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ABSTRACT Intuitive and robust multimodal robot control is the key toward human–robot collaboration
(HRC) for manufacturing systems. Multimodal robot control methods were introduced in previous studies.
The methods allow human operators to control robot intuitively without programming brand-specific code.
However, most of the multimodal robot control methods are unreliable because the feature representations
are not shared across multiple modalities. To target this problem, a deep learning-based multimodal fusion
architecture is proposed in this paper for robust multimodal HRC manufacturing systems. The proposed
architecture consists of three modalities: speech command, hand motion, and body motion. Three unimodal
models are first trained to extract features, which are further fused for representation sharing. Experiments
show that the proposed multimodal fusion model outperforms the three unimodal models. This paper
indicates a great potential to apply the proposedmultimodal fusion architecture to robust HRCmanufacturing
systems.

INDEX TERMS Deep learning, human-robot collaboration, multimodal fusion, intelligent manufacturing
systems.

I. INTRODUCTION
Recently, human-robot collaboration (HRC) has emerged as
a research spotlight in several manufacturing industries [1].
Compared with traditional manufacturing systems where
human operators and robots are strictly separated due to
safety reasons, HRC manufacturing systems allow human
operators and robots to work together in a shared environ-
ment. By utilising the advantages from both human operators
and robots, HRC manufacturing systems empower human
operators to actively assign repetitive and dangerous tasks
to robots [2]–[4], while human operators can focus on more
interesting and challenging tasks. One of the most signifi-
cant differences between traditional manufacturing systems
and HRC manufacturing systems is the control interface of
the industrial robot [4]. Since the strict separation between
human operators and industrial robots is required, traditional
industrial robot controllers adopt model-based control meth-
ods [5] and brand-specific robot control code. However, HRC
manufacturing systems are normally deployed in dynamic
environments where human operators and industrial robots
are coexisted. Control commands therefore need to be
assigned to industrial robots actively. Consequently, in HRC

manufacturing systems, the human operators should be able
to access and control the robots intuitively and effortlessly
without writing and debugging brand-specific code [6].

Multimodal HRC was proposed for intuitive robot con-
trol [2], [4], [7]. It allows human operators to control the
robots with human-friendly methods such as hand and body
motion [1], speech command [2], haptic touch [8], etc.
However, due to the unstable sensors and limited recognition
accuracy, most of the multimodal HRC systems are intuitive
but unreliable. Thus, current multimodal HRC systems still
cannot be directly applied in manufacturing environments.

A simple way to achieve robust multimodal HRC is to
add more modalities and utilise the representations from
different modalities. Instead of hard-coded rules or simple
logic gates between different modalities [2], [4], [6], more
advanced information fusion method should be available to
fully share and utilise the embedded hidden data patterns
from multimodalities.

The recent advancements of deep learning have had a pro-
found impact on industry and society [9], [10]. Deep learning
algorithms not only outperform human experts in recognition
and strategy-related tasks [9], [11], but also demonstrate the

74762
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-9618-8826


H. Liu et al.: Toward Robust Human–Robot Collaborative Manufacturing: Multimodal Fusion

potential in multimodal fusion [12]. Deep learning and mul-
timodal fusion provide outstanding flexibility and capability
in capturing hidden patterns from high dimensional multi-
modal data, which can be potentially utilised to analyze the
multimodalities to make comprehensive decisions for robust
multimodal HRC.

As shown in Figure 1, in this paper, the authors propose a
multimodal fusion architecture for intuitive and robust HRC
systems with microphone-based speech command recogni-
tion, Leap Motion-based hand motion recognition [13], and
camera-based body motion recognition. To design the pro-
posed architecture, the authors review related literature in
multimodal HRC and multimodal deep learning. Different
deep neural networks are adopted to process the input sequen-
tial data from each unimodality. The trained three unimodal
models are further fused by multimodal fusion architecture to
facilitate robust decision making. The authors also compare
and visualize the results of multimodal fusion. Discussions
and future directions are given before concluding the paper.

FIGURE 1. Multimodal human-robot collaboration enabled by speech
command recognition, hand motion recognition, and body motion
recognition.

II. RELATED WORK
A. MULTIMODAL HUMAN-ROBOT COLLABORATION
For intuitive robot control, multimodal HRC has been
researched extensively [7], [14], [15]. As one of the most
effective tools for human-human communication, speech
commands have been applied to robot control by many
researchers [4], [7], [14], [16]. Without the noisy envi-
ronment, the speech command recognition can reach rela-
tively high accuracy [4], [14]. In the manufacturing context,
the noisy environment can be a challenging factor [2], [4].
Several researchers also explored the possibility to adopt
body motion recognition for robot control [1], [4], [14].
In bodymotion recognition, both 2-D camera and 3-D camera
can be applied [1]. Recent advancements of human tracking
with 2-D camera improved the reliability of body motion
tracking [17], which can be adopted to further increase the

body motion recognition accuracy. Another popular modality
for multimodal HRC is hand motion [1], [7], [14], [15]. Many
different sensors can be utilised for hand motion recognition,
such as: 2-D camera [7], 3-D camera [4], [15], electromyo-
graphic (EMG) band [1], and gyroscope glove [1]. With
the development of sensor technologies, the applicability of
hand motion recognition could be further extended. In some
literature, gaze is adopted as a modality for multimodal HRC
robot control [14], [18]. Defined as the direction of eyes
pointing in space, gaze can potentially provide timely contex-
tual information for HRC manufacturing applications. With
new sensor technologies, some literature suggested that facial
expressions and emotional information can also be used as a
modality inmultimodal HRC [14]. In short, the emerging sen-
sor technologies and newmodalities provide new possibilities
for HRC manufacturing applications.

To recognise the sequential data, various machine learn-
ing models can be applied. Hidden Markov model (HMM)
is suitable for modelling sequences while maintaining the
spatiotemporal characteristics within the sequences. Filler-
based HMM [19]–[21] was the earliest algorithm aiming at
speech command recognition, i.e., Keyword Spotting (KWS).
HMM was also regarded as a promising approach for hand
motion recognition [22], [23]. Large margin-based classifi-
cation algorithms such as Support Vector Machine (SVM)
was utilised to maximise the detection rate of keywords [24].
Furthermore, SVM can be adopted for problems such as hand
motion recognition [25], facial expression recognition [25],
and body motion recognition [1], [26]. Other commonly used
algorithms for motion recognition tasks include Ensemble
Method [27] and Dynamic Time Warping [28], [29].

As discussed in Section I, deep learning has become
one of the most effective machine learning models. Given
large amount of data, deep learning can provide human-level
performance on various tasks [10]. Convolutional Neural
Network (CNN) is a popular deep learning model that can be
adopted for sequential data recognition tasks such as speech
command recognition [4], [30]–[32]. Fernández et al. [33]
applied Recurrent Neural Network (RNN) as a discriminative
deep learning model for KWS tasks. Results turned out that
RNN outperforms traditional HMM approach by a large
margin. RNN has been used in other sequence recognition
tasks such as speech command recognition [4], [34] and
motion recognition [4], [35], [36]. As a special type of
RNN, Long short-term memory (LSTM) is especially suit-
able for long sequential data recognition tasks [37]–[39].
Compare with basic RNN, LSTM selectively remem-
ber or forget information in training, which is beneficial for
learning the long-term dependencies. Meanwhile, deep learn-
ing boosted the advancement of transfer learning [40]–[42].
With the possibility to reuse feature extraction capabilities
of other powerful networks, the model training time and
difficulty of the image or video-related tasks can be greatly
reduced [40], [43]. The above mentioned scientific investi-
gations support the argument that the deep learning models
outperform the traditional machine learning models.
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B. MULTIMODAL DEEP LEARNING
As pointed out in Sections I and II-A, deep learning has
demonstrated the potential in feature representations for
multimodal fusion. The multimodal data sources consist of
a wide range of modality combinations such as text and
images [44], RGB-D images and RGB images [45], [46],
audio and video [12], [47], audio and text [48], [49], audio and
images [50]. Ngiam et al. [12] and Dorfer et al. [50] pointed
out that multimodal fusion models generally outperform uni-
modal models.

Further analysis shows that multimodal fusion has two
different paradigms. With Restricted Boltzmann Machines
(RBMs) or deep autoencoders, models in the first paradigm
can learn a joint feature representation from a multimodal
dataset [12], [44]. In contrast, models in the second paradigm
concatenate the feature representation of each modality [45],
[46], [48]–[50]. As pointed out by Lenz et al. [51],
the first paradigm has better performance in cases where
the modalities have significant differences, e.g., text and
images, whereas the second paradigm tends to perform bet-
ter when the modalities are similar, e.g., RGB-D images
and RGB images. In the first paradigm, as suggested by
Oramas et al. [52], the model training process could be
slowed down by complex modalities such as audio and video.
Moreover, models in the first paradigm may put greater
emphasis on one particular modality so other modalities are
underutilised. The second paradigm provides a parameter-
efficient solution, as the size of the weight matrices only dou-
bles. Therefore, learning feature representations separately
from unimodalities and fusing them afterwards ensure a cost-
effective solution with full use of inputs.

After the above comprehensive analysis, in this work,
the authors adopt the second paradigm. Firstly, the authors
train three independent unimodality models. Secondly,
the feature representations from speech command, hand
motion, and body motion are concatenated into a single
feature representation. Further details are presented in
Sections III and IV.

III. METHODOLOGY
This section presents the problem definition and the expla-
nation of the adopted solution. As reviewed in Section II,
the multimodal HRC recognition problem can be treated as a
typical machine learning problem. Therefore, the authors for-
mulate the problem to facilitate a machine learning solution.
The formulated problem is further solvedwith three separated
unimodal models. Lastly, the multimodal fusion is presented.

A. PROBLEM STATEMENT
In this section, the multimodal HRC problem is formulated
as a multiclass classification problem. D represents the col-
lected data from sensors. The data consists of m samples
drawn from an unknown distribution of the feature space and
class label space X × C, denoted by D = {(Xi, ci)}mi=1. X is
the feature vector where Xi = {x1, x2, . . . , xm} and c is a

finite set of categorical labels with k categories.Xi is assigned
to a certain categorical label ci according to an underlying
unknown function f : Xi→ ci.
This paper aims to find a hypothesis g, a classifier, from

the hypothesis space H that best approximates the true func-
tion f . Since f is unknown, the true error in approximation
is unavailable. However, the classification error J can be
measured empirically by running classifier g over the data
samples D. Thus, the optimisation problem can be solved by
minimising the empirical error,

min
g∈H

JD(g) (1)

where

JD(g) =
1
m

m∑
i=1

I {g(Xi) 6= ci} (2)

where I is a characteristic function.

B. UNIMODALITY REPRESENTATION
After the problem statement, the authors select three deep
learning models to recognise three modalities collected from
sensors. As introduced in Section II, there are different deep
learning solutions available for all the three modalities. The
authors select deep learning models according to their per-
formance on the unimodal dataset. The three selected deep
learning models are CNN for speech command recognition,
LSTM for hand motion recognition and transfer learning-
enabled body motion recognition.

1) CNN FOR SPEECH COMMAND RECOGNITION
As introduced in Section II-A, CNN is a neural net-
work consisting of several convolutional and pooling lay-
ers (max-pooling). CNN outperforms traditional rule-based
feature extraction approaches in terms of robustness and
efficiency. It has been successfully applied to a wide
range of applications including speech command recognition
[53]–[55]. As suggested by Sainath and Parada [54], the spec-
trum of audio input has strong correlations in both time
and frequency axis. Capturing local correlations with CNN
through weight sharing has been shown to be favourable
in many applications [55], whereas models such as SVM
and Multilayer Perceptron (MLP) ignore the temporal
dependency of the speech signal. Therefore, in this study,
the authors adopt CNN for speech recognition.

In CNN speech command recognition, the speech com-
mand dataset XS is transformed into 2-dimensional spec-
trograms by fast Fourier transform (FFT) [53] before being
processed by CNN. The convolution operation is formulated
as

y(j) = ReLU
(∑

i

a(ij) · x(i) + b(j)
)

(3)

where x(i) and y(j) denote the i-th input map and the j-th
feature map respectively. x(i) is a local region where weights
are shared among each convolution neuron a(ij). a(ij) denotes
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the convolution neuron between the i-th inputmap and the j-th
feature map. b(j) denotes the bias of convolution neuron a(ij).
ReLU (y = max(0, x)) activation function was proved to be
better than sigmoid activation [56]. Max-pooling outputs the
maximum value of each of the local neighbour (e.g., a 2× 2
pixel grid of an image). Max-pooling makes each feature map
invariant to local translations in the input map, which also
proved to be useful in CNN [57], [58].

In model training, the authors adopt categorical cross-
entropy as the cost function J , defined as:

J = −
1
n

n∑
i=1

k∑
j=1

yij log
(
pij
)

(4)

where yij is the binary indicator of whether the observation
XSi is of class ci, pij is the predicted probability of whether
observation XSi corresponds to class ci, n is the number of
training samples, k is the number of categorical labels.

2) LSTM FOR HAND MOTION RECOGNITION
In hand motion recognition, the dataset consists of hand
motion time series with strong sequential dependencies
within each hand motion. The details of the data format are
explained in Section IV-A2.
LSTM is an RNN that controls how information flows

across the internal states through multiplicative gate units
in the neural networks [37]. Due to its advantage of learn-
ing long-term dependencies, LSTM is currently the desired
model for several sequence processing tasks such as machine
translation [59] and text generation [60]. At time t , a typical
LSTM cell ct contains three gate units: input gate it , forget
gate ft and output gate ot , connected with recurrent and feed-
forward links. The final state ht is dominated by the cell
output gate ot . The passed by information is selectively accu-
mulated in the cell, which enables the possibility to remember
and refer to previous information. Our implemented LSTM,
closely follows [61], is showed below:

it = σ (Wxixt +Whiht−1 +Wci ◦ ct−1 + bi) (5)

ft = σ
(
Wxf xt +Whf ht−1 +Wcf ◦ ct−1 + bf

)
(6)

ct = ft · ct−1 + it · tanh (Wxcxt +Whcht−1 + bc) (7)

ot = σ (Wxoxt +Whoht−1 +Wco ◦ ct + bo) (8)

ht = ot ◦ tanh (ct) (9)

where ◦ is Hadamard product, σ is the sigmoid function,Wij
is the i to j weight matrix.

By stacking LSTM layers on top of one another, the output
of the previous LSTM layer can be the input of the next LSTM
layer. The stacked LSTMmodel learn the temporal features at
a higher level [62]. Due to such advantage, the authors adopt
the stacked LSTMs approach.

3) TRANSFER LEARNING-ENABLED BODY
MOTION RECOGNITION
The body motion dataset is available in the format of
video clips. To recognise body motion from the video clips,

there are many different sequence recognition models avail-
able. Asmentioned in Section II-A, recently, transfer learning
has emerged as an effective approach for image recognition.
By reusing the knowledge from other networks, the training
time of a new model can be reduced. Since a video clip can
also be sampled as image sequences, it is possible to utilise
transfer learning to recognise body motion from video clips.

Transfer learning can be defined by a domain I, a task T ,
a learning source S, and a target source T [41], [42]. The
domain I consists of a feature space X and a marginal prob-
ability distribution P(X). Given a domain I = {X ,P(X)},
the task T = {C, f (·)} is represented by a label space C and a
predictive function f (·), which can be learned from the train-
ing dataset {(Xi, ci)}ni=1, where n is the number of training
samples. The learning of the target predictive function fT (·)
in the target domain IT can be improved by utilising the
knowledge learned from the source domain IS and the source
learning task TS .

In the specific case of body motion recognition, a func-
tion fS (·) is trained from the source domain IS and the source
task TS with a large amount of labelled images. Since the
source domain IS is in image format and the target domain IT
is in video format, the data of the target domain IT can
be sampled as sequences of images where the pre-trained
network fS (·) can act as a generic feature extractor to transfer
the knowledge represented by parameters learned from the
source domain IS [40]. After the transfer learning-enabled
feature extraction, the representation of training dataset can
be denoted as rB1

(
XBi ; θ

B1
)
where θB1 are the parameters

transfered from fS (·) and XBi denotes the training samples
from body motion dataset. To fine-tune the target func-
tion fT (·), a fully connected layer is added. The network is
further trained by minimising the cross-entropy loss, before
being fed into a softmax layer for nomalisation [63]:

min
W f ,θB1

n∑
i=1

L
(
softmax

(
W f rB1

(
XBi ; θ

B1
))
, ci

)
(10)

where W f are the weights of the softmax layer, ci are the
categorical labels from the training dataset.

C. MULTIMODAL FUSION
As introduced in Section II-B, multimodal models can poten-
tially generate more knowledge on a classification prob-
lem and outperform unimodal models. To achieve a better
classification result, the authors decide to fuse the above
trained unimodal models. An example of multimodal fusion
is illustrated in Figure 2. The speech command recognition
model, hand motion recognition model, and body motion
recognition model without the last layer can be represented
as rS

(
XSi ; θ

S
)
, rH

(
XHi ; θ

H
)
, and rB2

(
XBi ; θ

B2
)
, where XSi ,

XHi , and XBi are the training samples from speech com-
mand recognition dataset, hand motion dataset, and body
motion dataset. θS , θH , and θB2 are the network parame-
ters from speech command recognition model, hand motion
recognition model, and body motion recognition model.
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FIGURE 2. Illustration of the proposed multimodal fusion architecture.

The three trained models are fused by a concatenate
function F :

G = F
(
rS
(
XSi ; θ

S), rH (XHi ; θH ), rB2(XBi ; θB2)) (11)

where G is the representation after the concatenation. The
fused model can be further trained by minimising a loss func-
tion defined by cross-entropy. Finally, the optimised network
is connected to a softmax function to normalise the output
result. The training process of the fused model is represented
by:

min
WF ,θS ,θH ,θB2

n∑
i=1

L
(
softmax

(
WFG

)
, ci

)
(12)

where WF denotes the weights of the softmax layer after
multimodal fusion.

IV. EXPERIMENT
In this section, the authors first describe the dataset from each
modality and the necessary data cleaning procedures. The
authors then illustrate the multimodal dataset preparation and
multimodal model training process. Furthermore, the training
results of unimodal models are compared with their baseline
models. At last, the authors present the result of multimodal
fusion and the comparison of which with other unimodal
models.

A. CUSTOMISED MULTIMODAL DATASET AND
PREPROCESSING
1) SPEECH COMMAND RECOGNITION
The Speech Command Dataset [64] is chosen as the dataset
for the training of speech command recognition. The dataset,
created by TensorFlow and AIY teams at Google, consists of
over 65000 one-second audio recordings of 30 short words.
A subset of 6 categories of speech commands is selected and
labelled specifically under the context of multimodal HRC,
including left, right, on, off, up, and down. The total number
of the selected audio recordings is 14178.

Each audio recording is essentially a 1-D vector of strength
signals. To facilitate CNN model training, each audio record-
ing is preprocessed and transformed into a 2-Dmatrix that can
be treated as a single-channel image, as shown in Figure 3.
Each speech command is segmented into 0.02s pieces with
an overlapping of 0.01s. Each segment is then turned into
a 1-D mel-frequency cepstral coefficient vector (MFCC).
Stated differently, the MFCC vectors are generated along the
time-axis of the audio input as an additional dimension.

2) HAND MOTION RECOGNITION
The hand motion dataset includes 1183 sequences of
hand motions with six different categorical labels. The
dataset is HRC customised and collected by Leap Motion
Controller [13]. The Leap Motion Controller captures the
direction and orientation of key hand joints and bones in a
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FIGURE 3. Visualized MFCC representations of the six selected speech
commands. (a) Left. (b) Right. (c) On. (d) Off. (e) Up. (f) Down.

frequency of 100Hz. The tracked hand bones are metacarpal,
proximal, intermediate, distal and the tips of five fingers.
With the bones and joints captured, robust hand skeleton
models can be built during the hand motion. The parameters
from the skeletons are regarded as hand motion features.
In each time stamp of the hand motion, 64 hand motion
features are captured. To facilitate multimodal fusion, the six
handmotions are defined the same as that in speech command
recognition dataset and body motion recognition dataset.
An example of collected hand motions is showed in Figure 4.

3) BODY MOTION RECOGNITION
The body motion recognition dataset consists of 1379 HRC
customised body motion video clips with six different cate-
gorical labels. The defined six motions are exactly the same
as that in hand motion recognition dataset, shown in Figure 4.
For the purpose of transfer learning, the collected video
clips are further sampled into sequences of images. The
transfer learning process extracts features from the image
sequences by Inception-v3 [43] pre-trained model. The pro-
cessed image sequences are stored and prepared as the input
data for training multimodal fusion model. As introduced
in Sections II-A and III-B3, the transfer learning approach
to reusing a pre-trained model as the feature extractor will
greatly reduce the model training time.

B. MULTIMODAL FUSION TRAINING
As mentioned above, the experiment contains three modal-
ities: speech command, hand motion and body motion.
To train a fused model, data from the same label within
the three unimodal datasets are sampled randomly without

FIGURE 4. Visualisations of the six selected hand motion commands. The
hand skeletons are representations of captured hands in motion, where
the colourful joints are the tracked hand joints and the white arrows
point out the directions of hand motion. (a) Left. (b) Right. (c) On. (d) Off.
(e) Up. (f) Down.

semantic change. Therefore, the potential size of the train-
ing set could be extremely large. As previously mentioned,
three unimodal models are trained to extract the represen-
tations from the second-last layer of each unimodal model.
Thereafter, the representations of the three modalities are
concatenated and fed into anotherMLP, resulting in a network
architecture shown in Figure 2.
The multimodal fusion architecture can be trained in two

differentmanners: theweights of the network ismarked either
‘‘trainable’’ (i.e., without weight lock) or ‘‘non-trainable’’
(i.e., with weight lock). Trainable weights in the multimodal
fusion model are updated during the training of the final mul-
timodal MLP classifier. In the case of non-trainable weights,
the weights in unimodal models are fixed and only the
weights in the multimodal MLP classifier can get updated
during the training of the multimodal fusion model.

C. RESULTS OF UNIMODAL MODELS
In this section, the authors present the results of unimodal
models in comparison with their baseline models. The base-
line model for speech command, hand motion and body
motion recognition is SVM, Random Forest and Random
Forest respectively, whereas the adopted approach is CNN,
LSTM and MLP via transfer learning. As shown in Table 1,

TABLE 1. Test accuracy of each unimodality with baseline models and
adopted models.
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the performance of adopted approaches is better than the
baseline models in all unimodalities. In hand motion recog-
nition, the predicted accuracy on the test dataset is improved
from 94.98% to 98.24%, and in body motion recogni-
tion, the accuracy is improved from 93.06% to 95.95%.
Particularly for speech command recognition, the adopted
approach significantly boosts the accuracy from 71.00% to
93.83%. Possible reasons for the results are further discussed
in Section V.

D. RESULT OF MULTIMODAL MODEL
Figure 5 presents the training accuracy and loss for the fused
model with trainable and non-trainable weights. As can be
seen from Figure 5a and Figure 5b, the accuracy and loss for
fused model with trainable weights improves faster than the
model with non-trainable weights. After around 40 epochs,
both networks converge to the same level, around 98.07%
in training accuracy and 0.0496 in loss. For the test dataset,
the accuracy is 99.58%. To illustrate the performance on test

FIGURE 5. The performance of multimodal fusion training including the
comparison of training progress with trainable and non-trainable
weights. The training accuracy converge to 98.07%. The test accuracy is
99.58%. (a) Training accuracy for multimodal fusion. (b) Training loss for
multimodal fusion.

dataset with different categorical labels, the authors plot the
confusion matrix in Figure 6, where the differences between
the true labels and the predicted labels derived from the fused
model are shown. As shown in Figure 6, the fused model
achieves an accuracy of 100% in all labels except that in the
label right where 4% of the true label right are predicted as
left.

FIGURE 6. Confusion matrix of the fused model.

The authors further visualize the hidden representations
with the test dataset using t-SNE [65] for both unimodal
models and the fusedmodel in Figure 7. The hidden represen-
tations refer to the hidden distribution of the test dataset when
the test dataset is applied to the trained model for prediction

FIGURE 7. t-SNE visualisations of the hidden representations of the test
dataset, where the six different colours represent predicted different
labels. (a) Speech command model. (b) Hand motion model. (c) Body
motion model. (d) Fused model.
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and evaluation. Each plotted test dataset corresponds to its
trained model. For instance, the speech command test dataset
is used on the trained speech recognition CNN to extract the
hidden representations, whereas the multimodal representa-
tions are obtained from the fused model where the multi-
modal test dataset is applied. In Figure 7, each point denotes
a data point from its corresponding test dataset and the six
colours represent six categorical labels. Clearly, compared
with the other hidden representations, the multimodal fusion
representations are better separated. This reflects the fact
that the multimodal fusion model outperforms all unimodal
models in the experiment.

V. DISCUSSIONS
Table 1 shows that the test accuracy of the adopted CNN,
LSTM andMLP via transfer learningmodel surpass the SVM
and Random Forest baseline models. The above-mentioned
improvements confirm the literature review in Section II:
the deep learning models outperform traditional machine
learning models. One of the interesting observations is that
the accuracy of speech command recognition significantly
improves from 71.00% to 93.83%, whereas the accuracy of
the other two modalities only improves by less than 5%.
Part of the reason for the accuracy improvement differences
can be the different data sample size. The speech recogni-
tion dataset involves 10 times more data samples than the
other two modalities. Deep learning models capture some
of the hidden patterns that cannot be recognised by tradi-
tional machine learning models in a large dataset. In the
other two data modalities, since the datasets are not so large,
most of the patterns can already be recognised by traditional
machine learning models. Therefore, the improvement is not
so obvious. However, as shown in Figure 7, the data inputs
are not well classified in the unimodal models. The achieved
accuracy still cannot guarantee a robust HRC system.

One of the topics worth discussing is the different
approaches for multimodal fusion. For instance, the authors
explore multimodal fusion in different network layers. The
fused models’ performance is extremely different in terms
of accuracy, and the reason for the differences is unclear.
However, the authors found out that with the current dataset,
the fusion at the second-last layer still generates a parameter-
efficient and well-performed model. As can be seen clearly
in Figure 6, the test accuracy is further improved with the
fused model. By comparing the hidden representations of test
dataset of Figure 7d with Figure 7a, Figure 7b, and Figure 7c,
the test set is best classified by the fused model shown
in Figure 7d. With further observation, the 4% wrongly clas-
sified right data points can actually be found at the top middle
part of Figure 7d, where several blue data points (in right
label) are surrounded by a cluster of yellow data points
(in left label). The reason for the accuracy improvement can
be attributed to the richer knowledge representations learned
by the multimodal representations fusion process. Although
each unimodality cannot provide enough knowledge for a
decision with high accuracy, multimodality collectively pro-

vide enough knowledge to make a much better decision with
higher accuracy. In multimodal HRC, the result of this paper
suggests that the sensor instability can be offset by adding
more sensors and data modalities. Eventually, a robust HRC
system can be achieved with several sensors. With further
real-time HRC system implementation, the fused model can
potentially provide better accuracy and be used in a robust
multimodal HRC system.

The authors also explore the fusion process with train-
able and non-trainable weights. As illustrated in Figure 5,
during the multimodal fusion, the accuracy improves faster
with trainable weights where the parameters of the unimodal
models change together with the fusion. Eventually, the two
approaches converge to the same accuracy level. The reason is
that the search space of the classification problem increases,
as the weights can change. Since the two approaches eventu-
ally find similar solutions, it is natural that the two approaches
converge to the same accuracy level.

The proposed model fusion approach can potentially be
beneficial for future multimodal HRC manufacturing sys-
tem applied in industry. As discussed in Section I, one of
the biggest differences between industrial machinery and
consumer electronics is the reliability or robustness. For
manufacturing systems, safety and reliability share the high-
est priority. In future HRC manufacturing systems, intuitive
multimodal robot control is required. The multimodal fusion
approach proposed in this paper can serve as a robust mul-
timodality HRC system beyond intuitive requirement. The
human operator can control the robot not only intuitively with
human-friendly modalities but also robustly. The robot con-
trol command will be active only when all three modalities
are in place and the fusion model generates a right output.
In the case of missing modalities, the proposed approach will
not output any result. In order to realise the above mentioned
robust HRC manufacturing system, a real-time HRC system
and sensors need to be developed.

VI. CONCLUSIONS AND FUTURE WORKS
In this paper, the authors propose a multimodal fusion archi-
tecture for robust multimodal HRC manufacturing systems.
To prepare the model fusion, three unimodal models are
firstly trained to extract the representations from three modal-
ities, i.e. speech command, hand motion and body motion.
In particular, three selected unimodal models are trained to fit
three modalities dataset: a CNN model for speech command
dataset, an LSTM model for hand motion dataset and an
MLP via transfer learning model for body motion dataset.
After the unimodality model training, the three models are
further concatenated and fused. Experiments demonstrate the
accuracy of the fused model in comparison with the unimodal
models. The discussions indicate a great potential to apply the
proposed approach in future multimodal HRCmanufacturing
systems.

As future works, possible directions can be: (i) to imple-
ment the proposed architecture in a real-time scheme;
(ii) to further investigate theoretical aspects and the model
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architecture to explain the neural networks; and (iii) to
encompass different modalities for HRC robot control.
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