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ABSTRACT Certificateless multi-receiver encryption/signcryption (CLME/CLMS) has become a research
hotspot in the field of information security. Almost all of the existing CLME/CLMS schemes are constructed
based on the bilinear pairing computation, a time-consuming operation, which makes their computational
efficiency relatively low.Although there are someCLME schemes constructed on scalar pointmultiplications
on elliptic curve cryptography (ECC) instead of the bilinear pairing computation, too many scalar point
multiplications involved still lead to the low computational efficiency. Therefore, there is still room for the
CLME/CLMS schemes in efficiency. Motivated by these concerns, an efficient anonymous certificateless
multi-receiver signcryption scheme is proposed with its security proved under the random oracle model.
The proposed scheme is improved largely in computational efficiency by the idea that it is designed based
on scalar point multiplications on ECC instead of the bilinear pairing and the number of scalar point
multiplications on ECC is reduced as small as possible.

INDEX TERMS Certificateless cryptography, computational efficiency, elliptic curve cryptography, multi-
receiver signcryption.

I. INTRODUCTION
Multi-receiver encryption/signcryption has been considered
as an effective and promising way to achieve one-to-
many secure communication. The first identity-based multi-
receiver encryption (MIBE) scheme was brought forward by
Baek et al. [1] in 2005. Afterwards, in order to ensure the
ciphertext’s validity, combining MIBE with Zheng’s sign-
cryption [2], Duan and Cao [3] proposed the first multi-
receiver identity-based signcryption (MIBS) scheme and
gave the unforgeability securitymodel at the same time. Since
then, a large number of MIBS schemes [4]–[9], which are
suitable for network conferences, paid-TV system and ad-hoc
networks, have been proposed.

With the penetration of the Internet in all aspects of our
daily life, people are increasingly focusing on their own
privacy. For example, when watching a paid-TV program,
people may not want others to know the specific program

that they are watching, which belongs to their own pri-
vacy. Based on this practical need, introducing the receiver
anonymity to MIBE, Fan et al. [10] put forward the first
anonymous MIBE scheme by utilizing Lagrange interpolat-
ing polynomial. Unfortunately, both Wang et al. [11] and
Chien [12] later prove that Fan et al.’s scheme fails to achieve
the receiver anonymity as they have claimed. Afterwards,
a new anonymous MIBS scheme was proposed by Pang
and Li [13], in which the concept of decryption fairness is
used to describe the characterization and enhancement of
the receiver anonymity, but the receiver anonymity is not
achieved due to the use of Lagrange interpolating polynomial,
either. To truly achieve the receiver anonymity, in 2014,
Tseng et al. [14] proposed another anonymousMIBE scheme,
in which the receiver anonymity is realized by amodular large
prime polynomial and the method is considered as one of the
most effective ways to achieve the receiver anonymity so far.
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Nevertheless, there exits the terrible phenomenon that the
number of the involved bilinear pairing operations grows
linearly with the number of receivers in Tseng et al.’s
scheme, which leads to it extremely low in computational
efficiency. To further improve efficiency, security and perfor-
mance, there are a few following anonymous MIBE/MIBS
schemes [15]–[19] proposed.

However, for schemes [10]–[19] above, there exists the key
escrow problem, which is inherent in all ID-based schemes
and means that the key generation center (KGC) could obtain
the user’s complete private key. Aiming at this problem,
Al-Riyami and Paterson [20] put forward the certificateless
public key cryptography, in which not only the key escrow
problem in ID-based cryptography (IBC) is solved because
the user’s private key is generated by the user and the key
generation center (KGC) together and KGC cannot obtain
the user’s complete private key, but also the advantage of
no certificate in IBC is preserved, which marks the birth of
a new cryptosystem, says the certificateless cryptosystem.
Subsequently, many certificateless encryption/signcryption
schemes [21]–[24] were proposed one by one. Selvi et al. pro-
posed a certificateless multi-receiver signcryption (CLMS)
scheme [25] in 2008 and its improved version [26] in 2009.
Although it has been later proved by Miao et al. [27] that
Selvi et al.’s scheme [26] cannot satisfy message confi-
dentiality under external attacker’s attack, it has raised the
research upsurge on certificateless multi-receiver encryp-
tion/signcryption schemes. In 2005, Islam et al. [28] pro-
posed an anonymous certificateless multi-receiver encryption
(ACLME) scheme, which does not use the bilinear pairing
operations but utilizes scalar point multiplications on elliptic
curve cryptography (ECC) and makes an auspicious start in
reducing the computational burden. However, the number of
the involved scalar point multiplications on ECC remains
to be reduced in Islam et al.’s scheme. At the same year,
Hung et al. [29] proposed another ACLME scheme. Unfor-
tunately, Hung et al.’s scheme still needs to be improved in
efficiency as a result of the use of the bilinear pairing and
map-to-point (MTP) hash function, another time-consuming
operation. To improve Hung et al.’s scheme in efficiency,
a new ACLME scheme was proposed by He et al. [30].
Regrettably, in He et al.’s scheme, it is found that although
the bilinear pairing andMTP hash operations are not utilized,
the number of the involved scalar point multiplications on
ECC is still big, which affects the scheme in computational
efficiency.

Further pursuing efficiency and lightweight, other certifi-
catelessmulti-receiver encryption (CLME) schemes [31], [32]
were proposed, successively. Nevertheless, although they are
improved in encryption efficiency, the computation efficiency
of their decryption process is bad, because the decryption
process of scheme [31] utilizes the bilinear pairing and that
of scheme [32] utilizes too many scalar point multiplications
on ECC. Besides, it is worth noting that schemes [28]–[32]
do not provide the sender with signature function, which is
impossible to resist the attacker’s forgery attack. At present,

many certificateless multi-receiver (CLMR) schemes based
on applications such as healthcare system [33] and IOT [34]
have been proposed, yet they still remain to be improved
in efficiency due to the use of the bilinear pairing. Besides,
what are worth noting is that schemes [25], [26], [29]–[31],
[33], [34] do not achieve decryption fairness and own partial
private key verifiability, which fails them to avoid malicious
KGC attacks.

To sum up, lots of CLME/CLMS researchers have been
pursuing perfection in the computational efficiency, never-
theless, the computational performance of these schemes still
remains to be improved.Motivated by those concerns, an effi-
cient anonymous certificateless multi-receiver signcryption
scheme without bilinear pairings is proposed, in which not
only it is improved in efficiency by using scalar point mul-
tiplications on ECC instead of the bilinear pairing and lim-
iting the number of the involved scalar point multiplications
as small as possible, but also more security functions have
been achieved such as decryption fairness, signature and
partial private key verifiability. At the same time, it is proved
that the proposed scheme satisfies message confidentiality,
unforgeability and receiver anonymity under the random ora-
cle model.

The rest of this paper is organized as follows: The related
hard problems, algorithm model and security models of the
proposed scheme are given in Section II. In Section III,
the proposed scheme is minutely described. Besides,
Section IV makes an analysis of correctness and security
about the proposed scheme. Then the comparison between
the proposed scheme and the existing CLME/CLMS schemes
in terms of efficiency and functions is given in Section V.
Finally, Section VI makes a conclusion about this paper.

II. PRELIMINARIES
In this section, we will give the hard problems, algorithm
model and security models related to our proposed scheme.

A. HARD PROBLEMS
We define that p is a large prime number, Gp is the addition
cycle group of points on ECC, Z∗p is a nonzero multiplicative
group based on p andP is one generator ofGp. Computational
Diffie-Hellman Problem (CDHP) and Elliptic Curve Discrete
Logarithm Problem (ECDLP) will be given as follows:

1) CDHP: Given P, aP and bP ∈ Gp, where a, b ∈ Z∗p,
computing abP is called a CDHP.
Definition 1: The probability advantage that CDHP can be

solved by any probabilistic polynomial time (PPT) algorithm
A is defined as

AdvCDHPA (k) = Pr[A(P, aP, bP) = abP].

CDHP assumption. For any PPT algorithmA, AdvCDHPA (k)
is negligible.

2) ECDLP: Given P and xP ∈ Gp, where x ∈ Z∗p,
computing x is called ECDLP.
Definition 2:The probability advantage that ECDLP can be

solved by any probabilistic polynomial time (PPT) algorithm
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B is defined as

AdvECDLPB (k) = Pr[B(P, xP) = x].

ECDLP assumption. For any PPT algorithmB, AdvECDLPB (k)
is negligible.

B. ALGORITHM MODEL
Definition 3: The algorithm model of the proposed scheme,
consisting of Setup, Set-Secret-Value, Extract-Partial-
Private-Key, Set-Public-Key, Set-Private-Key, Anony-
Signcryption and De-Signcryption, is shown as follows:
Setup: With a security parameter η as input, KGC runs

the algorithm to get the master key s and the system’s
public parameters Params, and publishes Params while
saving s.
Set-Secret-Value: With his/her own identity information

ID as input, the user runs the algorithm to get his/her own
secret value vID and secret value parameter VID.
Extract-Partial-Private-Key: With the master key s, the

system’s public parameters Params, and the user’s identity
information ID and secret value parameter VID as input, KGC
runs the algorithm to get the user’s partial private key yID and
partial public key DID.
Set-Public-Key: With the system’s public parameters

Params, and his/her own identity information ID, partial
private key yID and partial public key DID as input, the user
runs the algorithm to get his/her own public key PKID.
Set-Private-Key: With the system’s public parameters

Params, and his/her own identity information ID, partial
private key yID, public key PKID and secret value vID as input,
the user runs the algorithm to get his/her own private key
SKID.
Anony-Signcryption:With the system’s public parameters

Params, a plaintext m, the authorized receivers’ public key
PKi and his/her own private key SKS as input, the sender
runs the algorithm to generate the ciphertext C = Anony-
Signcryption (Param s, m, PKi, SKS ).
De-Signcryption: With the system’s public parameters

Params, the ciphertext C and his/her own private key SKi
as input, every authorized receiver runs the algorithm to get
the plaintext m = De-Signcryption (SKi, C , Paramss) and
uses the sender’s public key PKS to verify the plaintext’s
source.

C. SECURITY MODELS
The security models of the proposed scheme include message
confidentiality, unforgeability and receiver anonymity. There
are two types of adversaries called Type I adversary (AI ) and
Type II adversary (AII ) respectively [20] in every security
model. AI means a malicious user who does not know the
master key s, but he/she is allowed to replace the user’s public
key, while AII means an honest-but-curious KGC who knows
the master key s, but he/she is not allowed to replace the
user’s public key. The specific securitymodels under different
adversaries are shown as follows:

1) MESSAGE CONFIDENTIALITY
The message confidentiality of the proposed scheme is
called the indistinguishability of certificateless signcryp-
tion against selective multi-receiver chosen ciphertext attack
(IND-CLMS-CCA) [25]. IND-CLMS-CCA againstAI (IND-
CLMS-CCA-I) and IND-CLMS-CCA against AII (IND-
CLMS-CCA-II) will be described by Game 1 and Game 2,
respectively.
Game 1 (IND-CLMS-CCA-I): The game is the interaction

between the challenger B and AI under IND-CLMS-CCA,
and the specific steps are shown as follows:
Setup: B runs this algorithm to generate the master key

s and the system’s public parameter Params, and then
sends Params to AI while keeping s secret. Upon receiving
Params, AI outputs a group of target identities L = {ID1,
ID2, . . . , IDn}, where n denotes a positive integer.
Phase 1: AI asks B for a series of adaptive queries, and B

responds accordingly:
Set-Secret-Value Query: AI asks B for Set-Secret-Value

query on ID. Upon receiving the query, B runs the Set-Secret-
Value algorithm to get the user’s secret value vID and returns
it to AI .
Extract-Partial-Private-Key Query: AI asks B for Extract-

Partial-Private-Key query on ID. Upon receiving the query,
B runs the Extract-Partial-Private-Key algorithm to get the
user’s partial private key yID and returns it to AI .
Set-Public-Key Query: AI asks B for Set-Public-Key query

on ID. Upon receiving the query, B runs the Set-Public-Key
algorithm to get the user’s public key PKID and returns it to
AI .
Set-Private-Key Query: AI asks B for Set-Private-Key

query on ID. Upon receiving the query, B runs the Set-
Private-Key algorithm to get the user’s private key SKID and
returns it to AI .
Public-Key-Replacement Query: AI asks B for Public-Key-

Replacement query on ID with PK′ID. Upon receiving the
query, B keeps PK′ID as the user’s new public key.
Anony-Signcryption Query: AI asks B for Anony-

Signcryption query with the plaintext m and a series of
identity information. Upon receiving the query, B ran-
domly chooses an identity information IDS , runs the Anony-
Signcryption algorithm to generate the ciphertext C , and then
sends C to AI .
De-Signcryption Query: AI asks B for De-Signcryption

querywith the ciphertext C . Upon receiving the query, B runs
the De-Signcryption algorithm to get the plaintext m, verifies
whether m is valid, and then returns m to AI .
Challenge: AI randomly chooses a pair of plaintext < m0,

m1 >with equal length, and sends them to B. Upon receiving
< m0, m1 >, B randomly chooses a bit β ∈ {0, 1} and
generates the ciphertextC∗ with the chosen plaintextmβ , then
returns C∗ to AI .
Phase 2: AI asks B for the same queries as Phase 1, but

it should be noted that AI cannot perform Extract-Partial-
Private-Key query on target identities L and De-Signcryption
query on C∗, and AI cannot perform Set-Private-Key query
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on the target identity whose public key has been replaced,
either.
Guess: AI guesses a bit β∗. If β∗ = β holds, AI wins the

game. Otherwise, AI fails. The probability advantage that AI
wins the game is defined as follows:

AdvIND-CLMS-CCA(AI ) =
∣∣2 Pr [β∗ = β]− 1

∣∣ .
Definition 4: If for any AI under IND-CLMS-CCA,

the probability advantage of winning Game 1 within time
τ meets AdvIND-CLMS-CCA (AI ) ≤ ε, the scheme is said to
be (τ, ε)-IND-CLMS-CCA-I secure, where τ is the poly-
nomial running time and ε is the non-negligible probability
advantage.
Game 2 (IND-CLMS-CCA-II): The game is the interaction

between the challenger B and AII under IND-CLMS-CCA,
and the specific steps are shown as follows:
Setup: B runs this algorithm to generate the master key s

and the system’s public parameter Params, and then sends
Params and s toAII . Upon receivingParams and s,AII outputs
a group of target identities L = {ID1, ID2, . . . , IDn}, where
n denotes a positive integer.
Phase 1: AII asks B for the same adaptive queries as Phase

1 in Game 1, and B responds accordingly. But it should
be noted that AII cannot perform Public-Key-Replacement
query.
Challenge: AII randomly chooses a pair of plaintext< m0,

m1 >with equal length, and sends them to B. Upon receiving
< m0, m1 >, B randomly chooses a bit β ∈ {0, 1} and
generates the ciphertextC∗ with the chosen plaintextmβ , then
returns C∗ to AII .
Phase 2: AII asks B for the same queries as Phase 1, but

it should be noted that AII cannot perform Set-Secret-Value
query on target identities L andDe-Signcryption query onC∗.
Guess: AII guesses a bit β∗. If β∗ = β holds, AII wins the

game. Otherwise, AII fails. The probability advantage that AII
wins the game is defined as follows:

AdvIND-CLMS-CCA (AII ) =
∣∣2 Pr [β∗ = β]− 1

∣∣
Definition 5: If for any AII under IND-CLMS-CCA,

the probability advantage of winning Game 2 within time τ
meets AdvIND-CLMS-CCA (AII ) ≤ ε, the scheme is said to be
(τ, ε)-IND-CLMS-CCA-II secure, where τ is the polynomial
running time and ε is the non-negligible probability advan-
tage.

2) UNFORGEABILITY
The unforgeability model of the proposed scheme is called
the strong existential unforgeability of certificateless sign-
cryption against selective multi-receiver, chosen plaintext
attack (SUF-CLMS-CPA) [25]. SUF-CLMS-CPA against AI
(SUF-CLMS-CPA-I) and SUF-CLMS-CPA againstAII (SUF-
CLMS-CPA-II) will be described by Game 3 and Game 4,
respectively.
Game 3 (SUF-CLMS-CPA-I): The game is the interaction

between the challengerB andAI under SUF-CLMS-CPA, and
the specific steps are shown as follows:

Setup: The step is the same as Setup in Game 1.
Attack: AI asks B for the same adaptive queries as Phase

1 in Game 1, and B responds accordingly.
Forgery: AI forges a new ciphertext C∗ with a group of

target identities L = {ID1, ID2, . . . , IDn}and a plaintext m.
If the ciphertextC∗ can be decrypted correctly by any receiver
in L, AI wins the game. Otherwise, AI fails. But it should be
noted thatC∗ cannot be generated by the Anony-Signcryption
query and other restrictions are the same as Phase 2 in
Game 1.
Definition 6: If for any AI under SUF-CLMS-CPA,

the probability advantage of winning Game 3 within time
τ meets AdvSUF-CLMS-CPA (AI ) ≤ ε, the scheme is said to
be (τ, ε)-SUF-CLMS-CPA-I secure, where τ is the polyno-
mial running time and ε is the non-negligible probability
advantage.
Game 4 (SUF-CLMS-CPA-II): The game is the interaction

between the challenger B and AII under SUF-CLMS-CPA,
and the specific steps are shown as follows:
Setup: The step is the same as Setup in Game 2.
Attack: AII asks B for the same adaptive queries as

Phase 1 in Game 2, and B responds accordingly.
Forgery: AII forges a new ciphertext C∗ with a group of

target identities L = {ID1, ID2, . . . , IDn}and a plaintext m.
If the ciphertextC∗ can be decrypted correctly by any receiver
in L, AII wins the game. Otherwise, AII fails. But it should be
noted thatC∗ cannot be generated by the Anony-Signcryption
query and other restrictions are the same as Phase 2 in
Game 2.
Definition 7: If for any AII under SUF-CLMS-CPA,

the probability advantage of winning Game 4 within time
τ meets AdvSUF-CLMS-CPA (AII ) ≤ ε, the scheme is said to
be (τ, ε)-SUF-CLMS-CPA-II secure, where τ is the poly-
nomial running time and ε is the non-negligible probability
advantage.

3) RECEIVER ANONYMITY
The receiver anonymity model of the proposed scheme is
called the anonymous indistinguishability of certificateless
signcryption against selective multi-receiver, chosen cipher-
text attack (ANON-CLMS-CCA) [28]. ANON-CLMS-CCA
against AI (ANON-CLMS-CCA-I) and ANON-CLMS-CCA
against AII (ANON-CLMS-CCA-II) will be described by
Game 5 and Game 6, respectively.
Game 5(ANON-CLMS-CCA-I): The game is the interac-

tion between the challenger B and AI under ANON-CLMS-
CCA, and the specific steps are shown as follows:
Setup: B runs this algorithm to generate the master key s

and the system’s public parameter Params, and then sends
Params to AI while keeping s secret. Upon receiving Params,
AI outputs a group of target identitiesL = {ID0, ID1}.
Phase 1: AI asks B for the same adaptive queries as

Phase 1 in Game 1, and B responds accordingly.
Challenge: AI chooses a plaintext m and a group of target

identities L∗ = {ID2, ID3, . . . , IDn}, and sends them to B.
Upon receivingm and L∗, B randomly chooses a bit e ∈ {0, 1}
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and generates the ciphertext C∗ with a group of new target
identities L∗∗ = {IDe, ID2, ID3, . . . , IDn}, then returns C∗

to AI .
Phase 2: The step is the same as Phase 2 in Game 1.
Guess: AI guesses a bit e∗. If e∗ = e holds, AI wins the

game. Otherwise, AI fails. The probability advantage that AI
wins the game is defined as follows:

AdvANON-CLMS-CCA (AI ) =
∣∣2 Pr [e∗ = e

]
− 1

∣∣
Definition 8: If for any AI under ANON-CLMS-CCA,

the probability advantage of winning Game 5 within time τ
meets AdvANON-CLMS-CCA (AI ) ≤ ε, the scheme is said to
be (τ, ε)-ANON-CLMS-CCA-I secure, where τ is the poly-
nomial running time and ε is the non-negligible probability
advantage.
Game 6(ANON-CLMS-CCA-II): The game is the interac-

tion between the challenger B and AII under ANON-CLMS-
CCA, and the specific steps are shown as follows:
Setup: B runs this algorithm to generate the master key s

and the system’s public parameter Params, and then sends
Params and s toAII . Upon receivingParams and s,AII outputs
a set of target identities L = {ID0, ID1}.
Phase 1: AII asks B for the same adaptive queries as

Phase 1 in Game 2, and B responds accordingly.
Challenge: AII chooses a plaintext m and a group of target

identities L∗ = {ID2, ID3, . . . , IDn}, and sends them to B.
Upon receivingm and L∗, B randomly chooses a bit e ∈ {0, 1}
and generates the ciphertext C∗ with a group of new target
identities L∗∗ = {IDe, ID2, ID3, . . . , IDn}, then returns C∗

to AII .
Phase 2: The step is the same as Phase 2 in Game 2.
Guess: AII guesses a bit e∗. If e∗ = e holds, AII wins the

game. Otherwise, AII fails. The probability advantage that AII
wins the game is defined as follows:

AdvANON-CLMS-CCA (AII ) =
∣∣2 Pr [e∗ = e

]
− 1

∣∣
Definition 9: If for any AII under ANON-CLMS-CCA,

the probability advantage of winning Game 6 within time τ
meets AdvANON-CLMS-CCA (AII ) ≤ ε, the scheme is said to
be (τ, ε)-ANON-CLMS-CCA-II secure, where τ is the poly-
nomial running time and ε is the non-negligible probability
advantage.

III. THE PROPOSED SCHEME
The participants of the proposed scheme consist of KGC,
the sender S and a set of authorized receivers, R1, R2, . . . ,Rn,
where n is the number of authorized receivers decided by the
sender. And the specific scheme includes Setup algorithm,
Key Extract algorithm, Anony-Signcryption algorithm and
De-Signcryption algorithm, shown as follows:

A. SETUP ALGORITHM
Setup algorithm is run by KGC to generate the master key
and the system’s public parameters, shown as follows:

1) With a security parameter η as input, KGC ran-
domly chooses a prime integer p (q ≥ 2k , k is a long

integer.), generates an elliptic curve E defined on finite field
Fp, and chooses an additive cyclic group Gp on E and its
generator P.

2) KGC randomly chooses an integer s ∈ Z∗p as the master
key and computes Ppub = sP as system’s public key.

3) KGC chooses five secure hash functions:
H0:{0,1}∗ × Gp × Z∗p → Z∗p ; H1:{0,1}∗ × Gp → Z∗p ;

H2:Gp × Gp → Z∗p ; H3:Z∗p → Z∗p ; H4: {0,1}∗ × Z∗p ×
Z∗p×...×Z

∗
p × Gp→ Z∗p .

4) KGC chooses a symmetric encryption function Ek and
the corresponding decryption function Dk (such as AES),
where k is the symmetric key.
5) KGC publishes the system’s public parameters

Params =< p, Fp, E , Gp, P, Ppub, Ek , Dk , H0, H1, H2, H3,
H4 > and keeps the master key s secret.

B. KEY EXTRACT ALGORITHM
Key Extract algorithm is run by the user and KGC together
to generate the user’s public key and private key, shown as
follows:
1) Set-Secret-Value Algorithm: The user with the iden-

tity information IDi randomly chooses an integer vi ∈ Z∗p ,
computes Vi = viP, and sends Vi and his/her own identity
information IDi to KGC through a public channel, where vi
is the user’s secret value and Vi is the user’s secret value
parameter.
2) Extract-Partial-Private-Key Algorithm: Upon receiving

Vi and IDi from the user, KGC randomly chooses an integer
di ∈ Z∗p and computes yi = H0(IDi, Vi, di) + s(mod p)
and Di = H0(IDi, Vi, di)P. Then, KGC sends yi to the user
through a secure channel, and sends Di to the user through a
public channel, where yi is the user’s partial private key, and
Di is the user’s partial public key.
3) Set-Public-Key Algorithm: Upon receiving yi and Di

from KGC, the user checks whether the equation yiP =
Di + Ppub holds. If yes, the user accepts the partial pri-
vate key yi and the partial public key Di, and computes
PKi = Di + H1(IDi, Vi)Vi as his/her own public key.
Then, the user sends PKi to KGC for publication. Otherwise,
the user rejects the partial private key yi and the partial public
key Di.
4) Set-Private-Key Algorithm: The user computes

SKi = H1(IDi, PKi)(yi + H1(IDi, Vi)vi)(modp) as his/her
own private key.

C. ANONY-SIGNCRYPTION ALGORITHM
With the system’s public parameters Params, the sender’s
private key SKS and the plaintext m as input, the sender
S chooses a set of receivers with their identities infor-
mation L = {ID1, ID2, . . . , IDn} and signcrypts m as
follows:

1) Compute Qi = PKi + Ppub, where i = 1, 2, . . . , n;
2) Randomly choose an integer w ∈ Z∗p , and compute

W = wP, Fi = wH1(IDi, PKi)Qi and αi = H2(Fi,W ), where
i = 1, 2, . . . , n;
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3) Randomly choose an integer ξ ∈ Z∗p and compute the
polynomial

f (x) =
n∏
i=1

(x − αi)+ ξ (mod p)

= a0 + a1x + ...+ an−1xn−1 + xn, ai ∈ Z∗p ;

4) Compute k = H3(ξ ), J = Ek (m||IDS ) and
h = H4(m||IDS , ξ , a0, a1, . . . , an−1, W );
5) Compute h−1 to make it satisfy the equation

hh−1 ≡1mod p, and compute z = h−1(SKS + w)(mod p);
6) Generate the ciphertext C =< J , W , z, h, a0,

a1, . . . , an−1 > and broadcast it to receivers.

D. DE-SIGNCRYPTION ALGORITHM
Upon receiving the ciphertext C =< J , W , z, h,
a0, a1, . . . , an−1 >, each receiver can decrypt C with his/her
own private key SKi and the system’s public parameters
Params as follows:

1) Compute Fi = SKiW and αi = H2(Fi, W );
2) Compute f (x) = a0 + a1x + . . . + an−1xn−1 + xn and

ξ = f (αi);
3) Compute k = H3(ξ ) and m||IDS = Dk (J );
4) Compute h′ = H4(m||IDS , ξ , a0, a1, . . . , an−1,W ), and

check whether the equation h′ = h holds. If yes, the receiver
continues with the following steps. Otherwise, the receiver
rejects m and exits the de-signcryption process.
5) The receiver obtains the sender S’s public key PKS , and

judges whether the equation hzP = H1(IDS , PKS )(PKS +

Ppub) +W holds. If yes, the receiver accepts the plaintext m
and exits the de-signcryption process. Otherwise, the receiver
rejects m and exits the de-signcryption process.

IV. CORRECTNESS AND SECURITY PROOFS
A. CORRECTNESS ANALYSIS
Theorem 1: The verification of the user’s partial private key
in Key Extract Algorithm is correct.

Proof: The correctness of the user’s partial private key
verification is guaranteed by the establishment of the equation
yiP = Di+Ppub, and the deduction that the equation holds is
shown as follows:

yiP = (H0(IDi,Vi, di)+ s)P

= H0(IDi,Vi, di)P+ Ppub
= Di + Ppub

Through the above derivation, it can be seen that the equa-
tion yiP = Di+Ppub holds. As a result, the verification of the
user’s partial private key in Key Extract Algorithm is correct.
Theorem 2: The De-Signcryption algorithm is correct.
Proof: The correctness of De-Signcryption algorithm

is guaranteed by establishments of equations h′ = h and
hzP = H1(IDS ,PKS )(PKS + Ppub) + W , and deductions
that these two equations hold are shown in the following
1) and 2), respectively.

1) For every receiver Ri, with the ciphertext C , he/she has
Fi = SKiW and αi = H2(Fi, W ). Then, with αi, he/she

can compute ξ = f (αi), and then get k = H3(ξ ) and
m||IDS = Dk (J ). Finally, he/she has h′ = H4(m||IDS , ξ , a0,
a1, . . . , an−1, W ). So, the equation h′ = h holds.
2) When decrypting out the sender’s identity IDS ,

the receiver can obtain the sender’s public key and has

hzP = hh−1(SKS + w)P

= SKSP+W

= H1(IDS ,PKS )(yS + H1(IDS ,VS )vS )P+W

= H1(IDS ,PKS )(DS + H1(IDS ,VS )VS + Ppub)+W

= H1(IDS ,PKS )(PKS + Ppub)+W

That is to say, the equation hzP = H1(IDS , PKS )(PKS +

Ppub)+W holds.
Through the derivations of 1) and 2) above, it can be seen

that equations h′ = h and hzP = H1(IDS , PKS )(PKS+Ppub)+
W hold. As a result, theDe-Signcryption algorithm is correct.

B. SECURITY PROOFS
Based on security models in Section II, the specific security
proofs of the proposed scheme are shown below. In Theorem
3 and Theorem 4, we shall prove that the proposed scheme
can achieve IND-CLMS-CCA-I/II security. In Theorem 5 and
Theorem 6, we shall prove that the proposed scheme can
achieve SUF-CLMS-CPA-I/II security. In Theorem 7 and
Theorem 8, we shall prove that the proposed scheme can
achieve ANON-CLMS-CCA-I/II security.
Theorem 3: IND-CLMS-CCA-I. Under IND-CLMS-CCA,

if there is an adversary AI who can winGame 1 in polynomial
running time τ with a non-negligible probability advantage ε
(AI can ask for at most qi Hash queries Hi (i = 0,1,2,3,4), qc
Key queries, qe Set-Secret-Value queries, qb Extract-Private-
Key queries, qp Set-Public-Key queries, qk Set-Private-Key,
qr Public-Key-Replacement queries, qa Anony-Signcryption
queries and qd De-Signcryption queries.), the challenger B
can solve CDHP by interacting with the adversary AI in time
τ ′ ≤ τ+(2qc + 3qd )O (τs)with a non-negligible probability
advantage ε′ ≥ 2(ε − qdq4

/
2k )
/
nq2 , where τs is the time of

an elliptic curve scalar point multiplication operation.
Proof: Assume that an adversary AI can attack the

IND-CLMS-CCA security with a non-negligible probability
advantage ε and ask the challenger B for a series of queries
under the random oracle model. Given a set of elements< P,
aP, bP>, the challenger B computes abP to solve CDHP
by interacting with the adversary AI within a time bounded
polynomial. And the interaction between the challengerB and
the adversary AI is shown as follows:
Setup: B runs this algorithm to generate the master key s =

a ∈ Z∗p and the system’s public parameter Params =< Fp, E ,
Gp, P, Ppub = aP, Ek , Dk , p, H0, H1, H2, H3, H4 >, and then
sends Params to AI while keeping s secret. Upon receiving
Params, AI outputs a group of target identities L = {ID1,
ID2, . . . , IDn}, where n denotes a positive integer. It should
be noted that H0, H1, H2, H3 and H4 are random oracles
controlled by B, and the random oracles interactions between
AI and B are shown as follows:
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1)H0 hash query:With the tuple< IDj,Vj, dj > as input,AI
asks B forH0 hash query. Upon receiving the query, B checks
whether the tuple < IDj, Vj, dj, µj > is in list L0. If yes, B
returns µj to AI . Otherwise, B randomly chooses an integer
µj ∈ Z∗p and returns it to AI . Meanwhile, B updates the tuple
< IDj, Vj, dj, µj > in list L0.
2) H1 hash query: With tuples < IDj, Vj > and <IDj,

PKj > as input, AI asks B for H1 hash query. Upon receiving
the query, B checks whether the tuples < IDj, Vj, θj > and
<IDj, PKj, δj > are in list L1. If yes, B returns θj and δj to AI .
Otherwise, B randomly chooses two integers θj, δj ∈ Z∗p and
returns them to AI . Meanwhile, B updates tuples < IDj, Vj,
θj > and <IDj, PKj, δj > in list L1.
3) H2 hash query: With the tuple < Fj, Wj > as input, AI

asks B forH2 hash query. Upon receiving the query, B checks
whether the tuple< Fj,Wj, αj > is in list L2. If yes, B returns
αj to AI . Otherwise, B randomly chooses an integer αj ∈ Z∗p
and returns it to AI . Meanwhile, B updates the tuple< Fj,Wj,
αj > in list L2.
4) H3 hash query: With the tuple < ξj > as input, AI asks

B for H3 hash query. Upon receiving the query, B checks
whether the tuple < ξj, kj > is in list L3. If yes, B returns
kj to AI . Otherwise, B randomly chooses an integer kj ∈ Z∗p
and returns it toAI . Meanwhile,B updates the tuple< ξj, kj >
in list L3.
5) H4 hash query: With the tuple < mj||IDS , δj, aj,0,

aj,1, . . . , aj,n−1, Wj > as input, AI asks B for H4 hash query.
Upon receiving the query, B checks whether the tuple <
mj||IDS , δj, aj,0, aj,1, . . . , aj,n−1,Wj, hj > is in list L4. If yes,
B returns hj to AI . Otherwise, B randomly chooses an integer
hj ∈ Z∗p and returns it to AI . Meanwhile, B updates the tuple
< mj||IDS , δj, aj,0, aj,1, . . . , aj,n−1, Wj, hj > in list L4.
Phase 1: AI asks B for a series of adaptive queries, and B

responds accordingly as follows:
1) Key query: B checks whether the tuple <IDj, SKj, PKj,

vj, yj > is in list LC . If yes, B keeps the tuple. Otherwise, B
performs as follows:

a) If IDj = IDi, for i = 1, 2, . . . , n, B randomly chooses
two integers dj, vj ∈ Z∗p , sets Vj = vjP and SKj ← ⊥,
computes Dj = H0(IDi, Vi, di)P and PKj = Dj + H1(IDj,
Vj)Vj, and then updates tuples <IDj, SKj, PKj, vj, yj > in list
LC and < IDj, Vj, θj > in list L1, respectively.

b) If IDj 6=IDi, for i = 1, 2, . . . , n, B randomly chooses
two integers yj, vj ∈ Z∗p , sets Vj = vjP, computes Dj = yjP-
Ppub, PKj = Dj+H1(IDj, Vj)Vj and SKj = H1(IDj,PKj)(yj+
H1(IDj, Vj)vj) (modp), and then updates tuples <IDj, SKj,
PKj, dj, vj, yj > in list LC and < IDj, Vj, θj > in list L1,
respectively.

2) Set-Secret-Value query: AI asks B for Set-Secret-Value
query on IDj. Upon receiving the query, B checks whether the
tuple <IDj, SKj, PKj, vj, yj > is in list LC . If yes, B returns
vj to AI . Otherwise, B performs key query to obtain the tuple
<IDj, SKj, PKj, vj, yj >, and returns vj to AI .
3) Extract-Partial-Private-Key query:AI asksB for Extract-

Partial-Private-Key query on IDj. Upon receiving the query,
B responds as follows:

a) If IDj = IDi, for i = 1, 2, . . . , n, B returns ‘‘failure’’
to AI .

b) If IDj 6=IDi, for i = 1, 2, . . . , n, B checks whether the
tuple<IDj, SKj, PKj, dj, vj, yj > is in list LC . If yes, B returns
yj to AI . Otherwise, B performs key query to obtain the tuple
<IDj, SKj, PKj, vj, yj > and returns yj to AI .
4) Set-Public-Key query: AI asks B for Set-Public-Key

query on IDj. Upon receiving the query, B checks whether the
tuple <IDj, SKj, PKj, vj, yj > is in list LC . If yes, B returns
PKj toAI . Otherwise,B performs key query to obtain the tuple
<IDj, SKj, PKj, vj, yj > and returns PKj to AI .
5) Set-Private-Key query: AI asks B for Set-Private-Key

query on IDj. Upon receiving the query, B responds as
follows:

a) If IDj = IDi, for i = 1, 2, . . . , n, B returns ‘‘failure’’
to AI .

b) If IDj 6= IDi, for i = 1, 2, . . . , n, B checks whether
the tuple <IDj, SKj, PKj, dj, vj, yj > is in list LC . If yes, B
returns SKj to AI . Otherwise, B performs key query to obtain
the tuple <IDj, SKj, PKj, vj, yj > and returns SKj to AI .
6) Public-Key-Replacement query: AI asks B for Public-

Key-Replacement query on IDj with PK′j. Upon receiving the
query, B searches for the tuple <IDj, SKj, PKj, dj, vj, yj > in
list LC and replaces PKj with PK′j. Then, B updates the tuple
<IDj, SKj, PKj, vj, yj > in list LC .
7) Anony-Signcryption query: AI asks B for Anony-

Signcryption query on the plaintext m and the identity infor-
mation IDS . Upon receiving the query, B judges whether
IDS 6= IDi, for i = 1, 2, . . . , n. If yes, B performs Set-
Private-Key query to obtain the private key SKS , generates
the ciphertext C , and returns C to AI . Otherwise, B performs
as follows:

a) Randomly choose an integer w ∈ Z∗p , and compute
W = wP, Fj = wH1(IDj, PKj)(PKj + Ppub) and
αj = H2(Fj, W ), where j = 1, 2, . . . , n;
b) Randomly choose an integer ξ ∈ Z∗p , and construct the

polynomial

f (x) =
n∏
j=1

(
x − αj

)
+ ξ (mod p)

= a0 + a1x + ...+ an−1xn−1 + xn, aj ∈ Z∗p ;

c) Compute k = H3(ξ ), J = Ek (m||IDS ) and
h = H4(m||IDS , ξ , a0, a1, . . . , an−1, W );
d) Randomly choose an integer z ∈ Z∗p ;
e) Return the ciphertext C =< J , W , z, h, a0,

a1, . . . , an−1 > to AI .
8) De-Signcryption query: AI asks B for De-Signcryption

query on the ciphertext C . Upon receiving the query, B
randomly chooses an identity information IDj, and judges
whether IDj = IDi, for i = 1, 2, . . . , n. If yes, B returns
‘‘failure’’ to AI . Otherwise, B performs as follows:

a) Search for the tuple <IDj, SKj, PKj, vj, yj > in list LC
to obtain SKj, and compute Fj = SKjW and αj = H2(Fj,W );
b) Compute f (x) = a0 + a1x + . . .+ an−1xn−1 + xn, and

obtain ξ by f (x) and αj;
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c) Compute k = H3(ξ ) and m||IDS = Dk (J );
d) Judge whether the equation hzP = H1(IDS ,PKS )(PKS+

Ppub) + W holds. If yes, B returns m to AI . Otherwise, B
returns ‘‘failure’’ to AI .
Challenge: AI randomly chooses a pair of plaintext < m0,

m1 >with equal length, and sends them to B. Upon receiving
< m0, m1 >, B randomly chooses a bit β ∈ {0, 1} and
generates the ciphertext C∗ with the chosen plaintext mβ as
follows:

a) Set Wi = bPKi, Fi = b(PKi + Ppub) and αi = H2(Fi,
Wi), where i = 1, 2, . . . , n;

b) Randomly choose an integer ξ ∈ Z∗p and construct the
polynomial

f (x) =
n∏
j=1

(
x − αj

)
+ ξ (mod p)

= a0 + a1x...+ an−1xn−1 + xn, aj ∈ Z∗p ;

c) Compute k = H3(ξ ), J∗ = Ek (mβ ||IDS ) and
h∗ = H4(mβ ||IDS , ξ , a0, a1, . . . , an−1, Wi);

d) Randomly choose an integer z ∈ Z∗p ;
e) Return the ciphertext C∗ =< J∗, Wi, z, h, a0,

a1, . . . , an−1 > to AI .
Phase 2: AI asks B for the same queries as Phase 1, but

it should be noted thatAI cannot perform De-Signcryption
query on C∗.
Guess: AI guesses a bit β∗. If β∗ = β holds, AI wins the

game, and B outputs abP = Wi-Fi as the solution to CDHP.
Otherwise, B outputs ‘‘failure’’.

Through the discussion above, it is concluded that dur-
ing de-signcryption queries, H4 hash could provide a valid
ciphertext, so the probability that a valid ciphertext is
rejected is not greater than q4/2k . Since AI asks B for qd de-
signcryption queries during the attack process, the probability
advantage that B decrypts the ciphertext successfully is εd ≥
ε − q4qd/2k . And during the guess process, H2 hash satisfies
CDHP, so the correct probability that B computes abP is at
least εg = 2/nq2. Therefore, the probability advantage that
B can solve CDHP by interacting with the adversary AI is
ε′ ≥ εdεg ≥ 2(ε − qdq4

/
2k )
/
nq2 within running time τ ′ ≤

τ+(2qc + 3qd )O (τs), where τs is the time of an elliptic curve
scalar point multiplication operation.
Theorem 4: IND-CLMS-CCA-II. Under IND-CLMS-

CCA, if there is an adversary AII who can win Game 2 in
polynomial running time τ with a non-negligible probability
advantage ε (AII can ask for at most qi Hash queries Hi
(i = 0,1,2,3,4), qc Key queries, qe Set-Secret-Value queries,
qb Extract-Private-Key queries, qp Set-Public-Key queries,
qk Set-Private-Key, qa Anony-Signcryption queries and qd
De-Signcryption queries.), the challenger B can solve CDHP
by interacting with the adversary AII in time τ ′ ≤ τ +

(3qc + 3qd )O (τs) with a non-negligible probability advan-
tage ε′ ≥ 2(ε − qdq4

/
2k )
/
nq2 , where τs is the time of an

elliptic curve scalar point multiplication operation.
Proof: Assume that an adversary AII can attack the

IND-CLMS-CCA security with a non-negligible probability

advantage ε and ask the challenger B for a series of queries
under the random oracle model. Given a set of elements< P,
aP, bP>, the challenger B computes abP to solve CDHP
by interacting with the adversary AII within a time bounded
polynomial. And the interaction between the challengerB and
the adversary AII is shown as follows:
Setup: B runs this algorithm to generate the master key s ∈

Z∗p and the system’s public parameter Params =< Fp, E ,
Gp, P, K = aP, Ppub, Ek , Dk , p, H0, H1, H2, H3, H4 >,
and then sends Params and s to AII , where a ∈ Z∗p . Upon
receivingParams and s,AII outputs a group of target identities
L = {ID1, ID2, . . . , IDn}, where n denotes a positive integer.
It should be noted that H0, H1, H2, H3 and H4 are random
oracles controlled by B, and the random oracles interactions
between AII and B are the same as Setup in Theorem 3.
Phase 1: AII asks B for a series of adaptive queries, and B

responds accordingly as follows:
1) Key query: B checks whether the tuple <IDj, SKj, PKj,

vj, yj > is in list LC . If yes, B keeps the tuple. Otherwise, B
performs as follows:

a) If IDj = IDi, for i = 1, 2, . . . , n, B ran-
domly chooses two integers dj, vj ∈ Z∗p , com-
putes yj = H0(IDj, Vj, dj) + s(modp) and PKj =

H0(IDj, Vj, dj)P + H1(IDj, Vj)Vj, and then updates tuples
<IDj, SKj, PKj, vj, yj > in list LC and < IDj, Vj,
θj > in list L1, respectively, where Vj = vjP and SKj←⊥.
b) If IDj 6=IDi, for i = 1, 2, . . . , n, B randomly chooses

two integers dj, vj ∈ Z∗p , and computes yj = H0(IDj, Vj, dj)+
s(modp), PKj = H0(IDj, Vj, dj)P+ H1(IDj, Vj)Vj and SKj =

H1(IDj, PKj)(yj + H1 (IDj, Vj)vj)(modp), and then updates
tuples <IDj, SKj, PKj, vj, yj > in list LC and < IDj, Vj,
θj > in list L1, respectively, where Vj = vjP.

2) Set-Secret-Value query: AII asks B for Set-Secret-Value
query on IDj. Upon receiving the query, B responds as
follows:

a) If IDj = IDi, for i = 1, 2, . . . , n, B returns ‘‘failure’’
to AII .

b) If IDj 6= IDi, for i = 1, 2, . . . , n, B checks whether
the tuple <IDj, SKj, PKj, vj, yj > is in list LC . If yes,
B returns vj to AII . Otherwise, B performs key query to
obtain the tuple <IDj, SKj, PKj, vj, yj >, and returns vj
to AII .

3) Extract-Partial-Private-Key query: AII asks B for
Extract-Partial-Private-Key query on IDj. Upon receiving the
query, B checks whether the tuple <IDj, SKj, PKj, vj, yj > is
in list LC . If yes, B returns yj to AII . Otherwise, B performs
key query to obtain the tuple <IDj, SKj, PKj, vj, yj > and
returns yj to AII .

4) Set-Public-Key query: AII asks B for Set-Public-Key
query on IDj. Upon receiving the query, B checks whether the
tuple <IDj, SKj, PKj, vj, yj > is in list LC . If yes, B returns
PKj to AII . Otherwise, B performs key query to obtain the
tuple <IDj, SKj, PKj, vj, yj > and returns PKj to AII .
5) Set-Private-Key query: AII asks B for Set-Private-Key

query on IDj. Upon receiving the query, B responds as
follows:
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a) If IDj = IDi, for i = 1, 2, . . . , n, B returns ‘‘failure’’
to AII .

b) If IDj 6= IDi, for i = 1, 2, . . . , n, B checks whether the
tuple <IDj, SKj, PKj, vj, yj > is in list LC . If yes, B returns
SKj to AII . Otherwise, B performs key query to obtain the
tuple <IDj, SKj, PKj, vj, yj > and returns SKj to AII .
6) Anony-Signcryption query: The step is the same as

Anony-Signcryption query in Theorem 3.
7) De-Signcryption query: The step is the same as

De-Signcryption query in Theorem 3.
Challenge: AII randomly chooses a pair of plaintext< m0,

m1 >with equal length, and sends them to B. Upon receiving
< m0, m1 >, B randomly chooses a bit β ∈ {0, 1} and
generates the ciphertext C∗ with the chosen plaintext mβ as
follows:

a) Set Wi = b(PKi + Y ), Fi = b(PKi + Ppub) and
αi = H2(Fi, Wi), where Y = K + Ppub and i = 1, 2, . . . , n;
b) Randomly choose an integer ξ ∈ Z∗p and construct the

polynomial

f (x) =
n∏
j=1

(
x − αj

)
+ ξ (mod p)

= a0 + a1x + . . .+ an−1xn−1 + xn, aj ∈ Z∗p

c) Compute k = H3(ξ ), J∗ = Ek (mβ ||IDS ) and
h∗ = H4(mβ ||IDS , ξ , a0, a1, . . . , an−1, Wi);

d) Randomly choose an integer z ∈ Z∗p ;
e) Return the ciphertext C∗ =< J∗, Wi, z, h, a0,

a1, . . . , an−1 > to AII .
Phase 2: AII asks B for the same queries as Phase 1, but

it should be noted that AII cannot perform De-Signcryption
query on C∗.
Guess: AII guesses a bit β∗. If β∗ = β holds, AII wins the

game, and B outputs abP = Fi-Wi as the solution to CDHP.
Otherwise, B outputs ‘‘failure’’.

Through the discussion above, it is concluded that dur-
ing de-signcryption queries, H4 hash could provide a valid
ciphertext, so the probability that a valid ciphertext is rejected
is not greater than q4/2k . Since AII asks B for qd de-
signcryption queries during the attack process, the probability
advantage that B decrypts the ciphertext successfully is εd ≥
ε − q4qd/2k . And during the guess process, H2 hash satisfies
CDHP, so the correct probability that B computes abP is at
least εg = 2/nq2. Therefore, the probability advantage that
B can solve CDHP by interacting with the adversary AII is
ε′ ≥ εdεg ≥ 2(ε − qdq4

/
2k )
/
nq2 within running time τ ′ ≤

τ+(3qc + 3qd )O (τs), where τs is the time of an elliptic curve
scalar point multiplication operation.
Theorem 5: SUF-CLMS-CPA-I. Under SUF-CLMS-CPA,

if there is an adversary AI who can winGame 3 in polynomial
running time τ with a non-negligible probability advantage
ε (AI can ask for the same queries as AI in Theorem 3),
the challenger B can solve CDHP by interacting with the
adversary AI in time τ ′ ≤ τ + (2qc + 2qa)O (τs) with a non-
negligible probability advantage ε′ ≥ (ε − qa

/
2k )
/
2, where

τs is the time of an elliptic curve scalar point multiplication
operation.

Proof:Assume that an adversary AI can attack the SUF-
CLMS-CPA securitywith a non-negligible probability advan-
tage ε and ask the challengerB for a series of queries under the
random oracle model. Given a set of elements< P, aP, bP>,
the challenger B computes abP to solve CDHP by interacting
with the adversary AI within a time bounded polynomial. The
interaction between the challenger B and the adversary AI is
shown as follows:
Setup: The step is the same as Setup in Theorem 3.
Attack: AI asks B for the same adaptive queries as

Phase 1 in Theorem 3.
Forgery: AI forges a new ciphertext C∗ =< J ,W , z, h, a0,

a1, . . . , an−1 > with a group of target identities L = {ID1,
ID2, . . . , IDn} and a plaintext m. If equations h = h′ and
hzP = H1(IDS , PKS )(PKS + Ppub)+W hold, the ciphertext
C∗ is forged successfully. And setting PK′i = b−1PKi and
Fi = b(PK′i+Ppub), B computes Fi = PKi+abP, and outputs
abP = Fi-PKi as the solution to CDHP. Otherwise, B outputs
‘‘failure’’.

Through the discussion above, it is concluded that during
qa signcryption queries, its successful probability advantage
is at least εa = ε − qa/2k . And during the forger pro-
cess, the correct probability that B computes abP is at least
εg = 1/2. Therefore, the probability advantage that B can
solve CDHP by interacting with the adversary AI is ε′ ≥
εaεg = (ε − qa

/
2k )
/
2 within running time τ ′ ≤ τ +

(2qc + 2qa)O (τs), where τs is the time of an elliptic curve
scalar point multiplication operation.
Theorem 6: SUF-CLMS-CPA-II. Under SUF-CLMS-CPA,

if there is an adversaryAII who canwinGame 4 in polynomial
running time τ with a non-negligible probability advantage
ε (AII can ask for the same queries as AII in Theorem 4),
the challenger B can solve CDHP by interacting with the
adversary AII in time τ ′ ≤ τ+(3qc + 2qa)O (τs)with a non-
negligible probability advantage ε′ ≥ (ε − qa

/
2k )
/
2, where

τs is the time of an elliptic curve scalar point multiplication
operation.

Proof: Assume that an adversary AII can attack the
SUF-CLMS-CPA security with a non-negligible probability
advantage ε and ask the challenger B for a series of queries
under the random oracle model. Given a set of elements< P,
aP, bP>, the challenger B computes abP to solve CDHP
by interacting with the adversary AII within a time bounded
polynomial. The interaction between the challenger B and the
adversary AII is shown as follows:
Setup: The step is the same as Setup in Theorem 4.
Attack: AII asks B for the same adaptive queries as

Phase 1 in Theorem 4.
Forgery: AII forges a new ciphertext C∗ =< J , W , z, h,

a0, a1, . . . , an−1 > with a set of target identities L = {ID1,
ID2, . . . , IDn} and a plaintext m. If equations h = h′ and
hzP = H1(IDS , PKS )(PKS + Ppub)+W hold, the ciphertext
C∗ is forged successfully. And setting PK′i = b−1PKi and
Fi = b(PK′i + K ), B computes Fi = PKi + abP, and outputs
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abP = F i-PKi as the solution to CDHP. Otherwise, B outputs
‘‘failure’’.

Through the discussion above, it is concluded that
during qa signcryption queries, its successful probability
advantage is at least εa = ε − qa/2k . And for the forger
process, the correct probability that B computes abP is at
least εg = 1/2. Therefore, the probability advantage that B
can solve CDHP by interacting with the adversary AII is
ε′ ≥ εaεg = (ε − qa

/
2k )
/
2 within running time τ ′ ≤

τ+(3qc + 2qa)O (τs), where τs is the time of an elliptic curve
scalar point multiplication operation.
Theorem 7:ANON-CLMS-CCA-I. Under ANON-CLMS-

CCA, if there is an adversary AI who can win Game 5 in
polynomial running time τ with a non-negligible proba-
bility advantage ε (AI can ask for the same queries as
AI in Theorem 3), the challenger B can solve CDHP by
interacting with the adversary AI in time τ ′ ≤ τ +

(2qc + 3qd )O (τs) with a non-negligible probability advan-
tage ε′ ≥ (ε − qdq4

/
2k )
/
nq2 , where τs is the time of an

elliptic curve scalar point multiplication operation.
Proof: Assume that an adversary AI can attack the

ANON-CLMS-CCA security with a non-negligible advan-
tage ε and ask the challenger B for a series of queries under
the random oracle model. Given a set of elements < P, aP,
bP>, B computes abP to solve CDHP by interacting with
the adversary AI within a time bounded polynomial. The
interaction between the challenger B and the adversary AI is
shown as follows:
Setup: B runs this algorithm to generate the master key

s = a ∈ Z∗p and the system’s public parameter Params =<
Fp, E , Gp, P, Ppub = aP,Ek ,Dk , p, H0, H1, H2, H3, H4 >

and then sends Params to AI while keeping s secret. Upon
receiving Params, AI outputs a group of target identities
L = {ID0, ID1}. It should be noted that H0, H1, H2, H3
and H4 are random oracles controlled by B, and the random
oracles interactions between AI and B are the same as Setup
in Theorem 3.
Phase 1: AI asks B for the same adaptive queries as

Phase 1 in Theorem 3.
Challenge: AI chooses a plaintext m and a group of target

identities L∗ = {ID2, ID3, . . . , IDn}, and sends them to B.
Upon receivingm and L∗,B randomly chooses a bit e ∈ {0, 1}
and generates the ciphertext C∗ with a group of new target
identities L∗∗ = {IDe, ID2, ID3, . . . , IDn}as follows:
a) Set Wi = bPKi, Fi = b(PKi + Ppub) and αi = H2(Fi,

Wi), where i = e, 2, 3, . . . , n;
b) Randomly choose an integer ξ ∈ Z∗p and construct the

polynomial

f (x) =
n∏
j=1

(
x − αj

)
+ ξ (mod p)

= a0 + a1x...+ an−1xn−1 + xn, aj ∈ Z∗p

c) Compute k = H3(ξ ), J∗ = Ek (m||IDS ) and
h∗ = H4(m||IDS , ξ , a0, a1, . . . , an−1, Wi);
d) Randomly choose an integer z ∈ Z∗p ;

e) Return the ciphertext C∗ =< J∗, Wi, z, h, a0,
a1, . . . , an−1 > to AI .
Phase 2: AI asks B for the same queries as Phase 2, but

it should be noted that AI cannot perform De-Signcryption
query on C∗.
Guess: AI guesses a bit e∗. If e∗ = e holds, AI wins the

game, and B outputs abP = W i-Fi as the solution to CDHP.
Otherwise, B outputs ‘‘failure’’.

Through the discussion above, it is concluded that dur-
ing de-signcryption queries, H4 hash could provide a valid
ciphertext, so the probability that a valid ciphertext is
rejected is not greater than q4/2k . Since AI asks B for qd de-
signcryption queries during the attack process, the probability
advantage that B decrypts the ciphertext successfully is εd ≥
ε − q4qd/2k . And during the guess process, H2 hash satisfies
CDHP, so the correct probability that B computes abP is at
least εg = 1/nq2. Therefore, the probability advantage that
B can solve CDHP by interacting with the adversary AI is
ε′ ≥ εdεg ≥ (ε − qdq4

/
2k )
/
nq2 within running time τ ′ ≤

τ+(2qc + 3qd )O (τs), where τs is the time of an elliptic curve
scalar point multiplication operation.
Theorem 8: ANON-CLMS-CCA-II. Under ANON-

CLMS-CCA, if there is an adversary AII who can win
Game 6 in polynomial running time τ with a non-
negligible advantage ε (AII can ask for the same queries
as AII in Theorem 4), the challenger B can solve CDHP
by interacting with the adversary AII in time τ ′ ≤

τ + (3qc + 3qd )O (τs) with a non-negligible probabil-
ity advantage ε′ ≥

(
ε − qdq4

/
2k
)/
nq2 , where τs is

the time of an elliptic curve scalar point multiplication
operation.

Proof: Assume that an adversary AII can attack the
ANON-CLMS-CCA security with a non-negligible advan-
tage ε and ask the challenger B for a series of queries under
the random oracle model. Given a set of elements < P, aP,
bP>, B computes abP to solve CDHP by interacting with
the adversary AII within a time bounded polynomial. The
interaction between the challenger B and the adversary AII
is shown as follows:
Setup: B runs this algorithm to generate the master key

s ∈ Z∗p and the system’s public parameter Params =< Fp,
E , Gp, P, K = aP, Ppub, Ek , Dk , p, H0, H1, H2, H3, H4 >,
and then sends Params and s to AII , where a ∈ Z∗p . Upon
receivingParams and s,AII outputs a group of target identities
L = {ID0, ID1}. It should be noted that H0, H1, H2, H3
and H4 are random oracles controlled by B, and the random
oracles interactions between AII and B are the same as Setup
in Theorem 3.
Phase 1: AII asks B for the same adaptive queries as

Phase 1 in Theorem 4.
Challenge: AII chooses a plaintext m and a group of target

identities L∗ = {ID2, ID3, . . . , IDn}, and sends them to
B. Upon receiving m and L∗, B randomly chooses a bit
e ∈{0,1} and generates the ciphertext C∗ with a group of
new target identities L∗∗ = {IDe, ID2, ID3, . . . , IDn}as
follows:
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TABLE 1. Symbols’ definition.

TABLE 2. Comparison of efficiency.

a) SetWi = b(PKi + Y ), Fi = b(PKi + Ppub) and
αi = H2(Fi, Wi), where Y = K + Ppub and
i = e, 2, 3, . . . , n;

b) Randomly choose an integer ξ ∈ Z∗p and construct the
polynomial

f (x) =
n∏
j=1

(
x − αj

)
+ ξ (mod p)

= a0 + a1x + . . .+ an−1xn−1 + xn, aj ∈ Z∗p

c) Compute k = H3(ξ ), J∗ = Ek (m||IDS ) and
h∗ = H4(m||IDS , ξ , a0, a1, . . . , an−1, Wi);
d) Randomly choose an integer z ∈ Z∗p ;
e) Return the ciphertext C∗ =< J∗, Wi, z, h, a0,

a1, . . . , an−1 > to AII .
Phase 2: AII asks B for the same queries as Phase 2, but

it should be noted that AII cannot perform De-Signcryption
query on C∗.
Guess: AII guesses a bit e∗. If e∗ = e holds, AII wins the

game, and B outputs abP = F i-Wi as the solution to CDHP.
Otherwise, B outputs ‘‘failure’’.

Through the discussion above, it is concluded that dur-
ing de-signcryption queries, H4 hash could provide a valid
ciphertext, so the probability that a valid ciphertext is
rejected is not greater than q4/2k . Since AII asks B for qd

de-signcryption queries during the attack process, the prob-
ability advantage that B decrypts the ciphertext successfully
is εd ≥ ε − q4qd/2k . And during the guess process, H2 hash
satisfies CDHP, so the correct probability that B computes
abP is at least εg = 1/nq2. Therefore, the probability advantage
that B can solve CDHP by interacting with the adversary
AII is ε′ ≥ εdεg ≥ (ε − qdq4

/
2k )
/
nq2 within running time

τ ′ ≤ τ+(3qc + 3qd )O (τs), where τs is the time of an elliptic
curve scalar point multiplication operation.

V. EFFICIENCY ANALYSIS AND FUNCTIONAL
COMPARISON
In order to evaluate our scheme, we will make compar-
isons between our scheme and the existing ones [25], [26],
[28]–[33] in terms of computational efficiency and functions,
because these schemes [25], [26], [28]–[33] are based on cer-
tificateless cryptography and they are similar to our scheme
in some functions.

A. EFFICIENCY ANALYSIS
For ease of analysis, we define some symbols in TABLE 1,
and the corresponding data are from [28]. It is worth not-
ing that we only consider these operations’ time defined
in TABLE 1, and other operations’ time is not considered
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TABLE 3. Comparison of functions.

because their runtime can be negligible compared with that
of operations defined in TABLE 1.

The comparisons of computational efficiency between our
scheme and these schemes [25], [26], [28]–[33] in signcryp-
tion/encryption and de-signcryption/decryption are shown in
TABLE 2.

From TABLE 2, we can see that compared with
schemes [25], [26], [28]–[33], our scheme is the highest in
computational efficiency in terms of signcryption/encryption
process. In de-signcryption/decryption, our scheme is more
efficient than schemes [25], [26], [29], [31]–[33], but more
inefficient than schemes [28], [30]. The reason is that our
scheme has the step to verify the message source, but these
schemes [28], [30] do not.

B. FUNCTIONAL COMPARISON
The comparison of functions between our scheme and these
schemes [25], [26], [28]–[33] is shown in the following
TABLE 3.

From TABLE 3, we can see that only the scheme [28]
and our scheme meet decryption fairness, which ensures that
all authorized receivers have the same ability to decrypt the
received ciphertext, while schemes [25], [26], [29]–[33] do
not. In addition, in order to protect the receivers’ privacy,
schemes [29], [30], [33] and our scheme achieve the receiver
anonymity, which means that no one except the sender knows
the authorized receivers’ identities. However, schemes [25],
[26], [28], [31]–[32] do not take the receiver anonymity
into account, which reveals the receivers’ identities in their
ciphertext directly. Schemes [28], [32] and our scheme pos-
sess the partial private key verifiability, which prevents the
malicious KGC from producing fake partial private key to
deceive users. Nevertheless, because the partial private key
verifiability is unavailable in schemes [25], [26], [29]–[31],
[33], they have no ability to prevent the malicious KGC’s
attack. Schemes [25], [26] and our scheme realize the signa-
ture function to ensure message’s reliability, which avoids the

situation that the attacker impersonates the sender’s identity
to send the message. But schemes [28]–[33] do not consider
the function, and it is possible for the attacker to personate
the sender’s identity to do something bad. In short, compared
with schemes [25], [26], [28]–[33], our scheme has more
functions, and is more secure and more suitable for practical
applications.

VI. CONCLUSION
In this paper, we propose an efficient anonymous certifi-
cateless multi-receiver signcryption scheme without bilinear
pairings. Compared with existing CLME/CLMS schemes,
the proposed scheme not only is high in computational effi-
ciency, because the bilinear pairing and MTP hash function
are not used and the number of scalar point multiplications on
ECC is limited as small as possible, but also hasmore security
functions such as decryption fairness, partial private key veri-
fiability and signature. It has been proved to be secure in mes-
sage confidentiality, unforgeability and receiver anonymity
under the random oracle model. Therefore, whether in effi-
ciency, functions, or in security, the proposed scheme is more
in line with practical needs in application.
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