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ABSTRACT Cone-beam-computed tomography (CBCT) has shown enormous potential in recent years, but
it is limited by severe scatter artifacts. This paper proposes a scatter-correction algorithm based on a deep
convolutional neural network to reduce artifacts for CBCT in an image-guided radiation therapy (IGRT)
system. A two-step registration method that is essential in our algorithm is implemented to preprocess data
before training. The testing result on real data acquired from the IGRT system demonstrates the ability of
our approach to learn artifacts distribution. Furthermore, the proposed method can be applied to enhance the
performance on such applications as dose estimation and segmentation.

INDEX TERMS CBCT, scatter correction, image registration, deep CNN.

I. INTRODUCTION
Cone-beam computed tomography (CBCT) system based on
flat-panel detectors (FPDs) has shown enormous potential
in the past two decades. Compared with traditional com-
puted tomography (CT), CBCT has numerous advantages,
such as higher spatial resolution, scanning speed and ray
utilization ratio, lower radiation dose and effective solu-
tion to set-up errors of the patients treated with fractioned
radiotherapy [1]. However, one major challenge encoun-
tered by CBCT is the severe streaking and cupping arti-
facts caused by enormous amount of scatter [2], [3]. The
potential impact on CBCT images induced by these artifacts
mainly lies in two aspects. Firstly, a quantitative inaccuracy
of reconstructed CT numbers may be caused, which makes
accurate dose-calculation impossible [4]. Secondly, some
CBCT-based techniques such as volume visualization and
segmentation will be greatly affected [5]. With appropriate
artifacts removal approaches, the uniformity of contaminated
CBCT images can be improved, which can further contribute
to the solutions to the above problems.

Nevertheless, scatter correction is a complex issue.
Traditional fan-beam CTs adopting linear array detectors
are mainly confronted with 1-D scatter, which is relatively
less intensive and can be alleviated by installing collimators.
By contrast, the scatter artifacts in CBCT caused by the
FPD system are distributed in 2-D form, making the scatter
intractable to deal with [6].

Several techniques have been proposed to troubleshoot this
problem. These scatter artifacts correction methods can be
generally divided into two categories: hardware-based ones
and software-based ones.

Hardware-based methods include anti-scatter grid and air
gap. However, this type of correction method adds extra
hardware to the CBCT system, which can increase its dif-
ficulty and complexity [7]. Therefore, efforts are increas-
ingly being directed toward software-based methods, such
as Monte Carlo simulation algorithms, scatter estimation
methods, partial scattering measurement-based methods and
convolutional model-based methods.

In recent years, Monte Carlo (MC) simulation algo-
rithms have been proposed to reduce the scatter artifacts.
Examples include the GPU accelerating technology-based
method [8] andmodel-based volume restoration approach [9].
Xu et al. [10] proposed an optimized MC simulation
approach, which also obtained satisfactory effects. However,
it takes at least 3 minutes in conventional MC simulation for
a single CBCT projection, which limits its clinical applica-
tion [11], [12]. The MC method can used the clean CT image
to simulate scatter distribution. However, in IGRT system, the
CBCT images are contaminated by severe artifacts, for which
we are not capable of generating desired scatter distribution.

Most scatter analysis methods are based on the
Klein–Nishina formation and Spies’ model [13]. Such
information as X-ray spectral characteristics, geometrical
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structure of the object, and attenuation coefficients is essen-
tial to these methods. Yao and Leszczynski [14] acquired
an approximate estimation with the above information.
Feng et al. could estimate the scatter distribution of X-ray
irradiated objects in both a homogeneous medium and an
inhomogeneous medium. The level set-based method [15]
and moving blocker-based method [16] could obtain satis-
factory results as well.

Many partial scattering measurement-based methods are
available to correct artifact scatters. An early method based
on beam stop array (BSA) calculated the overall scattering
distribution received by the detector bymeasuring the amount
of scattering under the X-ray blocking array [17]. Then,
a normal scan without X-ray blocking array was performed.
The scanned projected images were subtracted by the images
representing the overall scattering distribution. Ultimately,
the corrected images could be acquired. Henceforth, BSA is
regarded as an ideal scatter-correction method and has been
improved numerous times. Nevertheless, the double scans in
this method increased the scanning time and X-ray irradiation
dose. Siewerdsen et al. [18], Yan et al. [19], Ren et al. [20],
and Lee et al. [21] proposed several ways to remove the extra
scan. Ouyang et al. [22], [23] and Meng et al. [24] utilized
moving shutters, which could also obtain satisfactory effects
without double scans. Zhu et al. [25], [26] proposed a primary
ray modulation method, with which a modulation board was
used to convert the primary ray image of the object into high
frequency and then separate the low-frequency component
describing the scattering distribution.

Convolutional model-basedmethod, whichwas adopted by
the KV imaging system in the clinical Varian TrueBeam, was
proposed early in 1987 by Naimuddin et al. [27]. Variants
of this method focused on employing different scattering
kernel model parameters to implement scatter correction. For
instance, Starlack’s method [28], [29] could easily tackle the
impact of different energy levels of X-ray scattering on CBCT
reconstruction images. Flickit was a priori knowledge needed
to estimate the scattering kernel model parameters, which,
to a certain extent, hindered the range of application and
accuracy of this method.

In 2018, Maier et al. [30], [31] proposed a deep convolu-
tional neural network (CNN) combined with MC simulations
to estimate scatter artifacts. They employed a deep convo-
lutional neural network which was trained to reproduce the
output of MC simulations with only projection data as input.
In this approach, phantoms instead of real images were used
as the prior clean images.

Recently, some generative adversarial network (GAN)
based methods have been proposed to directly learn the dis-
tribution of groundtruth CT or CBCT images. Zhao et al. [32]
used Smooth GAN to remove the ring artifacts in CBCT.
Wang et al. [33] proposed a cGAN-based approach to
the correction of the metal artifacts in CT images. These
deep learning based approaches used either simulated CBCT
images or CT images as groundtruth while training networks.

However, it is impossible to obtain clean images (without arti-
facts) as a priori information for CBCT in an IGRT system.

Inspired by some novel techniques effective in CT denois-
ing [34], the current study proposed a method to handle
CBCT artifacts with deep CNN by learning the residuals
between contaminated CBCTs and CTs corresponding to the
same part of a patient. As CBCT scatter can be quite difficult
to estimate accurately, we directly experimented on the raw
data obtained from hospitals instead of phantoms. The results
presented in section III demonstrate manifest improvements
in both cupping and streaking artifacts removal.

This study developed the residual learning of deep CNN
and employed it in the scatter artifacts removal of CBCT
images in an IGRT system. The flowchart of the proposed
feed-forward artifact-free CNN (AFCNN) is shown in Fig. 1.

FIGURE 1. Flow chart of the proposed method.

The remainder of this paper is organized as follows.
In Section II, the AFCNN method for reconstruction is pro-
posed. In Section III, the experimental design and results
are reported. Finally, in Section IV, some discussions on the
potential applications of corrected CBCTs and conclusions
are provided.
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II. METHOD
In this section we will explain the necessity of the registration
technique, with which the residual learned by a deep CNN
can be ensured to be meaningful enough with only scatter
artifacts contained. The proposed method successfully gen-
eralizes the residual learning process, which is modeled by
a deep network called AFCNN, to CBCT artifacts removal.
Relevant details including the network architecture will then
be elaborated.

A. REGISTRATION
Residual learning has been demonstrated to be effective in
removing artifacts in CT images. In this work, this approach
is developed to learn the mapping from a CBCT image to
its corresponding residual image, which shows the difference
between this CBCT image and a CT image representing
exactly the same scanning position.

Patients receiving radiation therapy are asked to have a
CT scan before starting the IGRT. In each radiation therapy,
patients must undergo a CBCT scan. Pairs of CBCT–CT can
then be acquired from the IGRT system, which make up the
dataset we use.

One of the key successes in residual learning is that the
residual image (the difference between a training pair) only
contains noise and artifacts components and does not contain
any meaningful anatomical structures. Hence, we registered
CT and CBCT images together before using them as training
pairs because registration can minimize structural dissimilar-
ity for a training pair.

Unfortunately, on account of lung breathing, these CBCTs
and CTs, though acquired from strictly the same region of
the same patient, could be slightly discrepant with respect to
position and to detailed information in lung region. In prac-
tice, the residual images obtained by CBCTs subtracting CTs
are highly dependent on the match pixel by pixel. There-
fore, an integral CBCT–CT registration can be important in
creating a target set composed of residual images. On top
of that, different slice thicknesses between CTs and CBCTs
(commonly 2.5 mm or 3.0 mm for CTs and 3.0 mm for
CBCTs) result in a disparity in the number of slices even
in exactly the same scan interval of a body, which hinders
the acquisition of residual images. A voxel-based body reg-
istration can tackle this challenge by building a connection
between intrinsic coordinates and a world coordinate sys-
tem, given spatial referencing information that can output a
pair of dimension-identical CBCT–CT voxels. In the training
phase, mini-block pairs, instead of whole CBCT–registered
CT (RCT) pairs, were put into datasets to keep detailed
information. Clear discrepancies were still observed between
some pairs of mini-blocks; these variations would dramati-
cally impact the training result of the pixel-level-based CNN
architecture.

A secondary registration was then applied accordingly
to guarantee pixel-by-pixel correspondence. To further
ensure the quality of our dataset, we just selected the
paired voxels whose maximum normalized cross-correlation

coefficient (NCC) surpassed a threshold pre-set as a hyper-
parameter. As indicated by the experiment result, manifest
ghosting at the image boundary was generated without sec-
ondary registration, which proved the necessity of this step.
Specifically, an image registration method based on mutual
information (MI) was adopted to complete these two steps.

In summary, secondary registration tries to eliminate the
slight displacements between pixels in CT and CBCT mini-
blocks. After the two-step registration, image data are ready
to be fed into our deep CNN.

B. RESIDUAL LEARNING
CNN has shown great success in handling various tasks.
In this work, we focused on designing and training a deep
CNN architecture effective to learn the residual distribution.

On the basis of the denoising idea in [35], the present
work used the residual learning technique for CNNs to learn
artifacts of CBCT and then subtracted the artifacts obtained
by network from CT images before finally recovering clear
correction images.

Inspired by the denoising approach in [36], we combined
the residual learning technique with our AFCNN to learn the
artifacts of CBCT images. The model we chose is similar to
the one used in the general image denoising task, f = x + n,
except that stands for scatter artifacts. A mapping function
F(f ) = n should be learned to predict the clean image just as
typical denoising models like MLP [37] and CSF [38]. In the
current study, we used a deep CNN to learn this mapping
from CBCT images with severe scatter artifacts to residuals
between CBCT and registered CT images. The mean squared
error (MSE) between real and predicted residuals was mea-
sured as our object function:

l(2) =
1
2N

N∑
i=1

‖µ(fi;2)− (fi − xi)‖2 (1)

where {(fi, xi)}Ni=1 represents N pairs of images that contain
artifacts and real images, and µ(f ) is the CNN’s mapping
function. After the network converges, the residual images
can be obtained from the AFCNN, and then the de-artifacts
CBCT images can be obtained according to x = f − n.

C. NETWORK STRUCTURE
As is shown in Fig. 1, the network with depth D has three
types of layers: (1) convolution network + Rectifier Linear
Unit (ReLU), (2) convolution network+ batch normalization
(BN) + ReLU, and (3) convolution network layer.
In Type (1), 64 filters of size 3×3×1 are used to generate

64 feature maps. These convolution filters are followed by
ReLU, which is an element-level operation (applied to each
pixel), setting all pixel values less than 0 in the feature map
to 0. The purpose of ReLU is to introduce nonlinearity in the
convolution network.

Layers of Type (2) are repeated from the second layer to
the D-1 layer with each containing 64 3 × 3 × 64 filters.
BN is added between Convolution and ReLU to improve the
convergence speed of the network.
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The layer in Type (3) is a convolution layer, which uses
filters of size 3× 3× 64.

III. EXPERIMENT
Experiments were conducted on the data acquired from sev-
eral patients in different hospitals through the IGRT system
to verify the proposed method. The results demonstrated
that our method can achieve a conspicuous correction effect
on both cupping artifacts and streaking artifacts removal.
As comparison, we also showed some correction results with
Shi’s approach in [39].

A. DATA SET
To acquire real data from IGRT systems, we collected CT and
CBCT images from different patients. Specifically, patients
were first scanned by CT and then CBCT, thus producing
two pairs of slices. Using this method, we acquired 1,225 CT
images and 1,093 CBCT images as our dataset. Among
these raw data, 352 CBCT slices and 367 CT slices from
5 of 20 patients were separated as the test set. Note that
all CT images were 512 × 512, while CBCT data consisted
of 12 groups of 384 × 384 and 8 groups of 512 × 512.
Each of these raw images was preprocessed with a 3-D
registration system, producing 20 groups of CT–CBCT pairs
which were cursorily registered. Nevertheless, less than two
thousand images can hardly train a deep network from
scratch. We therefore split each registered image into sev-
eral overlapped data patches (each with fixed patch size and
stride set as hyper-parameters), which made up our final
dataset. The size of the data patches is 80 × 80. In this way,
we enlarged our dataset to prevent overfitting and forced the
network to learn scatter in a more fine-grained manner.

B. NETWORK TRAINING
The proposed algorithm was trained by an Adam optimizer
with the learning rate set from 1e-3 to 1e-5. The number of
epochs was set to 50, and the size of the image patch was set
to 80× 80 with stride 30.

The network was implemented using the MatConvNet
toolbox [40] in a MATLAB 2017a environment, with a GTX
1080 Ti graphic processor, and an i7-6850K CPU (3.60 HZ).

C. EXPERIMENT RESULTS
Five of 352 experiment results, including CBCT, RCT, CBCT
were corrected by the proposed method, and Shi’s correction,
as is shown in Fig. 2. As DICOM images are commonly
int16 format, a HU value window at [−1000, 700] was set
for all images to obtain better intuition. Specifically, raw
CBCT slices in the first column were prominently contam-
inated by streaking artifacts, which meant that some detailed
information could be destroyed. As is shown in the figure,
CBCT slices were smoothly corrected with the proposed
method. All noises, including streaking artifacts and cupping
artifacts, were clearly removed. Simultaneously, key details
such as inner contours and texture information in the lung
area were well preserved. By contrast, CBCT processed with
Shi’s method distinctly improved the quality of slices by
correcting cupping artifacts, as is shown in column (d) of

FIGURE 2. Scatter correction results on different patients. (a) CBCT.
(b) RCT. (c) proposed correction. (d) Shi’s correction.

TABLE 1. Quantitative analysis Of four slices.

Fig. 2 Nevertheless, with respect to the predominant streaking
artifacts, Shi’s algorithm had a minor impact, which will be
further demonstrated.

The proposed method takes only 0.0081 second on average
for one single prediction, which shows a low time complexity,
making it beneficial to further applications.
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FIGURE 3. Residual images. (a) Original residual. (b) Learned residual.
(c) Shi’s residual.

The quantitative analyses of the four kinds of slices were
summarized in Table 1, where My_sc and Shi_sc denote
our method and Shi’s correction method, respectively. Each
of these objective evaluations is the mean of the dada of
the five patients. Specifically, CT numbers in Hounsfield
units (HU)were calculated in three regions of interest (ROIs),
including bone, skin and lungs, to compare the degree of a
slice close with the original CT. Compared with Shi’s, cor-
rected slices of the proposed method had CT numbers closer
to RCT. We also calculated the contrast-to-noise ratio (CNR)
using ROIs of bone, skin and lung regions of five patients
and averaged them. As is observed, the CNR of CBCT was
distinctly improved after being corrected by the proposed
method. The average PSNR also supported the result shown
above, that is, the artifacts are indeed suppressed through the
application of a trained network.

To gain an intuitive sense of what the network had learned
exactly, the residual images of five patients between the

original CBCT and RCT slices are shown in Fig. 3. Briefly,
the trained CNN basically learned how to extract a residual
from a given CBCT. Note that the original residual (RCT
minus CBCT) image contains not only artifacts but also dif-
ferences in particular information at lung regions caused by
the patient’s breath. Shi’s correction result, as is shown in the
right column, did a great job of eliminating cupping artifacts,
while little effects were achieved in suppressing streaking
artifacts. A considerable part of the texture was also cleared
when correcting scatter at lung regions.

FIGURE 4. Corrected thorax regions. (a) CBCT. (b) Proposed method.
(c) Shi’s methods.

The HUwindowwas adjusted to approximately [-950,500]
to obtain a more explicit view of the detailed part of corrected
slices. Fig. 4 shows the difference between the proposed
method and Shi’s method in preserving detail (for concise-
ness, only one patient’s slices were chosen here). As the
streaking artifacts in the thorax region could be considerably
severe, it was almost impossible to restore texture completely.
To a large extent, the proposed method suppressed scatter
artifacts and acquired satisfactory results in tumor detection
at the least.

IV. DISCUSSION AND CONCLUSION
The CBCT data acquisition is fundamentally different from
the CT data acquisition, at least, the temporal resolution
(partially determined by the gantry rotation time) is dif-
ferent. For the same patient who is scanned by both CT
and CBCT, the reconstructed images could present different
temporal resolutions. To be more specific, CBCT images
may present more severe motion artifacts (motion-induced
blurring effects) than CT images. Besides, if we applied
any respiratory-gated CBCT image reconstruction method,
it would still be very difficult to make sure that the paired
CBCT images and CT images can represent the same respi-
ratory status of the patient. Hence, it is very difficult to avoid
the intrinsic dissimilarity of anatomical structures between
CBCT images and CT images. To make sure that residual
images truly represent artifacts component with no mean-
ingful anatomical structure contained, a second registration
method was applied to reduce the intrinsic dissimilarity of
anatomical structures between paired CBCT-CT images.

Then we discarded those pairs whose NCC was below a
certain threshold and made the rest ones constitute the final
training set. By this means, the alignment of CBCT-CT image
pairs is ensured and the size of dataset is expanded.

A representative set of slices was selected to compare the
cupping artifacts in the 1D horizontal profiles (y = 235 in
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FIGURE 5. The 1D horizontal profile of the images which are shown
in Fig. 2 (row 5).

FIGURE 6. 2D atlas visualization based on threshold. From top left to
bottom right is: CBCT image, Shi’s corrected CBCT image, Our corrected
CBCT image and CT image. In order to compare the CT numbers with
different artifacts removal method, we use 2D atlas to display. Different
colors represent different ranges of CT numbers.

Fig. 2 (row 5)). As shown in Fig. 5, the CBCT images
corrected by our approach have more uniform distribution of
CT numbers along the fixed line than both original and Shi’s
(closer to the original CT images).

To further illustrate that after removing artifacts with pro-
posed method, the problem described in Section I has been
solved to some extent. We visualized the CT numbers-based
segmentation effect with the following 4 kinds of slices
in Fig. 6. Note that the area marked in red should represent
bones. But streaking artifacts with similar CT numbers to
bones can easily lead to incorrect segmentation, resulting in
the red marked areas shattering everywhere. CBCT corrected
by the proposed method shows a segmentation result much
closer to CT image.

In this paper, we proposed a learning-based scatter cor-
rection method with two-step registration, which was proven
to be effective in suppressing scatter artifacts produced by
an actual CBCT system. With the use of a deep CNN,
the residual between CBCT and RCT can be learned by a
model and applied to CBCT from different patients, even

from different body parts, as long as corresponding training
data are given. Moreover, the proposed method can preserve
detailed information, such as texture in thorax regions and
inner contours. Therefore, a tiny blur may be introduced to
the CBCT slices. Results tested on the data of five patients
showed that by using a 17-layer CNN architecture with two-
step registration, CNR and average PSNR were significantly
improved, and the CT numbers of ROIs also showed evident
amelioration. In summary, residual distribution can be well
learned and can, therefore, be removed from the contaminated
CBCT.

As shown in [41]–[46], there are a lot of style of the CNN.
We will research the effect of different networks on scatter
artifacts removal.
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