheres at
different l are almost no change at any certain state of bearing.
Though the radius of a sphere is changed with different l,
its variation is not monotonic. It is easy to be explained
because the proposed method is based on a random sampling
calculation, thus the result would heavily rely on the sampling
times and the selected items rather than the selected number.
Considering the calculation efficiency, the parameter l is
assumed by 20 under such condition.

The independence of state sphere on sampling times is
analyzed and the comparison result is summarized in Table 3.
It can be found the center coordinate of state spheres are
almost the same and their radii are not obviously different
at sampling times N = 5000, 20000 and 100000. It means
the sampling time 20000 is large enough to build up a state
sphere with acceptable accuracy. At each sampling time, the
parameters of a state sphere, including coordinate of center
and radius, are calculated three times and the state sphere with

FIGURE 12. The diagnosis of experimental samples.

the largest radius among them is used in the study because it
may include the most data to be diagnosed.

Fig. 11 shows three spatial state spheres representing dif-
ferent states of bearings under condition of l = 20 and
sampling times N = 20000. It can be seen in this figure that
the three spheres are not overlapped with each other by using
the proposed method.

Based on the proposed method, the 3D state spheres rep-
resenting different states of bearings, including normal bear-
ings, bearings with obvious outer ring fault and bearings with
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TABLE 4. Diagnosis result by using the general K-medoids and proposed
methods.

cage fault, are established. Run clustering to all test samples
of each bearing to obtain the clustering centers respectively
and observed which 3D sphere they localize inside. The test
results of three bearings are shown in Fig. 12.

It is seen in Fig. 12 that almost all cluster centers of test
samples localize inside the 3D state spheres. Table 4 com-
pares the accuracy of diagnosis result by using the general
3D correlation dimension and the proposed method respec-
tively. It is found in the result the method is much more accu-
rate to diagnose the state of a bearing than the former one. The
accuracy is denoted by the percentage of test data inside their
corresponding state sphere. Since the state spheres are no
longer overlapped, the diagnosis result based on the proposed
methodmay not be associatedwithmisdiagnosis or loss of the
fault.

It can be seen that the proposed method is capable of
recognizing the typical states of bearings and its accuracy is
up to 99%. Fault diagnosis based on the proposed method is
easy to be implemented without filtering or going through
complex feature extraction procedure, and it need not any
geometric, physical and kinematic parameters of bearings and
flywheels. These are what it is unique to other conventional
fault diagnosis methods such as EMD and FFT.

V. CONCLUSIONS
This paper proposes a 3D correlation dimension method to
diagnose three typical states of bearings in a satellite flywheel
based on clustering technology. To avoid misdiagnosis or loss
of the state, a twice-cluster method is employed in the pro-
posedmethod. Following conclusions are drawn in this study:

(1) It is not feasible to use 1D correlation dimension for
state recognition of a bearing since the dimension fluctuates
and its distribution is ruleless.

(2) 3D correlation dimension has potential to diagnose the
state of a bearing, but it may lead to misdiagnosis or loss of
the state during diagnosis process.

(3) 3D correlation dimension based on twice-cluster of
K-medoids is applicable to diagnose the state of a bearing
and its accuracy is very high if the state sphere representing
corresponding bearing state has been well trained.
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