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ABSTRACT Smart multifunctional sensors integrated with wireless connectivity (also known as wireless
sensor networks or WSNs) play an important role in the Internet of Things (IoT). Several challenges
associated with WSNs have been researched and energy consumption represents the main limitation.
Another major challenge is localization because a sensor or node should be self-contained and organized
and have a low cost of integration. The range-free approach is promising due to its simplicity. Notably,
it does not require additional logics and needs only key parameters, such as the number of hops and node
locations. Distance-vector-hop-based localization (DV-Hop) is a pioneering range-free approach, and the
corresponding localization approximation method does not require areas to be covered by nodes with known
positions (also called known nodes or anchor nodes). However, the precision of this approach relies on
several factors, including the node density and the method of determining the relation between the distance
and the number of hops between two anchor nodes (i.e., hop size). Thus, this research enhances DV-Hop by:
1) reducing the approximation coverage to a specific area, thereby requiring fewer anchor nodes; 2) further
decreasing the area using a bounding box; and 3) adopting particle swarm optimization (PSO) by integrating
the number of hops and anchor nodes into the fitness function to improve the approximation precision.
To evaluate the efficiency of the proposed scheme, the simulation results are compared with those of
five recently proposed DV-Hop localization methods: iDV-Hop, DV-maxHop, Selective 3-Anchor DV-Hop,
PSODV-Hop, and GA-PSODV-Hop.

INDEX TERMS Distance-vector-hop-based localization, hop angle relativity, localization, particle swarm
optimization, wireless sensor networks.

I. INTRODUCTION
Recently, applications of microcontroller chips with inte-
grated wireless transmission logics have become prevalent
because they enable rapid access and control over wireless
networks. A variety of such devices can coordinately transmit
sensory data to cloud infrastructures, thereby providing the
so-called big data for data analysts and decision makers.
In addition, the ability to control devices that are integrated
into the Internet of Things (IoT) enables increased applicabil-
ity to real-world problems, such as gas pipeline leak detec-
tion, environmental monitoring, and elderly patient motion
detection [1].

Sensor nodes (SNs), aka, sensors or nodes, are important
devices that are deployed for monitoring sensory data, such as
temperature, humidity, light, and/or pressure data. SNs can be

wirelessly connected to form a large network, namely, a wire-
less sensor network (WSN) [1]. WSN applications have var-
ious limitations, and they face several important issues, e.g.,
quality of service (QoS) [2], data aggregation, energy-aware
computation [3], and real-time communication issues [2], [3].
In practice, SN locations are extremely important; thus, they
have attracted the attention of numerous researchers. The
global positioning system (GPS) strategy might represent a
solution; however, it has several limitations with respect to
key WSN design requirements, such as 1) the low accuracy
of SN positions, especially at locations where GPS signals are
absent; 2) high power consumption; and 3) high costs due to
additional hardware logics [4].

The methods for estimating SN locations have been
presented in numerous studies [5], and they can be
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categorized into range-based and range-free techniques based
on the required hardware specifications of active devices [6].
Localization strategies in range-based techniques attempt to
estimate the distances or angles between SNs, such as the
angle of arrival (AoA), received signal strength indicator
(RSSI), time of arrival (ToA), and time difference of arrival
(TDoA). Therefore, these approaches require high-precision
hardware that is costly and consumes considerable energy.
Range-free techniques estimate the location of a node by
determining the distances between the (unknown) node and
other known nodes (i.e., anchor nodes) by counting the mini-
mum number of hops between the nodes, and they require no
specific equipment, consume less power, and cost less than
range-based methods. Therefore, range-free techniques have
gained popularity due to their practicality for WSNs. Exam-
ples of such localization techniques are Distance Vector Hop
(DV-Hop) [7], Centroid [8]–[11], and Approximate Point In
Triangulation (APIT) methods [12].

In this paper, we focus on increasing the efficiency of
DV-Hop because DV-Hop yields more accurate SN locations
than the centroid or APIT methods, even when the num-
ber of anchor nodes provides insufficient coverage for the
entire area. Compared with other learning techniques, such
as support vector regression (SVR) [13] and kernel ridge
regression [14], DV-Hop has the following major advantage:
its localization procedure is simple and suitable for WSN
deployment.

The accuracy of DV-Hop depends on the node density,
the number of anchor nodes, and the network topology [7],
all of which directly affect the estimation of the distance
between the unknown node and the anchor node. Further-
more, the approximate distance from an anchor node with a
low minimum hop count tends to be more accurate than that
from an anchor node with a large minimum hop count, which
suggests that the accuracy of the estimated distance between
the unknown node and the anchor node is also related to the
minimum hop count.

In recent research, various DV-Hop improvements have
been proposed [15]–[18], particularly regarding the hop size
of anchor nodes (i.e., the average ratio of the distances to the
minimum hop counts); however, these techniques do not con-
sider the relationship between the minimum number of hops
and the angle between the SNs, which affects the accuracy
of the estimated distance between the unknown node and the
anchor node.

After distance estimation, the final estimated location can
be determined, traditionally by multitrilateration [7]; how-
ever, recently, bio-inspired algorithms have been applied
to increase accuracy, especially those without the common
intersection of triangulated circles [15]–[18], including tradi-
tional algorithms such as the genetic algorithm (GA) [19],
the ant colony algorithm [20], the bacterial foraging algo-
rithm (BFA) [21], the artificial bee colony [22], and the firefly
algorithm [23], and more recent algorithms. For example,
Hamidouche et al. [24] surveyed algorithms for WSNs from
the perspectives of clustering, coverage, and routing, some

of which, including GA [25], DE [26], [27], and particle
swarm optimization (PSO), were used in the context of WSN
localization [28] and, in particular, with the application of
DV-Hop. Note that althoughGAprovides high accuracy but is
slow to converge [25]–[28], PSO achieves promising results
with fast convergence and low complexity; therefore, it is
suitable for WSNs [25]–[28].

Traditional PSO has some limitations, but several
improved methods have been proposed, such as bare-bones
PSO (BBPSO), chaotic PSO (CPSO), and fuzzy PSO
(FPSO) [29], to enhance the convergence speed; these
derivations can be adopted in the proposed work because a
PSO-based approach is only used to determine the particle
that minimizes the absolute distance error between the anchor
node and the unknown node and between the anchor node and
the particle (see also the fitness function in Section IV.D.2).

Therefore, in this paper, we propose a method for iden-
tifying the areas of unknown nodes (called local areas) and
acquiring the anchor nodes in each local area. The infor-
mation is processed to determine the locations of unknown
nodes without considering all anchor nodes. Then, based
on the relationship between the angles and minimum hop
counts among SNs, we improve the minimum hop counts,
each of which is relevant for the unknown node and the corre-
sponding local anchor nodes. Finally, the proposed method,
which is named optimized hop angle relativity for DV-Hop
localization (OHAR-DV-Hop), replaces the multitrilateration
algorithm of DV-Hop with PSO and applies the bounding box
method to limit the approximation area, thereby reducing the
number of PSO run cycles required to determine the position
that is closest to the actual position. In summary, this research
consists of the following key contributions.
• We introduce a technique for improving the minimum
hop count using the relationship between the angles and
the minimum hop count among the SNs to estimate the
distances between the anchor nodes and the unknown
node.

• We apply the concept of a bounding box to limit the area
of the unknown node using the improved distance.

• We design a PSO fitness function to estimate the loca-
tions of the unknown nodes by considering theminimum
hop count and the associated anchor nodes.

The paper is organized as follows. Section II describes
related works (i.e., WSN localization based on DV-Hop
algorithms). Section III solves a problem using the DV-Hop
algorithm and the proposed network model. Section IV pro-
vides details on the proposed scheme, namely, OHAR-DV-
Hop, including the definitions of local anchor nodes, local
area specification, hop approximation, and distance estima-
tion for identifying the boundary of the local area. Section V
presents the performance evaluation. Finally, Section VI pro-
vides the conclusions and suggests potential future work.

II. RELATED WORK
Although a variety of localization techniques [5], [6] are
available for WSNs, this section specifically discusses the
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range-free localization method and focuses on connectivity-
based multihop localization, in which the location of an
unknown node is determined based on the distances from cor-
responding anchor nodes to the unknown node. We concen-
trate on the hop-by-hop connections to relate the minimum
hop count to such distances.

In 2001, Niculescu and Nath [7] proposed the DV-Hop
algorithm, which consists of the following three steps.
• 1st step: Each anchor node (i.e., a node at a known loca-
tion) broadcasts a signal to convey its position informa-
tion with a hop number that starts at 0. Once another SN
receives the signal, it records the smallest hop number
from each anchor node and increases the hop number
by 1 before further flooding the signal. This process
continues until the paths (with the minimum number of
hops) to all the anchor nodes are discovered.

• 2nd step: The average distance per hop (hop size) is
determined for each anchor node (node p), as formulated
in Eq. (1).

Hopsizep =

∥∥zp − zq∥∥∑m
q=1,p 6=q hp,q

, (1)

where zp = (xp, yp) and zq = (xq, yq) are the coordinate
pairs of anchor nodes p and q, respectively, and hp,q is the
minimum hop count between the two anchor nodes. After
calculating the hop size, an anchor node broadcasts this hop
size throughout the network. The unknown node stores only
the hop size of the closest anchor node (i.e., that with the
smallest minimum hop count).
• 3rd step: The distance between the unknown node and
the anchor node (dp,U ) is determined using the hop size
and the minimum hop count, which were obtained in
the second step, as expressed in Eq. (2).

dp,U = Hopsizep × hp,U , (2)

where hp,U denotes the minimum hop count between the
unknown node (U ) and the anchor node (p).

Eq. (3) shows the relationships between the Cartesian dis-
tances from the anchor nodes (1 to m) to the unknown node
and the distances from Eq. (2).

(xU − x1)2 + (yU − y1)2 = d21
(xU − x2)2 + (yU − y2)2 = d22

...

(xU − xm)2 + (yU − ym)2 = d2m

(3)

Eq. (3) can be written as Eq. (4) using the multitrilateration
method to approximate the location of the unknown node.

X =
(
ATA

)−1
ATZ , (4)

where

A = −2×


(x1 − xm) (y1 − ym)
(x2 − xm) (y2 − ym)

...
...

(xm−1 − xm) (ym−1 − ym)

 , (5)

X =
[
xU
yU

]
, (6)

Z =


d21 − d

2
m − x

2
1 + x

2
m − y

2
1 + y

2
m

d22 − d
2
m − x

2
2 + x

2
m − y

2
2 + y

2
m

...

d2m−1 − d
2
m − x

2
m−1 + x

2
m − y

2
m−1 + y

2
m

 (7)

Since the first DV-Hop algorithm was proposed, attempts
to reduce its estimation error have been made. For example,
S. Singh et al. [15] improved the DV-Hop location estimation
method by modifying how the hop size is determined in
the second step. Specifically, they calculated the average hop
size by dividing the sum of all anchor node hop sizes by the
number of anchor nodes. In step 3, the least-squares method
was used instead of the multitrilateration method, thereby
increasing the location estimation accuracy beyond that of the
traditional DV-Hop approach.

Several DV-Hop derivatives have attempted to improve
precision. For example, Gui et al. [30] proposed the selection
criterion for the 3 anchor nodes with the minimum location
error for suitable use in multitrilateration; however, no com-
mon intersection of the triangulated circles can lead to low
precision.

Note that subsequent research can be divided into 2 cat-
egories: improvements to the methods of determining the
hop size and increases in the accuracy of the third step. For
instance, F. Shahzad et al. [31] introduced threshold maxHop
based on the simulation configurations. Then, the anchor
nodes at which the hop count (for unknown nodes) is below
the threshold is used to estimate the location using a Pareto
optimal solution without considering the hop size.

Chen and Zhang [16] improved the hop size calculation in
the second step by using the least-squares error method. In the
third step, PSO was applied in place of the multitrilateration
method, and it yielded a more precise location estimation.

G. Sharma and A. Kumar [32] enhanced the hop size calcu-
lation by dividing the error between the actual distance and
the estimated distance by the minimum hop count between
the two anchor nodes. Then, they increased the hop size
by the quotient. In the third step, a teaching-learning-based
optimization (TLBO) method was applied to localize the
unknown node instead of using the multitrilateration method.
M.Mehrabi et al. [33] improved the DV-Hop position estima-
tion by adopting the shuffled frog leaping algorithm (SFLA)
to determine the hop size in step 2 and obtain the lowest error
between the distances based on the hop size and the actual
distance between two anchor nodes. In addition, they used a
hybrid genetic algorithm-PSO (GA-PSO) approach instead of
the multitrilateration method in the third step. Here, in each
round, after the PSO process, GA operators are applied to the
coordinates of the particle to replace the lowest fitness values
and accelerate convergence.

In addition, S. Kumar and D. K. Lobiyal [34] improved
the hop size calculation by considering the improvement term
of each anchor node, which is determined by considering
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the communication range and the traditional DV-Hop hop
size. Then, all anchor node hop sizes are averaged. Next,
the average hop size is used to estimate the distances from
the anchor nodes to the unknown nodes. Finally, a quadratic
program (QP) was proposed to estimate the position of an
unknown node. Peng and Li [17] further improved step
3 of the DV-Hop position estimation by applying a GA
instead of the multitrilateration algorithm to obtain a more
precise location estimation. Later, Sivakumar and Venkate-
san [18] compared three position estimation algorithms,
namely, the bat optimization algorithm (BOA), modified
cuckoo search (MCS), and firefly optimization algorithm
(FOA) trilateration, for use in the third step in place of the
multitrilateration algorithm. The study showed that the FOA
provides the highest localization accuracy.

S. Tomic and I. Mezei [35] proposed three improved ver-
sions of DV-Hop: iDV-Hop1, iDV-Hop2, and Quad DV-Hop.
iDV-Hop1 relies on 1) the location of the unknown node,
which is obtained from DV-Hop, and 2) the position of
the anchor node (of which the minimum hop count to the
unknown node is the smallest) to form a triangle. The vertices
of the triangle are based on the position of the anchor node,
the two intersection points of the anchor node communication
range and the distance from the unknown node to the anchor
node. Then, the triangle centroid is used for localization.
IDV-Hop2 differs from iDV-Hop1 in that it creates the tri-
angle by using the unknown node position instead of the
anchor node position. In Quad DV-Hop, the authors modified
the third step in DV-Hop by adopting a QP instead of a
multitrilateration algorithm.

Although evolutionary computation has been used (instead
of the multitrilateration algorithm) to improve the localiza-
tion process, the error of the estimated distance between the
unknown node and the anchor node is still high because
most methods estimate the hop size by averaging the hop
sizes of all anchor nodes, which results in a high error rate.
Additionally, the minimum hop counts between the unknown
node and the anchor node do not match the actual values
because of the difference in SN density between the anchor
nodes.

III. NETWORK MODEL, PROBLEM AND MOTIVATION
A. NETWORK MODEL
Let S = {S1, . . . , Sn|nεN} be the set of all sensor nodes,
where N is the number of SNs; A = {A1, . . . ,Am|mεN} is
the set of anchor nodes, where m (out of N ) is the number
of anchor nodes; and U = {Um + 1,Um + 2, . . . ,Un|nεN}
is the set of the unknown nodes. Note that A ∪ U = S. In a
2-dimensional network, the position of the ith anchor node is
(xi, yi), where i = 1, 2, 3, . . . ,m. Our objective is to estimate
the jth sensor node location, which is unknown and denoted
by (xj, yj), where j = m+ 1, m+ 2, m+ 3, . . . , n.
In this research, we rely on the following assumptions:

• Unknown nodes (SNs at unknown locations) are ran-
domly placed within a 2D experimental area;

• Anchor nodes (SNs whose locations are known)
form a grid topology that spans the 2D experimental
area [36]–[38]; and

• All SNs have the same transmission range [16], [33].
Assumption 1:When DV-Hop is considered, the number of

hops in the shortest path between a pair of SNs (from Sp to
Sq) is the minimum hop count [30], [31].

We apply Assumption 1 to estimate the hop count between
SNs (Sp and Sq). Note that the notations used throughout this
paper are shown in Table 1.

TABLE 1. List of notations.

Fig. 1 shows an example of the placement of the unknown
and anchor nodes and the connections between SNs within
the experimental area. Note that Fig. 1b also shows a pos-
sible path between the two anchor nodes (Af and Ai; Af and
Ak), e.g., from A5 to A1 (hA1,A5 = 4) and from A9 to A1
(hA1,A9 = 8).

B. PROBLEM AND MOTIVATION
The traditional DV-Hop algorithm may provide location esti-
mations with high errors because it incorporates all anchor
nodes into the calculation without considering the hop sizes
of the anchor nodes, i.e., the distance to hop count ratio
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FIGURE 1. Network model: anchor node = solid star, unknown node = circle, unknown node (location to be estimated) = solid circle,
dashed line = possible path between sensor nodes. (a) Unknown node (U) and anchor nodes (Ai) in each local area. (b) Possible paths
between the anchor nodes (A1 to A5; A1 to A9) and the unknown node (U).

(see Eq. (1)). Figs. 2a and 2b show two cases in which
the positions of unknown nodes are different (U and U ′),
as follows.

• Case I: hAi,U + hAf ,U = hAf ,Ai and hAk,U + hAf ,U =
hAf ,Ak or hAi,U + hAf ,U > hAf ,Ai and hAk,U + hAf ,U >

hAf ,Ak , i.e., the shortest path is toward the unknown node
(U ), (see Figs. 2c and 2d, where hA5,U = 3, hA1,U = 1,
hA1,A5 = 4, hA9,U = 7, and hA1,A9 = 8), and the
minimum hop count from Ai to Af (here = 4) is equal
to the minimum hop count from that node toward U
(i.e., U is within the path; Ai to U = 3 hops and U to
Af= 1 hop) and similar to the minimum hop count from
Ak to Af toward U (= 8) or Ak to U = 7 hops and U to
Af = 1 hop. In this case, the traditional DV-Hop method
provides high accuracy.

• Case II: hAi,U + hAf ,U > hAf ,Ai and hAk,U + hAf ,U =
hAf ,Ak or hAi,U + hAf ,U = hAf ,Ai and hAk,U + hAf ,U >

hAf ,Ak , (see Figs. 2e and 2f, where hA5,U = 4, hA1,U =
1, hA1,A5 = 4, hA9,U = 7, and hA1,A9 = 8). In this
case, U is not in the shortest path between the two
anchor nodes. For example, the minimum hop count
from Ai to U = 4, which is the same as that from Ai
to Af. Therefore, the estimated location of the unknown
node will be within a circle with center Ai, i.e., within
hAf ,Ai(= 4). In the traditional DV-Hop method, this hop
count is not fine-grained.

Thus, the actual hop count should be small (less than 4).
The count can be lowered with help from another anchor
node, such as Ak, where hAk,U+hAf ,U = hAf ,Ak. This relation
implies that the localization based on Ak estimates a location
outside the circle with center Ak, i.e., between hAk,U and
hAf ,Ak (=7 and 8). Thus, the proper minimum hop count
should lie within the circle of Ai but outside the circle of Ak.
Instead of using all anchor nodes, we propose a method

of selecting appropriate anchor nodes (Ai). Specifically,
we focus on a grid of anchor nodes and select the anchor
nodes that share the same local area as the unknown node.
Other anchor nodes (Ak) can be chosen to improve the

minimum hop count between Ai and U relative to the
hop count between the reference anchor node (Af) and
the unknown node (U ) based on the relationship between
the minimum hop count and the angles Ai and Ak. The
improvedminimum hop count is used to estimate the distance
between Ai and U . Finally, the unknown node position is
approximated based on PSO and the bounding box method,
which limits the search area to determine the unknown node
position.

IV. RELATIVE HOP ANGLE CONNECTIVITY-BASED
LOCALIZATION
Fig. 3 shows the overall process flow of this research, which
consists of five major components.
• Local area and anchor node identification: this step is
used to determine local areas and local anchor nodes
where an unknown node is encircled such that the num-
ber of hops between the anchor node and another anchor
node and between the anchor node and the unknown
node is minimized.

• Number of hops estimation: this step is used to optimize
the number of hops between a particular anchor node and
an unknown node using the hop count of anchor nodes
with corresponding angles.

• Distance estimation: using the optimized hop count,
the distance (between the anchor node and the unknown
node) is estimated using the hope size (i.e., the anchor-
to-anchor distance divided by the hop count).

• Bounding box: the derived distance is used to limit the
unknown node boundary.

• Unknown node localization: PSO is applied to search
for the location of the unknown node given the fitness
function.

Theorem 1: The minimum hop count between an unknown
node (U ) and an anchor sensor node or anchor node (Ai)
depends on the minimum hop count between the unknown
node and another anchor node (Ak). If Ai and Ak are on the
same side when they are compared to a reference anchor
node (Af), then the nodewith the smallest minimumhop count
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FIGURE 2. Examples of problems in DV-Hop. (a) Node deployment: Case I and Case II. (b) Location error: Case I and Case II.
(c) Case I: hAi,U + hAf ,U = hAf ,Ai and hAk,U + hAf ,U = hAf ,Ak . (d) Case I: hAi,U + hAf ,U > hAf ,Ai and hAk,U + hAf ,U > hAf ,Ak .
(e) Case II: hAi,U + hAf ,U > hAf ,Ai and hAk,U + hAf ,U = hAf ,Ak . (f) Case II: hAi,U + hAf ,U = hAf ,Ai and hAk,U + hAf ,U > hAf ,Ak .

for the unknown node (hAf ,U = 1) is selected to determine
the proper Ak, which has a direct impact on the optimized
hAi,U (hoptimizedAi,U ).

Proof: The value of hAi,U depends on hAk,U if
hAf ,U = 1, as shown in Fig. 4.

In the first case,

1) the unknown node is on the shortest path from Ai to Af
and the path from Ak to Af, and

2) hAf ,U = 1 and hAf ,U + hAi,U = hAf ,Ai, hAk,U + hAf ,U
is equal to hAf ,Ak (as shown in Figs. 4a).

In the second case,

1) the unknown node is not on the shortest path from Ai
to Af but on the path from Ak to Af, and

2) hAf ,U = 1 and hAf ,U + hAi,U > hAf ,Ai, hAk,U + hAf ,U
is equal to hAf ,Ak (as shown in Fig. 4b).

In the third case,
1) the unknown node is on the shortest path from Ai to Af

but not on the path from Ak to Af, and
2) hAf ,U = 1 and hAf ,U + hAi,U = hAf ,Ai, hAk,U + hAf ,U

is greater than hAf ,Ak (as shown in Fig. 4c).
In the fourth case,
1) the unknown node is not on the shortest path from Ai

to Af or the path from Ak to Af, and
2) hAf ,U = 1 and hAf ,U + hAi,U > hAf ,Ai, hAk,U + hAf ,U

is greater than hAf ,Ak (as shown in Fig. 4d).
Proposition 1: Let θk in Theorem 1 range from

0 ≤ θk ≤ π
2 .
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FIGURE 3. Overall process flow.

Proof: Suppose that π2 < θk <
3π
4 as shown in Fig. 5.

If the unknown node is on the shortest path from Ai to Af,
then it cannot be on the shortest path from Ak to Af because
1) hAf ,U = 1 and 2) hAf ,U + hAi,U = hAf ,Ai, which implies

that hAk,U + hAf ,U > hAf ,Ak ; additionally, the unknown node
will not always be on the shortest path from Ai to Af.
The method proposed in this study uses Akwith an angle θk

(0 ≤ θk ≤ π
2 ) because an unknown node with a wider angle

would be on the shortest path from Ai to Af but not on the path
from Ak to Af,as shown in Fig. 5. Therefore, the remaining
anchor nodes do not need to be used to adjust hAi,U , and a
decrease in the accuracy can be avoided.
Theorem 2: The minimum hop count between a pair that

consists of an unknown node (U ) and an anchor node (Ai)
depends on the minimum hop count between the unknown
node and another anchor node (e.g., Ak) on the opposite side
ofAiwhen their positions are relative to the referenced anchor
node Af.

Proof: As shown in Fig. 6, if hAf ,U = 1, the value of
hAi,U depends on that of hAk,U .
• In the case whereU is on the shortest path from Ai to Af,
if hAf ,U = 1 and hAf ,U + hAi,U = hAf ,Ai, then hAk,Af +
hAf ,U = hU ,Ak , as shown in Fig. 6a.

• In the case whereU is on the shortest path from Ai to Af,
if hAf ,U = 1 and hAf ,U + hAi,U = hAf ,Ai, then hAk,Af +
hAf ,U > hU ,Ak (as shown in Fig. 6b).

• In the case where U is not on the shortest path from Ai
to Af,

FIGURE 4. Relationships between hAi,U and hAk,U when Ak and Ai are on the same side. (a) If hAf ,U + hAi,U = hAf ,Ai , then
hAk,U + hAf ,U = hAf ,Ak . (b) If hAf ,U + hAi,U > hAf ,Ai , then hAk,U + hAf ,U = hAf ,Ak . (c) If hAf ,U + hAi,U = hAf ,Ai , then
hAk,U + hAf ,U > hAf ,Ak . (d) If hAf ,U + hAi,U > hAf ,Ai , then hAk,U + hAf ,U > hAf ,Ak .
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FIGURE 5. If hAf ,U + hAi,U = hAf ,Ai and 3π
4 > θk >

π
2 , then hAk,U + hAf ,U > hAf ,Ak . (a) 3π

4 > θk >
π
2 and hAk,U > hAk,Af .

(b) 3π
4 > θk >

π
2 and hAk,U = hAk,Af .

FIGURE 6. Relationships between hAi,U and hAk,U when Ak is opposite Ai. (a) If hAf ,U + hAi,U = hAf ,Ai , then hAk,Af + hAf ,U = hU,Ak .
(b) If hAf ,U + hAi,U = hAf ,Ai , then hAk,Af + hAf ,U > hU,Ak . (c) If hAf ,U + hAi,U > hAf ,Ai , then hAk,Af + hAf ,U = hU,Ak . (d) If
hAf ,U + hAi,U > hAf ,Ai , then hAk,Af + hAf ,U > hU,Ak .

if hAf ,U = 1 and hAf ,U + hAi,U > hAf ,Ai, then hAk,Af +
hAf ,U = hU ,Ak (as shown in Fig. 6c).

• In the case where U is not on the shortest path from Ai
to Af
if hAf ,U = 1 and hAf ,U + hAi,U > hAf ,Ai, then
hAk,Af + hAf ,U > hU ,Ak (as shown in Fig. 6d) because
the position of U is very close to that of Af.

Proposition 2: Let θk in Theorem 2 range from
3π
4 ≤ θk ≤ π .

Proof: Suppose that π2 < θk <
3π
4 and the unknown

node is on the shortest path from Ai to Af,as shown in Fig. 7a.
Then, the unknown node cannot be on the shortest path from
Ai to Ak because (hAk,U + hAi,U ) > hAi,Ak and hAf ,U > 1.
Therefore, in this paper, we specify the angle of Ak (θk ) to

avoid evaluating the remaining anchor nodes and improve the
number of hops between U and Ai, which normally causes
additional errors, especially in the case of π

2 < θk <
3π
4 .

Furthermore, in the case of 3π
4 ≤ θk ≤ π in Fig. 7b,
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FIGURE 7. Selecting the appropriate Ak to improve the number of hops between U and Ai. (a) π2<θk<
3π
4 . (b) 3π

4 ≤ θk ≤ π

(complying with Theorem 2).

the unknown nodemight be on the shortest path fromAi toAk.
Therefore, we can use Theorem 2 to determine the relation
between the minimum hop count and the angle between SNs.

Note that from Propositions 1 and 2, we do not consider
Akvalues from π

2 < θk <
3π
4 because they do not affect the

minimum hop count between Ai and U because U cannot
be a member node that creates the shortest path from Ak to
Af. Therefore, we cannot compare the minimum hop count
between hAk,Af and hAk,U for Theorem 1 and between hAi,Ak
and hAi,U to hAk,U for Theorem 2, although the difference
between these hop counts will be used to adjust hAi,U .

A. LOCAL AREA AND LOCAL ANCHOR NODE
IDENTIFICATION
Choosing anchor nodes to estimate the positions of unknown
nodes affects the estimation accuracy. After DV-Hop deter-
mines the shortest path, if the minimum hop count is small,
then the approximate distance between an unknown node and
each anchor node is less erroneous. As a result, we propose an
anchor node selection scheme that chooses anchor nodes for
which the shortest path to the unknown node has the smallest
minimum hop count to identify the local area and the local
anchor nodes. In this paper, we categorize the positions of
the unknown nodes using two schemes:

1) THE UNKNOWN NODE IS CLOSE TO AN ANCHOR NODE
AT AN AREA CORNER
In this scheme, we can promptly determine the local area
that contains the unknown node. For the example in Fig. 8,
the unknown node (U ) is closest to A1, which is the anchor
node in local area 1; thus, U is in the same area (this also
applies for U close to A3, A7, and A9).

2) THE UNKNOWN NODE IS FAR FROM THE ANCHOR
NODES AT AN AREA CORNER
In this scheme, we determine the local area that contains
the unknown node by considering the difference between the
minimum hop count from each local anchor node to the local
anchor node with the smallest minimum hop count (Af, which

FIGURE 8. The unknown node is close to an anchor node at an area
corner.

isA4 in Fig. 9) and theminimum hop count from the unknown
node to each local anchor node next to Af, as derived in
Eq. (8).

dif =
NL∑
i=1

|(hU ,Ai + hU ,Af )− hAf ,Ai| (8)

Note that the unknown node is specified in the local area
that yields the smallest dif value (in Eq. (8)). For example,
the unknown node in Fig. 9a is in local area 1 because the
corresponding dif value is the smallest (=1), whereas the dif
value in local area 3 is 2. In Fig. 9b, A5 is the local node in
all local areas, and the dif value of local area 1 is the smallest
(dif = 0). Therefore, the unknown node is specified in local
area 1 (the dif values of local areas 2, 3, and 4 are 2, 2, and 3,
respectively).

In the case when the dif values of two local values are equal
(which occurs when the unknown node is on a horizontal
or vertical line that connects 2 anchor nodes), the unknown
node should be in the local area with the lowest sum of the
minimum hop counts between the unknown node and the
associated anchor nodes (Ai).

B. HOP APPROXIMATION
After determining the appropriate local anchor nodes for the
unknown node from the previous subsection, we identify the
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FIGURE 9. An unknown node close to an anchor node associated with more than one area. (a) The unknown node is close to A4 in
both local areas 1 and 3. (b) The unknown node is close to A5 in more than two local areas.

local area of the unknown node together with the positions of
all local anchor nodes.Whenwe calculate the hop size (which
is the distance between the two local anchor nodes divided by
the hop count) based onDV-Hop, we do not consider the other
anchor nodes because they might cause the hop size value to
deviate further from the actual value.

Fig. 10 shows an example of calculating the hop size
between A1 and A2 considering the position of U (the closest
node), and it considers only theminimum hop counts between
A1 and A2 and not those between A1 and A3, A1 and A4, A2
and A4, A3 and A4, and A2 and A3.

FIGURE 10. Hop sizes between two local anchor nodes.

In this paper, we divide the methods of estimating the
minimum hop counts between 1) the unknown node (U ) and
2) the local anchor node with the lowest minimum hop count
(i.e., Af or A1 in Fig. 10) into 2 cases: U and Af are separated

by only one hop, and U and Af are separated by more than
one hop. Note that the estimated minimum hop counts are
subsequently used to approximate the distances between the
unknown node and the local anchor nodes.

1) THE UNKNOWN NODE IS ONLY ONE HOP AWAY FROM
THE LOCAL ANCHOR NODE WITH THE SMALLEST
MINIMUM HOP COUNT
Let Af be the local anchor node with the smallest minimum
hop count; thus, hAf ,U = 1. Let Ai denote the local anchor
node with a minimum hop count (hAi,U ) that needs to be
updated. Let Ak be the anchor node that is used to update
the minimum hop counts (hAk,U ) of hAi,U . According to
Theorem 1, given 0 ≤ θk ≤

π
2 , we estimate hAi,U using

Eq. (9), shown at the bottom of this page, and α is a variable
used to adjust the minimum hop count. Note that based on
Theorem 2, given 3π

4 ≤ θk ≤ π , we estimate hAi,U using
Eq. (10), shown at the bottom of this page.

Because 1) the optimal value of the minimum hop count
of Ai (hoptimizedAi,U ) should be in the range of hAi,U ± a1/2 -

unit hop count and 2) |hAi,U – hoptimizedAi,U | is less than or equal

to |(hAi,U + 1-unit hop count) – hoptimizedAi,U | but greater than

|(hAi,U – 1-unit hop count) – hoptimizedAi,U |, we set the value
of α in Eqs. 9, 10, 12 and 13 to a 1/2 -unit hop count.
Consequently, regardless of whether the number of anchor

f1 (x) =


hAi,U ,

(
hU ,Ai + hU ,Af

)
== hAf ,Ai and

(
hU ,Ak + hU ,Af

)
== hAf ,Ak

hAi,U + α,
(
hU ,Ai + hU ,Af

)
== hAf ,Ai and

(
hU ,Ak + hU ,Af

)
− hAf ,Ak == 1

hAi,U − α,
(
hU ,Ai + hU ,Af

)
− hAf ,Ai == 1 and

(
hU ,Ak + hU ,Af

)
== hAf ,Ak

hAi,U ,
(
hU ,Ai + hU ,Af

)
− hAf ,Ai == 1 and

(
hU ,Ak + hU ,Af

)
− hAf ,Ak == 1

(9)

f2 (x) =


hAi,U ,

(
hU ,Ai + hU ,Af

)
== hAf ,Ai and

(
hAk,Af + hU ,Af

)
== hU ,Ak

hAi,U + α,
(
hU ,Ai + hU ,Af

)
== hAf ,Ai and

(
hAk,Af + hU ,Af

)
− hU ,Ak == 1

hAi,U − α,
(
hU ,Ai + hU ,Af

)
− hAf ,Ai == 1 and

(
hAk,Af + hU ,Af

)
== hU ,Ak

hAi,U ,
(
hU ,Ai + hU ,Af

)
− hAf ,Ai == 1 and

(
hAk,Af + hU ,Af

)
− hU ,Ak == 1

(10)

78158 VOLUME 6, 2018



S. Phoemphon et al.: Optimized Hop Angle Relativity for DV-Hop Localization in Wireless Sensor Networks

FIGURE 11. Example of how to choose Ak to improve the minimum hop
count of Ai for the unknown node.

nodes (Ak) increases or decreases, hoptimizedAi,U will be in the
range of hAi,U± a 1/2 -unit hop count.

To determine Ak, two stages are applied to improve the
minimum hop count of Ai. In Stage 1, the anchor nodes
used for the improvement are in the same local area as Ai.
In Stage 2, the anchor nodes are outside the local area.
• Stage 1: The anchor nodes used for the improvement are
in the same local area as Ai in Eq. (9), and 0 ≤ θk ≤ π

2 ,
as shown in Fig. 11. In this topology, Ai = A4 in local
area 1 and Af= A1. Therefore, the usable Ak could be A2
or A5 (θk could be θ2 and θ5.) After obtaining Ak, we can
calculate the improved minimum hop count of Ai. For
the case in which Ak involves 2 nodes, we calculate the
improvement to the minimum hop count by averaging
all improved Ai minimum hop counts from all probable
Ak nodes.

• Stage 2: The anchor nodes used for the improvement are
outside the local area. After obtaining Ak, we calculate
the improvement to the minimum hop count of Ai via a
method similar to that in Stage 1. For the case in which
Ak can be more than one node (= 4 nodes in Fig. 11),
we calculate the improved Ai minimum hop count by
averaging all improved Aiminimum hop counts from all
probable Ak nodes.
◦ If Ak is on the same side as Ai in Eq. (9), then Ak=

{A3, A6, A7, A8, A9} can be used in Eq. (9) because
0 ≤ θk ≤ π

2 .

Similarly, consider Ai= A2. In Stage 1, the usable Ak could
be {A4, A5}, and in Stage 2, the usable Ak could be {A3, A6,
A7, A8, A9} based on Eq. (9).

After performing Ak selection in the two stages, the mini-
mum hop count is improved. Fig. 12 presents an example of
adjusting the hop count from Ai to U (hoptimizedAi,U ) and shows
that there are 4 possible locations of the unknown node that
are close to local anchor nodes, namely, Af: {A1, A5, A2,
A4}. Compared with the former two nodes (A1 and A5),
the calculations in the cases of A2 and A4 are similar because
they are both in two local areas.

In Fig. 12a, the minimum hop count between U and A1 is
the smallest; thus, Af = A1. A1 is in only one local area, and
the set of local anchor nodes (Ai) is {A2, A4, A5}.

For the case when Ai = A2, we improve the minimum hop
count (hoptimizedA2,U ) as follows.

• Stage 1: Solve f1(A4) and f1(A5) because the angles of
A4 and A5 satisfy the condition 0 ≤ θk ≤ π

2 ; thus, Ak =
{A4, A5}. The improved minimum hop count from A2
to U is hoptimized1A2,U =

∑
k=4,5 f1(Ak)
|Ak| according to Eq. (9).

• Stage 2: Solve f1(A3), f1(A6), f1(A7), f1( A8), and f1(A9).
The angles of A3, A6, A7, A8, and A9 satisfy the condi-
tion 0 ≤ θk ≤

π
2 ; thus, Ak = {A3, A6, A7, A8, A9}.

All nodes in Ak are on the same side of Ai; therefore,
only Eq. (9) is applied. Then, the improved minimum
hop count from A2 to the unknown node is the average
of all the results: hoptimized2A2,U =

∑
k=3,6,7,8,9 f1(Ak)
|Ak| .

Next, we average the improved minimum hop counts from

both Stages 1 and 2 as hoptimizedA2,U =

∑2
j=1 hoptimizedjA2,U

2 .
Similar to the case above, whenAi= {A4,A5}, we improve

the minimum hop count as follows.

• For Ai = A4, we obtain hoptimized1A4,U =

∑
k=2,5 f1(Ak)
|Ak| in

Stage 1 and hoptimized2A4,U =

∑
k=3,6,7,8,9 f1(Ak)
|Ak| in Stage 2.

• For Ai = A5, we obtain hoptimized1A5,U =

∑
k=2,4 f1(Ak)
|Ak| in

Stage 1 and hoptimized2A5,U =

∑
k=3,6,7,8,9 f1(Ak)
|Ak| in Stage 2.

Then, the improved minimum hop counts are averaged as
follows.

• hoptimizedA4,U =

∑2
j=1 hoptimizedjA4,U

2

• hoptimizedA5,U =

∑2
j=1 hoptimizedjA5,U

2

In Fig. 12b, the minimum hop count between U and A5 is
the smallest; thus, Af = A5. A5 can be considered in all four
local areas, and the set of local anchor nodes (Ai) is {A1, A2,
A4}. The steps in this improvement are similar to those in the
case of Fig. 12a, except that Eq. (10) is also involved in this
case.

• For Ai = A1, we obtain hoptimized1A1,U =

∑
k=2,4 f1(Ak)
|Ak| in

Stage 1 and by applying Eq. (9) to the case in which 0 ≤
θk ≤

π
2 and hoptimized2A1,U =

∑
k=3,7 f1(Ak)+

∑
k=6,8,9 f2(Ak)

|Ak|
in Stage 2 by applying Eq. (10) to the case in which
3π
4 ≤ θk ≤ π .

• Similarly, for Ai = A2, we obtain hoptimized1A2,U =∑
k=1,4 f1(Ak)
|Ak| in Stage 1 and hoptimized2A2,U =∑

k=3,6 f1(Ak)+
∑

k=7,8,9 f2(Ak)
|Ak| in Stage 2.

• Similarly, for Ai = A4, we obtain hoptimized1A4,U =∑
k=1,2 f1(Ak)
|Ak| in Stage 1 and hoptimized2A4,U =∑

k=7,8 f1(Ak)+
∑

k=3,6,9 f2(Ak)
|Ak| in Stage 2.

Then, we average the improved minimum hop counts from
both Stage 1 and Stage 2 as follows.

• hoptimizedA1,U =

∑2
j=1 hoptimizedjA1,U

2

• hoptimizedA2,U =

∑2
j=1 hoptimizedjA2,U

2

• hoptimizedA4,U =

∑2
j=1 hoptimizedjA4,U

2
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FIGURE 12. Possible locations of the unknown node. (a) The unknown node is near the corner (close to A1). (b) The unknown node is
near the anchor in the middle of the area (close to A5). (c) The unknown node is near the edge (close to A4). (d) The unknown node is
near the edge (close to A2).

In Fig. 12c, the minimum hop count between U and A4 is
the smallest; thus, Af = A4. A4 is located in two local areas.
The set of local anchor nodes (Ai) is {A1, A2, A5}. The steps
for improvement are similar to those in the case of Fig. 12b.

• For Ai = A1, we obtain hoptimized1A1,U =

∑
k=2,5 f1(Ak)
|Ak| in

Stage 1 by applying Eq. (9) for 0 ≤ θk ≤
π
2 and

hoptimized2A1,U =

∑
k=3,6 f1(Ak)+

∑
k=7,8 f2(Ak)

|Ak| in Stage 2 by
applying Eq. (10) for 3π

4 ≤ θk ≤ π .
• Similarly, for Ai = A2, we obtain hoptimized1A2,U =∑

k=1,5 f1(Ak)
|Ak| in Stage 1 and

hoptimized2A2,U =

∑
k=3,6,8,9 f1(Ak)+

∑
k=7 f2(Ak)

|Ak| in Stage 2.

• For Ai = A5, we obtain

hoptimized1A5,U =

∑
k=1,2 f1(Ak)
|Ak| in Stage 1 and

hoptimized2A5,U =

∑
k=3,6,7,8,9 f1(Ak)
|Ak| in Stage 2.

Then, we average the improved minimum hop counts from
both Stage 1 and Stage 2 as follows.

• hoptimizedA1,U =

∑2
j=1 hoptimizedjA1,U

2

• hoptimizedA2,U =

∑2
j=1 hoptimizedjA2,U

2

• hoptimizedA5,U =

∑2
j=1 hoptimizedjA5,U

2

Again, the calculation of Af = A2 is similar to that of
Af = A4 but different from that of Ai = {A1, A4, A5}
(see also Fig. 12d).

2) THE UNKNOWN NODE IS MORE THAN ONE HOP AWAY
FROM THE LOCAL ANCHOR NODE WITH THE SMALLEST
MINIMUM HOP COUNT
When there are no local anchor nodes that are one hop
away from the unknown node (U ), the minimum hop count
improvement can be classified based on two scenarios:U is in
the inner area of the local area (hereafter called the inner local
area) or U is near the edge of the local area. The localization
can be performed by comparing the minimum hop counts
between the local anchor nodes that are opposite each other
along the corresponding diagonal, as shown in Eq. (11).
Scenario I: the unknown node (U ) is located near the

center of the inner local area. For a local area, we apply
Eq. (11) to both pairs of diagonally opposite local anchor
nodes (Ai1, Ai′ 1) and (Ai2, Ai′ 2). If (g(Ai1, Ai′ 1),
g(Ai2, Ai′ 2)) is equal to (0, 0), (0, 1), or (1, 0), the unknown
node (U ) is located near the center of the inner local area. For
example, A1 and A5 (and A2 and A4) are diagonally opposite
in local area 1 in Fig. 13a. Because (g(A1, A5), g(A2, A4)) =
(1, 0), U is located near the center of the inner local area.
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FIGURE 13. The unknown node is more than one hop away from the local anchor node with the smallest minimum hop count.
(a) The unknown node is located near the center of the inner local area. (b) The unknown node is near the edge of the local area of
the anchor node.

Scenario II: the unknown node (U ) is located near the edge
of the local area. If a(g(Ai1, Ai′1), g(Ai2, Ai′2)) is equal to (1,
1), andU is near the edge of the local area. In Fig. 13b, (g(A1,
A5) and g(A2, A4)) = (1, 1), which implies that U is near the
edge of the local area.

g (y)

=

{
1, (hU ,Ai + hU ,Ai′ )− hAi,Ai′ > 0 and hU ,Ai 6= hU ,Ai′

0,
(
hU ,Ai + hU ,Ai′

)
− hAi,Ai′ = 0 or hU ,Ai = hU ,Ai′

(11)

Note that Eqs. (9) and (10) are not suitable for the case in
which an unknown node and a local anchor node are more
than one hop away. Consequently, we adapt Theorems 1 and
2 to improve the minimum hop count between a local anchor
node and an unknown node using Eqs. (12) and (13) for 3π

4 ≤

θAkAi′Ai ≤ π .

f3 (x) =



hAi,U , hAi′,Ak + hU ,Ai′ == hU ,Ak
hAi,U + α, (hAi′,Ak + hU ,Ai′ )− hU ,Ak == 1
hAi,U − α, hU ,Ak − (hAi′,Ak + hU ,Ai′ ) == 1
hAi,U + 2α, (hAi′,Ak + hU ,Ai′ )− hU ,Ak > 1
hAi,U − 2α, hU ,Ak − (hAi′,Ak + hU ,Ai′ ) > 1

(12)

f4 (x) =


hAi,U ,

(
hAk,U + hAi,U

)
== hAk,Ai

hAi,U − α,
(
hAk,U + hAi,U

)
− hAk,Ai == 1

hAi,U − 2α,
(
hAk,U + hAi,U

)
− hAk,Ai > 1

(13)

Ak is determined first. Fig. 14 shows an example of select-
ing Ak to improve hAi,U and hAi′,U . Specifically, if (Ai, Ai′ ) is
(A1, A5), then Ak is {A6, A8, A9}. If (Ai, Ai′ ) is (A2, A4), then
Ak is {A3, A7} based on the condition of 3π

4 ≤ θAkAi′Ai ≤ π .
After obtaining Ak, we then estimate the minimum hop

counts from Ai to U (hoptimizedAi,U ). If Ak is a set of more than
one node, we estimate each minimum hop count by averaging
all the corresponding minimum hop counts that are obtained
from all nodes in the set Ak.

FIGURE 14. Anchor node (Ak) selection for improving the minimum hop
counts from Ai and Ai ′ to the unknown node.

Furthermore, the minimum hop count from Ai′ to the
unknown node (hoptimizedAi′,U ) can be calculated in the same
manner as that for Ai. However, Ai and Ai′ are opposite each
other along the corresponding diagonal. Eq. (14) uses hAi′,U ,
hoptimizedAi,U , and hAi,U to estimate hoptimizedAi′,U instead of Eqs. (12)
and (13).

hoptimizedAi′,U = hAi′,U + (|hoptimizedAi,U − hAi,U |) (14)

Fig. 15 shows an example of determining theminimumhop
count and selecting pairs of anchor nodes in both scenarios.
In the first scenario, U is located near the center of the inner
local area, and in the second, U is near the edge of the local
area.

• In Fig. 15a, the unknown node is located near the center
of the inner local area. We improve the minimum hop
counts between each pair (Ai, Ai′ ) in a similar manner
to that for (A1, A5) and (A2, A4) as follows.

◦ For a diagonally opposite pair (A1, A5), given
Ai = A1 and Ai′ = A5, we improve the minimum
hop count between A1 and U (hA1,U ) as follows.
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FIGURE 15. Local anchor node pair selection for improving the minimum hop count based on the position of U . (a) Selection of two
pairs of diagonally opposite local anchor nodes. (b) Selection of a pair of local anchor nodes on the same edge (A1, A2) and two pairs
of diagonally opposite local anchor nodes.

� f3(A6), f3(A8), and f3(A9) are determined using
Eq. (12). Based on the condition that 3π

4 ≤

θAkAi′Ai ≤ π , Ak = {A6, A8, A9}.
� f4(A6), f4(A8), and f4(A9) are determined using
Eq. (13). Based on the condition that 3π

4 ≤

θAkAi′Ai ≤ π , Ak = {A6, A8, A9}.

Therefore, the improved minimum hop count of A1
is the average of the above calculations: hoptimizedA1,U =∑

k=6,8,9 (f3(Ak)+f4(Ak))
2|Ak| . Additionally, we improve the mini-

mum hop count of A5with Eq. (14), i.e., hoptimizedA5,U = hA5,U +

(|hoptimizedA1,U − hA1,U |).

◦ For the pair (A2, A4), given Ai = A2 and Ai′ = A4,
we improve the minimum hop count from A2 to U
(hA2,U ) as follows.

� f3(A3) and f3(A7) are determined using Eq. (12).
Based on the condition that 3π

4 ≤ θAkAi′Ai ≤ π ,
Ak = {A3, A7}.

� f4(A3) and f4(A7) are determined using Eq. (13).
Based on the condition that 3π

4 ≤ θAkAi′Ai ≤ π ,
Ak = {A3, A7}.

Therefore, the improved minimum hop count of A2
is the average of the above calculations: hoptimizedA2,U =∑

k=3,7 (f 3(Ak)+f4(Ak))
2|Ak| . Additionally, we improve the minimum

hop count of A4 with Eq. (14), i.e., hoptimizedA4,U = hA4,U +

(|hoptimizedA2,U − hA2,U |).

• In Fig. 15b, the unknown node is near the edge of the
local area. In this case, we improve the minimum hop
counts between the pairs (A5, A1) and (A4, A2). How-
ever, an additional pair is located on the border, namely,
(A1, A2).

◦ For the pair (A5, A1), given Ai = A5 and Ai′ = A1,
we improve hA5,U as follows.

� f3(A6), f3(A8), and f3(A9) are determined using
Eq. (12). Based on the condition that 3π

4 ≤

θAkAi′Ai ≤ π , Ak = {A6, A8, A9}.

� f4(A6), f4(A8), and f4(A9) are determined using
Eq. (13).

Therefore, the improved minimum hop count of A5
is the average of the above calculations: hoptimizedA5,U =∑

k=6,8,9 (f 3(Ak)+f4(Ak))
2|Ak| .

◦ For the pair (A4, A2), given Ai = A4 and Ai′ = A2,
we improve hA4,U as follows.

� f3(A3) and f3(A7) are determined using Eq. (12).
Based on the condition that 3π

4 ≤ θAkAi′Ai ≤ π ,
Ak = {A3, A7}.

� f4(A3) and f4(A7) are determined using Eq. (13).

Therefore, the improved minimum hop count of A4
is the average of the above calculations: hoptimizedA4,U =∑

k=3,7 (f 3(Ak)+f4(Ak))
2|Ak| .

◦ For the pair (A1, A2), given Ai = A1 and Ai′ =
A2, where Ai and Ai′ are not diagonal, we improve
the minimum hop count from A1 to U (hA1,U ) as
follows.

� f3(A3) and f3(A6) are determined using Eq. (12).
Based on the condition that 3π

4 ≤ θAkAi′Ai ≤ π ,
Ak = {A3, A6}.

� f4(A3) and f4(A6) are determined using Eq. (13).

Therefore, the improved minimum hop count of A1
is the average of the above calculations: hoptimizedA1,U =∑

k=3,6 (f 3(Ak)+f4(Ak))
2|Ak| . Additionally, we improve the minimum

hop count of A2 with Eq. (14), i.e., hoptimizedA2,U = hA2,U +

(|hoptimizedA1,U − hA1,U |).

C. DISTANCE DETERMINATION
In Section IV.A, we specify the local areas and local anchor
nodes. In Section IV.B, we determine the anchor nodes used
to improve the minimum hop count. In this section, we esti-
mate the distance between each local anchor node and the
unknown node.
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FIGURE 16. Estimating the distance between each local node and the unknown node. (a) U is only one hop away from Af. (b) U is located near
the center of the inner local area (U and Af are separated by more than one hop). (c) U is near the edge of the local area (U and Af are
separated by more than one hop).

The improved minimum hop count between each local
anchor node and the unknown node has been obtained. Here,
we do not consider the average hop size (as in traditional
DV-Hop). Instead, we define the hop size as the distance
(between two local anchor nodes) divided by the correspond-
ing (improved) minimum hop count, i.e., hopsizeAi,Af =
dAi,Af
hAi,Af

. Then, the hop size is multiplied by the improved min-
imum hop count of each local anchor node to estimate the
distance from the local anchor node to the unknown node
(dAi,U ).

1) THE UNKNOWN NODE AND THE LOCAL ANCHOR NODE
WITH THE SMALLEST MINIMUM HOP COUNT ARE
SEPARATED BY ONLY ONE HOP (SEE IV.B.1)
Fig. 16a illustrates a scenario in which the unknown node
and anchor node are separated by only one hop. We estimate
the following distances by multiplying the hop size between
each Ai = {A2, A4, A5} and Af = A1 by the corresponding
improved minimum hop count.
• First, we approximate the distance fromAi toU : dAi,U =
hopsizeAi,Af × h

optimized
Ai,U , for i = 2, 4, and 5.

• We then approximate the distance from Af to the
unknown node (dA1,U ). Because dA1,U has the largest
difference in distances from each anchor Ai to A1
and from each Ai to the unknown node, dA1,U =
max(|dA1,A2 – dA2,U |, |dA1,A4 – dA4,U |, |dA1,A5 – dA5,U |).
Note that dA1,U covers the position of the unknown node.

2) THE UNKNOWN NODE AND THE LOCAL ANCHOR NODE
WITH THE SMALLEST MINIMUM HOP COUNT ARE
SEPARATED BY MORE THAN ONE HOP (SEE IV.B.2)
We estimate the distances by multiplying the hop size
between two diagonally opposite anchor nodes by the corre-
sponding improved minimum hop count. In such situations,
there are two possible scenarios.
Scenario I: the unknown node (U ) is located near the center

of the inner local area, as shown in Fig. 16b.
Each of the following distances is equal to the product of 1)

the hop size between two diagonally opposite anchor nodes
(Ai, Ai′) = (A1, A5) or (A2, A4) and 2) the improved corre-
sponding minimum hop count hopsizeAi,Ai′ =

dAi,Ai′
hAi,U+hAi′,U

.

• Approximate distance from Ai to U : dAi,U =

hopsizeAi,Ai′ × h
optimized
Ai,U

• Approximate distance from Ai′ to U : dAi′,U =

hopsizeAi,Ai′ × h
optimized
Ai′,U

where i = 1, i′ = 5; and i = 2, i′ = 4.

Scenario II: the unknown node (U ) is near the edge of the
local area, as shown in Fig. 16c.
Each of the following distances is equal to the product of

1) the hop size between the two local anchor nodes around
the edge (Ai, Ai′) = (A1, A2) and the two local anchor
nodes on the diagonal, namely, (Ai, Ai′ ) = (A1, A5) or
(A2, A4), and 2) the improved corresponding minimum hop
count hopsizeAi,Ai′ =

dAi,Ai′
hAi,Ai′

.

• Approximate distance from Ai to U : dAi,U =

hopsizeAi,A2 × h
optimized
Ai,U , for i = 1 and 4

• Approximate distance from Ai to U : dAi,U =

hopsizeA1,Ai × h
optimized
Ai,U , for i = 2 and 5

Note that in the scenarios above (See C.1 and C.2), the dis-
tance is determined; however, the distance between each local
anchor node and the unknown node may be overestimated,
especially when it exceeds the communication range (cr).

• For the case in which the minimum hop count between
the local anchor node and the unknown node is 1,
the estimated distance must be in the range of 0 ≤
dAi,U ≤ cr . Therefore, we must adjust the distance
according to Eq. (15) so that it is different from g(x) and
f (x). This distance correction is denoted as q1(x), where
x denotes the distance between the anchor and unknown
nodes.

• For the case in which the minimum hop count between
the local anchor node and the unknown node is 2,
the estimated distance must be in the range of cr <

dAi,U ≤ 2 × cr . Therefore, we must adjust the distance
according to Eq. (16). Note thatω is a variable indicating
the upper bound of a random number with a maximum
value of cr (see also Section V).

q1 (x) =

{
dAi,U , 0 ≤ dAi,U ≤ cr
cr, cr < dAi,U

(15)
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q2 (x) =


cr + rand(0, ω), dAi,U < cr
dAi,U , cr < dAi,U ≤ 2× cr
2× cr, 2× cr < dAi,U

(16)

D. BOUNDING THE AREA FOR LOCALIZING
UNKNOWN NODES
In Section IV.C, we estimate the distances between each local
anchor node and the unknown node. In this section, we esti-
mate the positions of unknown nodes in 2 steps: 1) bounding
the area of the unknown node and 2) approximating the
unknown node.

1) DEFINE THE BOUNDARY OF THE UNKNOWN NODE
After obtaining the distance from each local anchor node to
the unknown node, we apply the bounding box [39] technique
to reduce the size of the approximation area by limiting the
lower and upper bounds. The rectangular area is calculated by
dAi,U and the local anchor node position (xAi,yAi) as follows.
• Eq. (17) can be used to determine the boundaries of the
bounding box (Bi) of a local anchor node (Ai) by cal-
culating the difference in the local anchor node position
(xAi, yAi) and the distance from the local anchor node to
the unknown node (dAi,U ).

Bi :
[
xAi − dAi,U , xAi + dAi,U

]
× [yAi − dAi,U , yAi + dAi,U ], (17)

where 1 ≤ i ≤ m. In this case,m is the number of local anchor
nodes (in this paper, m = 4).
• Eq. (18) is used to determine the intersection area (Rj)
of all bounding boxes.

Rj =
m⋂
i=1

Bi (18)

Rj =
m⋂
i=1

[
max
∀i

(xAi − dAi,U ),max
∀i

(y
Ai
− dAi,U )

]
×

[
min
∀i

(xAi + dAi,U ),min
∀i

(yAi + dAi,U )
]

(19)

For simplicity, we rewrite Eq. (18) as Eq. (19), which
specifies 1) the smallest Rj on the x-axis by calculating the
maximum value of xAi– dAi,U and 2) the largest Rj on the
x-axis by calculating the minimum value of xAi+dAi,U . Simi-
larly, we can apply Eq. (19) for Rj on the y-axis by calculating
the maximum value of yAi– dAi,U and the minimum value of
yAi+dAi,U , as in the example in Fig. 17. The bounding box of
the unknown node (Rj) is determined based on the min-max
method in Eq. (19). Specifically, we use the positions of
three local anchor nodes (A1, A2, and A3) and the distances
obtained earlier (dA1,U , dA2,U , and dA3,U ).

2) UNKNOWN NODE LOCALIZATION BASED ON PSO
The bounding boxmethod, which was discussed earlier, helps
reduce the size of the approximation area, thereby reducing

FIGURE 17. Min-max method.

the number of PSO run cycles required to determine the
unknown node position when computational resources are
scarce [33].

PSO is a heuristic method that adopts social structures to
search for themost appropriate solution to a specific problem.
Applying PSO to calculate the sum of the distances between
the unknown node and the local anchor nodes could yield
more accurate results than those produced by the multitrilat-
eration method and least-squares method [15].

Algorithm 1 shows the application of PSO for localization.
First, we create random particles at the initial position (X ).
Then, we specify the velocity (v) and position (x, y) and
determine the best position of the particle in the current round
(pb). Subsequently, we determine the optimal positions of all
particles (gb) from the lowest fitness value of all particles
(pb). We repeat this process by specifying a new velocity and
position using Eqs. (20) and (21).

Algorithm 1 PSO
1. for i ∈ S
2. Randomlyselectposition Xi and velocity vi of particle i
3. pbi = Xi
4. end for
5. Update gb = min(F(pb))
6. repeat
7. for i ∈ S
8. Update velocity of particle vi
9. Update position of particle Xi
10. fitnessSol= F(Xi)
11. pbi = Xi when, fitnessSol< F(pbi)
12. gb = Xi when, fitnessSol < F(gb)
13. end
14. until stopping condition

We must calculate the fitness function of particle X before
moving it to a new location. If this new position yields a
fitness value that is less than that of the previous position,
we update the particle’s position. The process is repeated in
the same manner for all particles (gb) until the solution is
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obtained, the process reaches the specified maximum number
of cycles, or the entire search area in the bounding box is
searched.

vk (t + 1) = w (t) vk (t)+ c1r1
(
pbk − xk (t)

)
+ c2r2(gb− xk (t)), (20)

xk (t + 1) = xk (t)+ vk (t + 1) , (21)

where vk (t) is the velocity of the k th particle in the t th cycle,
xk (t) represents the (x, y) coordinates of the k th particle in
the t th cycle, pbk is the position of the best fitness value
discovered by the k th particle, gb is the best position that
is discovered by the swarm, c1 and c2 are the acceleration
factors, r1 and r2 are random numbers in the range of [0, 1],
and t is the current number of iterations.
The inertial weight (w) is a particle parameter that is used to

control the effect of run speed of recent iterations. The initial
value of w must be large enough so that the particle position
does not remain at a local minimum. Moreover, if the initial
value is too small, then the convergence process might be too
slow. Therefore, we should set the value of w to be initially
large and decrease it in later iterations. The value ofw linearly
decreases as the number of iterations increases, as expressed
in Eq. (22).

w (t) = wmax −
wmax − wmin
itermax

× t, (22)

where wmax is the termination inertial weight, wmin is the
initial inertial weight, and itermax is the maximum number
of iterations.

In this paper, we improve the PSO fitness function to be
more suitable for position estimation, as shown in Eq. (23).
In particular, we include this factor in the form of βi in
the fitness function, which is similar to the impact of the
minimum hop counts (between U and Ak) proposed by Chen
and Zhang [16]. Here, βi reflects the fact that the minimum
hop counts betweenU andAk affect the localization accuracy.
Our intensive evaluation indicated that high minimum hop
counts correspond to low localization errors.

In addition, another factor, the number of anchor nodes
(Ak), is considered in the form of γi. The simulations suggest
that a greater number of anchor nodes corresponds to higher
location accuracy. From these two factors in a weighted linear
relationship (µ), we derive the fitness function, such that
the value is low for a high minimum hop count and/or a
large number of anchor nodes. Additionally, this function
minimizes the difference between the distance from each
particle to the anchor nodes and the estimated distance from
the anchor nodes to the unknown node.

F (xk (t))

=

m∑
i=1

(
µβ i + (1− µ) γi

) ∣∣(‖xk (t)− (xAi, yAi)‖ − dAi,U )∣∣ ,
(23)

where xAi, yAi are the coordinates of the ith local anchor node,
dAi,U is the estimated distance between the ith local anchor

node and the unknown node (U ), µ is an adjustment (weight)
factor for the two parameters (β and γ ) in the range of 0
to 1, βi is the inverse of the minimum hop count between the
ith local anchor node and U ( 1

hAi,U
) and γi is the inverse of

the size of the other anchor nodes (Ak) for the improvement
of Ai ( 1

|Ak| ).

V. PERFORMANCE EVALUATION
In this section, we assess the performance of the proposed
method (OHAR-DV-Hop) and compare it with that of
other DV-Hop-based algorithms, such as iDV-Hop [15],
DV-maxHop [31], Selective 3-Anchor DV-Hop [30],
PSODV-Hop [16], and GA-PSODV-Hop [33].

A. SIMULATION CONFIGURATIONS
The evaluation framework is a standard configuration of the
Windows 7 (64-bits) operating system running on an Intel(R)
Core (TM)QuadQ8400 2.66 GHzCPUwith 2048× 2MB of
DDR-SDRAMmemory and a 320 GB, 7200 RPM hard disk.
For comparison, we simulate various network configurations
in MATLAB with the standard library.

We adopt a logarithmic attenuation model [40] as the
method of signal propagation over the distance according to
the equation below.

Pl (d) = Pl (d0)+ 10η log
(
d
d0

)
+ Xσ , (24)

where Pl(d) denotes the path loss over the distance d , d0 is
the reference distance (=1 meter), Xσ is a Gaussian random
distribution function with 0 mean, and η is the path loss
exponent (=4)

Two network scenarios are used to represent both
small (100 ×100 m2) and large (300 × 300 m2)
scales [15], [16], [33]. For comparison with [15], [16], [30],
[31], [33], first, the dimension of the experimental area is
100 × 100 m2, and the number of unknown nodes is varied
at 150, 200, and 250 to evaluate the extent to which the
sensor node density affects the accuracy. The positions of
the unknown nodes are randomly determined according to a
uniform distribution [30]. The positions of the anchor nodes
form grids of 3 × 3, 4 × 4, and 5 × 5 nodes, and each grid
is used to determine whether the number of anchor nodes
influences the estimation accuracy.

In addition, after running 20 experiments, we learned that
if the communication range is set to 18 meters, each sensor
node has at least one connection [19], [22]. Furthermore,
we increased the communication range to 22 meters [16],
which is the highest radius for which the centroid technique
can be applied.

Second, the area is based on a factor of 3 in the first
scenario, i.e., 300× 300 m2 for various numbers of unknown
nodes, including 150, 200, and 250. Similar to the first
scenario, the positions of the unknown nodes are randomly
determined according to a uniform distribution [30]. The
positions of the anchor nodes form a grid with dimensions
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FIGURE 18. Placement of anchor nodes. (a) 9 anchor nodes. (b) 16 anchor nodes. (c) 25 anchor nodes.

of multiples of 3, including a communication range over 18
× 3 and 22 ×3 meters.
An experiment is performed to determine the effect of ω

ranging from 0.1cr to 0.9cr (see Eq. (16)) to determine an
optimal value for the six cases (small and large scale). Note
that we observed an increasing trend for the error; thus, for
conciseness, we show the error only up to 0.4cr. These values
are listed in Table 2. Fig. 18 shows examples of how the SNs
are placed in the network for performance comparison pur-
poses. In terms of PSO parameters, we follow the recommen-
dation from the performance analysis report [16], [41]–[44]
to determine the proper values (see Table 3).

TABLE 2. Simulation parameters [15], [16], [33].

TABLE 3. PSO parameters [16], [41]–[44].

We adopt the mean location error (MLE) [15], [16], [30],
[31], [33] with a 95% confidence interval as the met-
ric to measure the performance based on other related
research. As shown in Eq. (25), the MLE value is the sum
of the estimated location error divided by the number of
unknown nodes. The lower the MLE value is, the higher the
accuracy.

MLE =

∥∥∥zactualj − zestj

∥∥∥
N − m

, (25)

TABLE 4. Nine anchor nodes (small scale).

where zactualj = (xactualj , yactualj ) denotes the actual coordinate
pair of the jth unknown node, zestj = (xestj , yestj ) denotes the
estimated location of the jth unknown node, N denotes the
number of SNs, and m denotes the number of anchor nodes.

B. SIMULATION RESULTS
Tables 4 to 11 show the MLEs for six different cases (includ-
ing both small- and large-scale networks) to determine ω
ranging from 0.1cr to 0.4cr, with 0.1cr as the step size.
In general, low ω values result in the best location estimation
in all cases. For example, for a small-scale network with
9 anchor nodes, the location estimates with communication
ranges of 18 and 22 m are 3.35 and 3.61 for 0.1cr, 3.38 and
3.63 for 0.2cr, 3.46 and 3.69 for 0.3cr, and 3.60 and 3.81 for
0.4cr, respectively. Note that the MLEs of the other two
cases display the same trend, although the MLE is lower
on average; for example, the values are 2.45 and 2.89 and
2.03 and 2.37 for 18- and 22-m ranges, respectively, at 0.1cr.

With more anchor nodes, the MLEs also decrease; for
example, at 0.1cr, the MLEs are 3.35, 2.45, and 2.03, for 9,
16, and 25 nodes, respectively. Similarly, for a large-scale
network, the trend holds but with higher values; for example,
at 0.1cr, for 9, 16, and 25 nodes with 54 and 66 m as the
range, the MLEs are 9.99 and 10.74, 7.30 and 9.17, and
6.06 and 7.07, respectively. Additionally, as the number of
anchor nodes increases, the error decreases, e.g., from 9.99 to
6.06 for 9 to 25 nodes.

Considering the first scenario (a small-scale network),
Fig. 19 shows the MLE values of all algorithms when the
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TABLE 5. Sixteen anchor nodes (small scale).

TABLE 6. Twenty-five anchor nodes (small scale).

TABLE 7. Nine anchor nodes (large scale).

TABLE 8. Sixteen anchor nodes (large scale).

TABLE 9. Twenty-five anchor nodes (large scale).

number of SNs is 150. When the number of anchor nodes
increases from 9 to 25 and the communication range is
18meters, theMLE value decreases, as illustrated in Fig. 19a.

The MLE values of iDV-Hop, DV-maxHop, Selective
3-Anchor DV-Hop, PSODV-Hop, GA-PSODV-Hop, and
OHAR-DV-Hop decrease from 7.58 to 7.29, 7.27 to 6.85,

6.52 to 5.17, 5.54 to 4.26, 5.15 to 3.74, and 3.51 to 2.13,
respectively. The results confirm that as the number of
anchor nodes increases, the minimum hop counts between
the unknown node and the anchor nodes generally decrease,
thereby providing more accurate hop sizes.

Furthermore, OHAR-DV-Hop outperforms the other algo-
rithms because the OHAR-DV-Hop algorithm can determine
more accurate minimum hop counts between the unknown
node and the corresponding anchor nodes (i.e., the local
anchor nodes that surround the unknown node).

The errors of iDV-Hop are high. Improvements were
obtained by replacing the multitrilateration algorithm with
the least-squares method; however, the least-squares method
cannot estimate the optimal position because the error
between the distance from each particle to the anchor nodes
and the estimated distance from the anchor nodes to the
unknown node (‖xk (t)− (xAi, yAi)‖− dAi,U ) is not normally
distributed. Therefore, an optimization method, such as PSO,
was introduced to minimize the errors that were obtained
from the least-squares method.

DV-maxHop limits the number of anchor nodes within
a specific range, so the nodes with high hop counts were
not considered, nor was the hop size adjustment imple-
mented, thereby decreasing the estimation precision. Similar
to DV-maxHop, Selective 3-Anchor DV-Hop does not con-
sider a hop size adjustment or the use of traditional multitri-
lateration, which can result in low accuracy.

PSODV-Hop, for example, improves the fitness function to
obtain the lowest location estimation errors. However, the use
of PSO alone has a limitation when determining a proper
hop size. GA-PSODV-Hop improves the hop size calculation
by applying the SFLA prior to position estimation based on
a hybrid GA-PSO that provides high estimation accuracy.
However, the error of the estimated hop size is still high when
all anchor nodes are considered in the calculation.

In Fig. 19b, when the communication range is increased
to 22, the overall MLE values increase because the hop
size also increases, thereby resulting in a decrease in the
accuracy of the estimated distance between the anchor node
and the unknown node. For example, when the number of
anchor nodes is 25, the MLE increases from 7.29 to 7.63,
6.85 to 7.05, 5.17 to 5.76, 4.26 to 4.41, 3.74 to 3.97, and
2.13 to 2.31 for iDV-Hop, DV-maxHop, Selective 3-Anchor
DV-Hop, PSODV-Hop, GA-PSODV-Hop, and OHAR-DV-
Hop, respectively. OHAR-DV-Hop outperforms the other
methods and yields the lowest MLE values because of
the improved hop size computation process. As the range
increases, the hop size error tends to increase, particularly
with the averaging approach; however, OHAR-DV-Hop con-
siders only the hop size between two connected anchor nodes
associated with the unknown node; thus, regardless of the
range, OHAR-DV-Hop still yields high accuracy.

Similar to Fig. 19, Fig. 20 shows the MLE values when
the number of SNs is 200. Overall, the trend is simi-
lar to that in Fig. 19. The algorithms can be arranged in
descending order according to theMLE as follows: iDV-Hop,
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FIGURE 19. MLEs for 150 sensor nodes (small scale). (a) Communication range = 18 meters. (b) Communication range = 22 meters.

FIGURE 20. MLEs for 200 sensor nodes (small scale). (a) Communication range = 18 meters. (b) Communication range = 22 meters.

DV-maxHop, Selective 3-Anchor DV-Hop, PSODV-Hop,
GA-PSODV-Hop, and OHAR-DV-Hop. In the case of the
18-meter communication range (Fig. 20a), the proposed
OHAR-DV-Hop method provides the lowest error (from
2.87 to 1.55).

For iDV-Hop, DV-maxHop, Selective 3-Anchor DV-Hop,
PSODV-Hop, and GA-PSODV-Hop, the errors decrease from
6.99 to 6.59, 6.65 to 6.08, 5.95 to 4.41, 4.91 to 3.86, and
4.53 to 3.24, respectively. Fig. 20b shows the results for
the case of the 22-meter communication range. The trends
are similar to those for the 18-meter case despite the higher
MLEs. For example, when the number of anchor nodes is 25,
the MLEs increase from 6.59 to 6.99, 6.08 to 6.21, 4.41 to
4.62, 3.86 to 4.23, 3.26 to 3.80, and 1.55 to 2.10 for iDV-Hop,
DV-maxHop, Selective 3-Anchor DV-Hop, PSODV-Hop,
GA-PSODV-Hop, and OHAR-DV-Hop, respectively.

Similar to Figs. 19 and 20, Fig. 21 shows the MLE values
for the case of 250 SNs. As shown in Fig. 21a, when the
number of anchor nodes increases, the MLEs of iDV-Hop,
DV-maxHop, Selective 3-Anchor DV-Hop, PSODV-Hop,
GA-PSODV-Hop, and OHAR-DV-Hop decrease from 6.93 to
6.13, 6.31 to 5.41, 5.87 to 4.27, 4.78 to 3.67, 4.43 to 3.06, and
2.65 to 1.28, respectively.

The performance of OHAR-DV-Hop is outstanding
because increasing the number of anchor nodes results in
more anchor nodes of interest being used to improve the
minimum hop count, which leads to more precise location
estimations. In addition, when the communication range is
extended, the overall MLE values increase; for example,
when the number of anchor nodes is 25, the MLEs increase
from 6.13 to 6.96, 5.41 to 5.87, 4.27 to 4.42, 3.67 to 4.13,
3.06 to 1.98, and 1.28 to 2.32 for iDV-Hop, DV-maxHop,
Selective 3-Anchor DV-Hop, PSODV-Hop, GA-PSODV-
Hop, and OHAR-DV-Hop, respectively.

The results in Figs. 19 to 21 show that as the number of
sensor nodes increases (from 150 to 250), the MLE values
tend to decrease due to the high sensor node density, which
leads to lower minimum hop counts between the SNs, thereby
enabling more accurate hop size calculations.

For the second scenario (a large-scale network), Fig. 22
shows the MLE values of all algorithms with 150 SNs. When
the number of anchor nodes increases from 9 to 25 and the
communication range is 54 meters, the MLE value decreases,
as shown in Fig. 22a.

The MLE values of iDV-Hop, DV-maxHop, Selective
3-Anchor DV-Hop, PSODV-Hop, GA-PSODV-Hop, and
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FIGURE 21. MLEs for 250 sensor nodes (small scale). (a) Communication range = 18 meters. (b) Communication range = 22 meters.

FIGURE 22. MLEs for 150 sensor nodes (large scale). (a) Communication range = 18×3 meters. (b) Communication
range = 22×3 meters.

FIGURE 23. MLEs for 200 sensor nodes (large scale). (a) Communication range = 18×3 meters. (b) Communication
range = 22×3 meters.

OHAR-DV-Hop decrease from 20.09 to 19.32, 19.28 to
18.15, 17.27 to 13.70, 14.67 to 11.28, 13.76 to 10.03, and
9.73 to 6.02, respectively. Here, OHAR-DV-Hop is superior,
i.e., it yields the lowest MLE values.

When the communication range is increased to 66,
the overall MLE values increase because the hop size also

increases, thereby resulting in lower accuracy for the esti-
mated distance between the anchor node and the unknown
node. For example, Fig. 22b shows that when the num-
ber of anchor nodes is 25, the MLE increases from 19.32
to 21.36, 18.15 to 19.73, 13.70 to 16.12, 11.28 to 12.35,
10.03 to 11.11, and 6.02 to 6.86 for iDV-Hop, DV-maxHop,
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FIGURE 24. MLEs for 250 sensor nodes (large scale). (a) Communication range = 18×3 meters. (b) Communication
range = 22×3 meters.

Selective 3-Anchor DV-Hop, PSODV-Hop, GA-PSODV-
Hop, and OHAR-DV-Hop, respectively.

Similar to Fig. 22, Fig. 23 shows the MLE values with
200 SNs. Overall, the trend follows that in Fig. 22. The meth-
ods, in terms of descendingMLE values, can be ranked as fol-
lows: iDV-Hop, DV-maxHop, Selective 3-Anchor DV-Hop,
PSODV-Hop, GA-PSODV-Hop, and OHAR-DV-Hop. In the
case of the 54-meter communication range (Fig. 23a),
OHAR-DV-Hop yields the lowest error (from 7.92 to 4.58).
For iDV-Hop, DV-maxHop, Selective 3-Anchor DV-Hop,
PSODV-Hop, and GA-PSODV-Hop, the errors decrease from
18.17 to 17.13, 17.07 to 15.80, 15.47 to 11.47, 12.76 to 10.03,
and 11.86 to 8.49, respectively.

For a 66-meter communication range, Fig. 23b shows
that the trends are similar to those in the 54-meter case
despite the higher MLEs. For example, with 25 anchor
nodes, the MLEs increase from 17.13 to 19.29, 15.80 to
17.14, 11.47 to 12.73, 10.03 to 11.67, 8.49 to 10.49, and
4.58 to 6.33 for iDV-Hop, DV-maxHop, Selective 3-Anchor
DV-Hop, PSODV-Hop, GA-PSODV-Hop, and OHAR-DV-
Hop, respectively.

Similar to Figs. 22 and 23, Fig. 24 shows the MLE values
with 250 SNs. Fig. 24a shows that when the number of anchor
nodes increases, the MLEs of iDV-Hop, DV-maxHop, Selec-
tive 3-Anchor DV-Hop, PSODV-Hop, GA-PSODV-Hop, and
OHAR-DV-Hop decrease from 17.60 to 15.57, 16.02 to
13.74, 14.92 to 10.84, 12.14 to 9.33, 11.25 to 7.77, and
7.36 to 3.92, respectively. The performance of OHAR-
DV-Hop is outstanding. When the communication range is
extended, the overall MLE values increase. For example,
with 25 anchor nodes, the MLEs increase from 15.57 to
18.87, 13.74 to 15.91, 10.84 to 11.99, 9.33 to 11.20, 7.77 to
10.05, and 3.92 to 5.95 for iDV-Hop, DV-maxHop, Selec-
tive 3-Anchor DV-Hop, PSODV-Hop, GA-PSODV-Hop, and
OHAR-DV-Hop, respectively.

Figs. 22 to 24 also show that as the number of SNs
increases (from 150 to 250), the MLE values tend to decrease
for the same reasons as observed for the small-scale network;
however, for the large-scale network, the average MLEs tend

to be higher because the hop size of the large network is
larger (i.e., the distance between the two anchor nodes is
longer) than that of the small-scale network, and therefore,
the estimation error tends to be higher.

VI. CONCLUSIONS AND FUTURE WORK
One of the major problems inWSN networks is imprecise SN
localization. In this study, we propose a range-freeWSNposi-
tion estimation approach to improve the DV-Hop technique.
We suggest a strategy for calculating and using the minimum
hop counts between SNs to approximate the positions of
unknown nodes. The calculation of the minimum hop counts
is enhanced by selecting appropriate local anchor nodes and
using the angles between SNs to increase the accuracy of the
approximate distances between the local anchor nodes and
the unknown node. We reduce the size of the area around the
unknown node (by creating a bounding box) and apply the
PSO algorithm in conjunction with the enhanced distance to
determine the locations of the unknown nodes.

In this research, we compare the performance of the
proposed method with that of other DV-Hop-derived meth-
ods, namely, iDV-Hop, PSODV-Hop, Selective 3-Anchor
DV-Hop, DV-maxHop, and GA-PSODV-Hop, using a con-
figuration in which the locations of the anchor nodes form
a grid. We vary the number of SNs and the communication
range in both small- and large-scale scenarios. The exper-
imental results show that OHAR-DV-Hop yields the best
performance, followed by GA-PSODV-Hop, PSODV-Hop,
Selective 3-Anchor DV-Hop, DV-maxHop, and iDV-Hop,
which yield errors of 36.45%, 42.78%, 54.22%, 59.72%, and
63.49%, respectively.

Although our approach outperforms the others in terms
of localization, additional investigations on the assump-
tions and constraints, such as QoS-aware mechanisms and
data aggregation techniques, must be conducted. Moreover,
other hybrid schemes and optimization techniques based on
soft computing must be intensively studied in future work.
In addition, various factors and configurations, such as the
network density and diversity, network topology, network
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dimensions, and signal propagation models, may also affect
the location approximation performance; therefore, com-
prehensive simulations and analyses should be performed.
Finally, practical considerations regarding network protocols
should also be investigated in future research.

In future investigations, we will focus on noise and sig-
nal fading effects during localization in a real experimental
framework. We will aim to develop a WSN framework for
investigating the factors that might affect the efficacy of the
proposed method, in addition to corresponding analyses and
simulations.
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