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ABSTRACT The process structures of manufacturing industry are efficiently modeled using linear profiles.
Classical and Bayesian set-ups are two well-appreciated schemes for designing control charts for the
monitoring of process structures. Mostly in profiles monitoring the independent variables along with the
process parameters are assumed fixed. There are manufacturing processes where these conditions may not
hold. The advancement in technology and day-to-day changes in process structures caused the parametric
uncertainty along with variability in explanatory variables. This paper considered the case of random X
and assumes different conjugate and non-conjugate priors to handle parametric uncertainty using double
exponentially weighted moving average (DEWMA) control charts. Three univariate DEWMA charts are
designed for the monitoring of Y -intercepts, slopes, and error variances. The average run length criterion
has been used to evaluate the proposed and competing charts. The wide spread relative study identifies that
the proposed Bayesian DEWMA control charts are better than the competing charts based on early detection
of out-of-control profiles, particularly for smaller value shifts. The BayesianDEWMAcharts using conjugate
priors are the quickest in all as they take less sample points to show out-of-control profile. A case study has
been considered to further justify the superiority of Bayesian DEWMA charts over competing charts.

INDEX TERMS DEWMA, linear profiles, priors, posteriors, run length measures.

I. INTRODUCTION
Statistical Process Control (SPC) community has made sig-
nificant contributions to developed scientifically equipped
statistical models to enhance the efficiency of process struc-
tures in industrial engineering. The growing scientific inno-
vations required from statisticians with more assorted and
complex problems to emphases on better quality of statisti-
cal models by extracting more and more information about
product or process Stoumbos et al. [1]. They described in
detail that with more emphasis on better quality and by
accessing more and more information about process param-
eters, we may face with more complex and diverse models.
The SPC community is continuously working and producing
sophisticated process structures for these complex models.
The process structures derived to model the quality charac-
teristics of interest as well as constructing the corresponding
control charts to check the stability of the process param-
eters. The quality characteristics of interest can be defined
either by probability distribution or by using profiles model.

In many practical situations of manufacturing industry the
quality characteristics are categorized with the association
between dependent and one or set of independent variables,
this is called the profile function of quality characteristics
Kim et al. [2]. Noorossana et al. [3] described situation of pro-
file function when thickness of tape is measured at randomly
selected locations. Abbas et al. [4] defined process structures
by using linear profiles model when Outlet Concentration
of the Product (CA in Kmole/m3) is associated with Inlet
Concentration of Solvent Flow (CAS in Kmole/m3). Linear
profiles are also used in electrical engineering such as in
photo-voltaic systems which are an effective source to gain
the energy from sun; the monitoring of the system voltage is
inversely proportional to capacitance Riaz et al. [5].

In the literature, researchers are trying to produce differ-
ent techniques by using different control charting structures
for the monitoring of linear profiles under phase I or II.
Kim et al. [2] suggested the use of three separate uni-
variate Exponentially Weighted Moving Average (EWMA)
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control charts after taking average deviation of explana-
tory variable of simple linear profiles model to overcome
the problem of interpretability of shifts in process param-
eters. Noorossana et al. [6] constructed a new method by
using jointly the Multivariate Cumulative Sum (MCUSUM)
and R control charts to monitor the simple linear pro-
files. Zou et al. [7] and Mahmoud et al. [8] developed
change point method and used EWMA control charts for
linear profiles monitoring when the process parameters of
Y -intercepts, slopes and errors variances are assumed to be
unknown. A method based on CUSUM control charts after
taking deviation from mean of explanatory variable of sim-
ple linear profiles has been proposed by Saghaei et al. [9].
Noorossana et al. [10], [11] considered multivariate simple
linear profiles usingMultivariate EWMA (MEWMA) control
charts in phase I and II for the monitoring of multivariate
profiles function. Mahmoud et al. [12] considered the case
when each profile cannot exceed a sample size of two and
later Yeh and Zerehsaz [13] monitored the simple linear pro-
files in phase I when each profile consists single observation.
The case of within profile correlation for the monitoring of
simple linear profiles studied by Zhang et al. [14] by using the
normal distributionmodels. Chen et al. [15] checked the dele-
terious impact of false phase I estimation of process param-
eters on phase II performance evaluation while considering
the case of simple linear profiles. Zhang et al. [16] proposed
EWMA control charting structures based on score test to
detect pre specified quadratic changes while monitoring the
simple linear profiles. With all these parametric approaches,
a nonparametric approach is widely acknowledged in litera-
ture where less weight is given to the distributions of process
parameters. The nonparametric profile monitoring is useful
when it is too complicated to define the relationship paramet-
rically (cf. Qiu and Zou [17]; Qiu et al. [18]; Zhang et al. [19];
Pacella et al. [20]).
In almost all the literature of earlier studies the explanatory

variables are not random which reflect a case of specified
values for it. They also assumed fixed process parameters
which mean that its estimated values are unique. However,
there are process structures where these two conditions may
not hold i.e., the example provided by Noorossana et al. [3].
In this case we observed the thickness of tape at four ran-
dom locations to define a profile function, while we may
assume different process parameter values with the possible
changes in process structures to meet day to day require-
ments. Bayesian approach is used to handle this parametric
uncertainty and provide more realistic finding and conclu-
sions. The main advantage of Bayesian approach is that it
assists the investigator to represent and take full description of
the uncertainties related to parameter values. In contrast, the
decision based on maximum likelihood estimation involves
fixing the values of parameters. This may be an important
bearing on final results of the analysis when there is con-
siderable uncertainty in parameters. Under these circum-
stances the Bayesian techniques provide novel diagnostic
tool for under study parameters. This Bayesian approach

is advanced and elegant statistical tool which described the
under study parameters as uncertain Zellnar [21] and prob-
ability approach is best way to express uncertainty. In this
study the parametric uncertainty of process structures are
resolved by constructing Bayesian control charts. This para-
metric uncertainty is expressed by using prior distributions
while its parameters are called as hyperparameters. The SPC
community regularly using Bayesian control charts to adjust
this parametric uncertainty and comes up with flexible and
demanding control structures to produce reliable products.
The literature on Bayesian control charts widely available
(cf. Hamada [22]; Triantafyllopoulos [23]; Marcellus [24];
Marcellus [25]; Hassan et al. [26]; Pan and Rigdon [27];
Demirhan and Hamurkaroglu [28]; Ali et al. [29];
Raubenheimer and Van der Merwe [30]).

In this article, we have evaluated the parametric uncertainty
by designing Bayesian Double EWMA (DEWMA) control
charts while explanatory variables of linear profiles models
are not fixed. The parametric uncertainty is expressed by
using different conjugate and non-conjugate priors. Three
separate univariate DEWMAcontrol charts are designed after
taking average deviation from each value of independent
variables. Due to the varying nature of explanatory variables
we have standardized the slope estimators to incorporate this
variability.

The remaining article is organized as follows: Section 2
presents the simple linear profiles model in deviation
form and its estimation procedures. Section 3 presents the
Bayesian control charting structure of DEWMA control
charts. Section 4 describes the performance measures and
simulation settings. The elicitation and sensitivity analysis of
hyper-parameters is performed in section 5. Section 6 demon-
strates the evaluation of proposed charts and comparison with
competing charts. Section 7 comes up with case study while
section 8 presents the conclusions.

II. BAYESIAN ESTIMATION OF SIMPLE LINEAR
PROFILES MODEL
In this section the linear profiles model and its classical
and Bayesian estimation procedures are described. Let us
consider a simple linear profiles model as:

Yij = α0j + α1jXij + εij, i = 1, 2, 3, . . . , n (1)

Here α0j and α1j are specified in-control process parameters
for jth profile. The explanatory variables Xij are generated
from normal distribution and error terms εij are from standard
normal distribution for jth profile. Let us consider deviation
frommean of explanatory variables for model in Equation (1)
to defined separate EWMA control charts for process param-
eters Kim et al. [2].

Yij = β0j + β1jX∗ij + εij, (2)

Where β0j = α0j + α1jX̄j, β1j = α1j, and X∗ij = (Xij − X̄j).
Then the least square estimators of profiles model in
Equation (2) follows normal distribution with estimates as:
β̂1j = Sx(j)y(j)/Sx(j)x(j), and β̂0j = Ȳj while variances
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as: Var(β̂1j) = σ 2
j /Sx(j)x(j), and Var(β̂0j) = σ 2

j /nj. Here,

Ȳj =
nj∑
i=1

Yij/nj, Sx(j)y(j) =
nj∑
i=1

(Xij − X̄j)Yij, and Sx(j)x(j) =

nj∑
i=1

(Xij − X̄j)2. The mean square error (MSE) which is an

unbiased estimator of the σ 2
j for the jth profile defined as:

MSEj =
nj∑
i=1
ε̂2ij/nj − 2, where ε̂ij = (Yij − β̂0j − β̂1jX∗ij ).

The results obtained using fixed random explanatory vari-
ables are also applicable for the case random explanatory
variables Neter et al. [31] and Montgomery et al. [32].

A. BAYESIAN ESTIMATION USING IMPROPER PRIORS
The selection of prior is vital part of Bayesian approach.
There are three ways to select a prior. The first is subjective
approach; second the objective approach; third the pragmatic
approach. We have incorporated these approaches in this
study.

Let us consider independent improper priors for the
process parameters of simple linear profiles model in
Equation (2) for the jth profile.

p
(
β0j, β1j

)
∝ 1; p

(
σ 2
j

)
∝ σ−2j , (3)

where −∞ < β0j, β1j <∞; σ
2 > 0

The integration results of improper priors are undefined.
But the resultant posterior distributions are still proper. The
posterior estimates using improper priors are similar with
classical estimates of the process parameters of profile model
in Equation (2) Abbas et al. [4].

B. BAYESIAN ESTIMATION USING NON-CONJUGATE
PRIORS
This subsection considers non-conjugate priors of Bramwell,
Holdsworth, Pinton (BHP) Bramwell et al. [33] for
Y -intercepts and slopes and for errors variances as Levy
distribution Jonathan and Roger [34]. The BHP probability
distribution with infinite range is famous for the monitoring
of rare fluctuations in processes. Another non-conjugate prior
of Levy distribution is the continuous probability distribution
stable for nonnegative variables i.e., variance. Let us consider
Y -intercepts and slopes priors as: β0j ∼ f (µ0, τ0) and β1j ∼
f (µ1, τ1), respectively while errors variances prior defined as
σ 2
j ∼ f (ϕ0). The posterior distribution for Y -intercepts and

slopes are normal with posterior means and variances for the
jth profile as:

βonj =

(
nȲjµ0 +

π
2 σ

2
j

)
µ3
0 exp

(
τ0
µ0

)
+
(
τ0 − µ

2
0

)
σ 2
j

nµ4
0 exp

(
τ0
µ0

)
+ σ 2

j

,

and β1nj=

(
µ1Sx(j)y(j)+ π

2 σ
2
j

)
µ3
1 exp

(
τ1
µ1

)
+
(
τ1 − µ

2
1

)
σ 2
j

Sx(j)x(j)µ4
1 exp

(
τ1
µ1

)
+σ 2

j

(4)

And variances as:

σ 2
onj =

σ 2
j µ

4
0 exp

(
τ0
µ0

)
nµ4

0 exp
(
τ0
µ0

)
+ σ 2

j

,

and σ 2
1nj =

σ 2
j µ

4
1 exp

(
τ1
µ1

)
Sx(j)x(j)µ4

1 exp
(
τ1
µ1

)
+ σ 2

j

. (5)

While the posterior distribution for errors variances is inverse
gamma for the jth profile with posterior estimates as:

ηnj = (n+ 1)/2, πnj = ϕ0/2+ (n− 2)σ 2
0j/2, (6)

where σ 2
0j =

n∑
i=1

(Yij − β0j − β1jX∗ij )
2/n− 2.

C. BAYESIAN ESTIMATION USING CONJUGATE PRIORS
Let us consider conjugate priors of normal (i.e., β0j ∼
N (θ0, δ0) and β1 ∼ N (θ1, δ1)) for the Y -intercepts and slopes
and inverse gamma prior (i.e., σ 2

j ∼ IG(ν0, ψ0)) for errors
variances. The posterior distributions for Y -intercepts and
slopes are normal while the posterior distribution for errors
variances is inverse gamma. The means and variances for
the posterior distributions of Y -intercept and slopes for the
jth sample given as:

β ′onj =
nȲjδ0 + θ0σ 2

j

nδ0 + σ 2
j

,

and β ′1nj =
Sx(j)y(j)δ1 + θ1σ 2

j

Sx(j)x(j)δ1 + σ 2
j

. (7)

And variances as:

σ ′2onj =
δ0σ

2
j

nδ0 + σ 2
j

, and σ ′21nj =
δ1σ

2
j

Sx(j)x(j)δ1 + σ 2
j

. (8)

The posterior estimates of inverse gamma distribution for the
jth sample given as:

α′nj = ν0 + n/2, and β ′nj = ψ0 + (n− 2)σ 2
0j/2. (9)

III. PROPOSED BAYESIAN DEWMA STRUCTURES
This section presents designed structure of three univariate
Bayesian DEWMA charts for the monitoring of process
parameters of simple linear profiles. We first designed the
DEWMA control chart to monitor the Y -intercepts, then
DEWMA control chart for slopes and at the end DEWMA
control chart to monitor errors variances. We presented here
Bayesian DEWMA control charting structure under conju-
gate priors, while for non-conjugate priors can constructed
on similar lines.

The posterior estimates of the Y -intercept (β0), slopes (β1)
and errors variances are used to construct the DEWMA
statistics defined as:

EWMAβI (j) = κ1β
′

0nj + κ2EWMAβI (j− 1) ,

∨j = 1, 2, 3, ...
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EWMAβI (0) = β0,

DEWMAβI (j) = κ3EWMAβI (j)+ κ4DEWMAβI (j− 1) ,

∨j = 1, 2, 3, ...

DEWMAβI (0) = β0.

EWMAβS (j) = κ1S
(
β ′1nj

)
+ κ2EWMAβS (j− 1) ,

∨j = 1, 2, 3, ...

EWMAβS (0) = 0,

DEWMAβS (j) = κ3EWMAβS (j)+ κ4DEWMAβS (j− 1) ,

∨j = 1, 2, 3, ...

DEWMAβS (0) = 0.

S
(
β ′1nj

)
= (β ′1nj − β1j)/

√
(σ ′21nj)

EWMAβE (j) = max
{
κ1 ln

(
MSEβj

)
+κ2EWMAβE (j− 1) , ln

(
σ 2
0j

)}
,

∨j = 1, 2, 3, ...

EWMAβE (0) = ln
(
σ 2
0j

)
,

DEWMAβE (j) = max
{
κ3EWMAβE (j)

+κ4DEWMAβE (j− 1)
}
,

∨j = 1, 2, 3, ...

DEWMAβE (0) = ln
(
σ 2
0j

)
. (10)

The posterior estimates of slopes are standardized as the
control limits under Bayesian frame involves X -values, this
mean control limits may not be the same at each sample taken.
This problem is fixed after standardization and standardized
posterior estimates of slope are used to compute DEWMA
statistic. We have designed the Bayesian DEWMA statistic
after incorporating approximated formula forMSEj the unbi-
ased estimator of errors variances derived by Abbas et al. [4]

given as:

Var[ln(MSEj)] =
2
Q1
+

2
Q2
+

4
3Q3
−

16
15Q4

. (11)

Then the corresponding control limits are given as (12),
shown at the bottom of this page. The signal is out-of-control
whenever the DEWMA statistic fall outside of lower or upper
control limits.

It can be observed that the DEWMA statistic for errors
variance and corresponding upper control limit does not
changed in case of random explanatory variable. This means
that the simulative results may not vary much from the case
of fixed explanatory variable while monitoring the errors
variances.

IV. PERFORMANCE MEASURES AND SIMULATION STEPS
The performance evaluation of proposed Bayesian DEWMA
control charts for the monitoring of linear profiles based on
different individual performance measure of Average Run
Length (ARL), Standard Deviation of Run Length (SDRL)
and Median of Run Length (MDRL). The ARL values are
most widely used as an evaluation measure at specific value
shift, themean of run length (RL) distribution. It is interpreted
as the average number of values required to a control structure
to identify first out-of-control signal or signal false alarm.
Whenever the process is in-control the ARL represented by
ARL0 and for out-of-control situation the ARL represented
by ARL1. We have also computed the SDRL values as an
additional indicator to further assess distributional spread of
run length and the MDRL values to evaluate the skewness of
the run length distribution.

There are different simulation procedures available in
literature to evaluate the designed structures. This study
used the Monte Carlo simulations to obtain the values of
performance measures. Following are the procedural steps

LCLβI [i] = α0j + α1jµx − LI

√√√√√(α21jσ 2
x

n
+ σ ′2onj

)
κ41

(
1+ κ22 −

(
i2 + 2i+ 1

)
κ2i2 +

(
2i2 + 2i− 1

)
κ2i+22 − i2κ2i+42

)
(
1− κ22

)3
UCLβI [i] = α0j + α1jµx + LI

√√√√√(α21jσ 2
x

n
+ σ ′2onj

)
κ41

(
1+ κ22 −

(
i2 + 2i+ 1

)
κ2i2 +

(
2i2 + 2i− 1

)
κ2i+22 − i2κ2i+42

)
(
1− κ22

)3
LCLβS [i] = −LS

√√√√√κ41

(
1+ κ22 −

(
i2 + 2i+ 1

)
κ2i2 +

(
2i2 + 2i− 1

)
κ2i+22 − i2κ2i+42

)
(
1− κ22

)3
UCLβS [i] = +LS

√√√√√κ41

(
1+ κ22 −

(
i2 + 2i+ 1

)
κ2i2 +

(
2i2 + 2i− 1

)
κ2i+22 − i2κ2i+42

)
(
1− κ22

)3
UCLβE [i] = LE

√√√√√Var
[
ln
(
MSEBj

)] κ41 (1+ κ22 − (i2 + 2i+ 1
)
κ2i2 +

(
2i2 + 2i− 1

)
κ2i+22 − i2κ2i+42

)
(
1− κ22

)3 (12)

VOLUME 6, 2018 78373



S. A. Abbasi et al.: Bayesian Monitoring of Linear Profiles Using DEWMA Control Structures

for Monte Carlo (MC) simulation of ARL calculation for
Bayesian DEWMA control charts while monitoring the pro-
cess parameters of profiles model when independent vari-
ables are not fixed.

(i) Construct the Bayesian DEWMA statistics where
Bayesian EWMA statistics are used as input values for
process parameters with corresponding control limits.

(ii) Decide about the sample size (n) of each profile and
the values of smoothing constants (k1, k2, k3, k4).

(iii) Generate error terms from standard normal distribution
and X -values from normal distribution with specified
values of mean and variance and then compute the
values of response variable Y .

(iv) Specified the in-control values of the process parame-
ters of B0 and B1.

(v) Elicitate the hyperparameters values of the prior distri-
butions of process parameters.

(vi) Decide about the initial values of control limits coeffi-
cients (LI , LS , LE ).

(vii) Based on the variables in (iii) and hyperparameters
in (v), compute the values of posterior estimates.

(viii) Start computing the Bayesian DEWMA statistics for
each univariate control chart for the jth profile.

(ix) RL (run length) increases one unit with in-control
DEWMA statistics. Record RL at first out-of-control
signal.

(x) Repeat the process (say 10,000 times) and compute in-
control ARL (ARL0), if ARL0 equals specified ARL0
i.e., 200 then record these control limits coefficients
and move to next step, otherwise readjust them and run
the program again.

(xi) Compute out-of-control ARL(ARL1) at each shift
i.e., Y -intercept (B0 to B0 + δIσ ), slope (B1 to
B1 + δSσ ), and error variance (σ to δEσ ).

(xii) Repeat the process to a point which declares out-of-
control and record ARL1.

(xiii) Repeat the above steps for sufficient number of times
(10,000 say) to obtain out-of-control ARL.

V. ELICITATION AND SENSITIVITY ANALYSIS
The elicitation process is the recognized way of counting
expert opinion into probability distribution. The inclusion of
prior information is one of the prime prospects of Bayesian
philosophy. This study considers method of elicitation intro-
duced by Garthwaite et al. [35] where they used a piece-
wise linear model to construct relationship between response
and explanatory variables. Let us consider the explanatory
variable X follows normal distribution with mean = 5 and
variance = 5/3 then the values of response variable Y are
calculated by using the model Yij= 13+ 2X ij + eij, while
13 and 2 are the in-control values of the process param-
eters. The errors terms are assumed to follow the stan-
dard normal distribution. The values of smoothing constants
(K1,K2, K3, K4) in DEWMA statistics for Y -intercepts,
slopes and errors variances are selected as (0.2, 0.8, 0.2, 0.8),
respectively. After ending up with assessment procedure the

hyper-parameters values obtained as: For Y -intercepts prior
mean 15 and variance 25, for slopes prior mean 2.5 and vari-
ance 9, and for errors variances prior the hyper-parameters are
0.05 and 0.35 (for detailed procedure see Abbas et al. [4]).
After the elicitation the sensitivity analyses are another

essential aspect in Bayesian approach to obtained refined and
optimum values of hyperparameters. The elicitated hyperpa-
rameters values describe locations and scales point of the
different conjugate and non-conjugate prior distributions of
process parameters. We assumed different location and scale
values to evaluate the performance of proposed control charts.
These assessments are based on individual performance mea-
sures values.

The sensitivity analyses are conducted for the hyper-
parameters to optimize performance of the proposed
Bayesian DEWMA control charting structure. The values of
response variable are generated using model in Equation (2),
while random explanatory variable, errors terms, and in-
control process parameters values are mentioned above in
elicitation phase. The sample size (n = 4) is selected, while
the values of control limit coefficients are selected in such
way that individual in-control ARL is approximately 590,
while the overall ARL0 = 200. The total numbers of
10,000 simulations are performed to obtain the values of per-
formance measures, while considering step shifts in the pro-
cess parameters of profiles function. The resultant values of
performancemeasures are provided in Tables 1-4 for different
combinations of locations and scales under conjugate and
non-conjugate priors. The hyperparameters values of inverse
gamma prior have negligible impact of proposed control
structures so the ARL values are not reported here. Follow-
ing lines described the impact of different combinations of
hyper-parameters values on the proposed Bayesian DEWMA
structures while taking shifts in process parameters:
• Different values of location hyperparameters of non-
conjugate priors for Y -intercepts and slopes have neg-
ligible impact on the performance of proposed control
charting structures of process parameters (see Table 1).

• The scale hyperparameters values of non-conjugate pri-
ors for Y -intercepts and slopes have some impact on the
performance of Bayesian DEWMA charts (i.e., decrease
in scale hyperparameters values decreases the ARL,
SDRL, MDRL values while monitoring shifts in process
parameters; cf. Table 2).

• The location hyperparameters of conjugate priors show
significant impact on the performance of proposed
DEWMA charts for the monitoring of process param-
eters as increasing location hyperparameters values
decreases the ARL, SDRL, MDRL values (cf. Table 2).

• The values of scale hyperparameters of conjugate priors
also influence on the performance of Bayesian DEWMA
charts while monitoring process parameters. Decreasing
in scale hyperparameters values decreases the values of
ARL, SDRL, and MDRL (cf. Table 2).

We have selected the values of hyperparameters for non-
conjugate and conjugate priors which show most efficient
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TABLE 1. ARL, SDRL and MDRL Values for Sensitivity Analysis of Location Hyperparameters of BHPL Priors at ARL0 = 200, under DEWMA Control Chart.

performance in terms of individual performance measures.
The BHP prior for Y -intercepts has location value of 25 and
scale value of 10, while the BHP prior for slopes has

location value of 6.5 and scale value of 3. The Levy prior
for errors variance has hyperparameters value as 0.5. Now,
the normal prior of Y -intercepts has location value of 35 and
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TABLE 2. ARL, SDRL and MDRL Values for Sensitivity Analysis of Scale Hyperparameters of BHPL Priors at ARL0 = 200, under DEWMA Control Charts.

scale value of 15, while normal prior of slopes has loca-
tion value of 6.5 and scale value of 6. The errors vari-
ances prior of inverse gamma have hyperparameters values
of 0.05 and 0.3.

VI. EVALUATION AND COMPARISONS
We now evaluate our proposed scheme of Bayesian DEWMA
control charts when explanatory variables are assumed
to be random while process parameters are uncertain.

78376 VOLUME 6, 2018
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TABLE 3. ARL, SDRL and MDRL Values for Sensitivity Analysis of Location Hyperparameters of NIG Priors at ARL0 = 200, under DEWMA Control Charts.

The three univariate classical EWMA charts repre-
sented by EWMA-CX while Bayesian EWMA charts by
EWMA-BNCPX and EWMA-BCPX for non-conjugate and

conjugate priors. The three univariate classical DEWMA
charts represented byDEWMA-CX while BayesianDEWMA
charts by DEWMA-BNCPX and DEWMA-BCPX for
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TABLE 4. ARL, SDRL and MDRL Values for Sensitivity Analysis of Scale Hyperparameters of NIG Priors at ARL0 = 200, under DEWMA Control Charts.

non-conjugate and conjugate priors. The combination of
three univariate Bayesian DEWMA control charts are
designed to have individual in-control ARL of approxi-
mately 590 and overall in-control ARL of 200 which is

parallel to competing charts in this study. The ARL values
are computed after simulation of 10,000 while the shifts
in process parameters are incorporated in term of standard
deviation.
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TABLE 5. ARL Comparisons for Y -intercepts Parameter Shifts β0 to β0 + δI σ .

TABLE 6. ARL Comparisons for Slopes Parameter Shifts β1 to β1 + δSσ .

Table 5 provides the ARL values for shifts in Y -intercept
in terms of standard deviation. The proposed Bayesian
DEWMA charts show superiority over the competing charts
chart in terms of ARL values. The performance of DEWMA-
BCPX chart is superior to all charts in this study for the cases
of random and fixed explanatory variables. This superiority
is highly significant for smaller value shifts and slightly bet-
ter for larger shifts. The performance of DEWMA-BNCPX
chart is better than DEWMA-CX chart while it shows almost
similar performance with EWMA-BNCPX chart. This pattern
is observed for both random and fixed explanatory variable
cases for monitoring shifts in Y -intercepts. The proposed
DEWMA-BCPX chart outperforms the competing charts in
this study.

Table 6 presents the results of ARL values at ARL0
of 200 while monitoring the shifts in the slope parameter

of profile functions under classical and Bayesian EWMA
and DEWMA schemes of charts. The resultant ARL values
indicate that DEWMA-BNCPX and DEWMA-BCPX charts
surpass the DEWMA-CX chart while monitoring shifts in
slopes. DEWMA-BCPX chart shows better performance than
EWMA-BCPX chart while DEWMA-BNCPX comes up with
similar performance with EWMA-BNCPX chart. Overall the
proposed DEWMA-BCPX chart showed superiority over the
other charts in this study.

Table 7 gives the ARL values of EWMA and DEWMA
charts under classical and Bayesian setups for shifts in the
errors variance. It is observed that the performance of dif-
ferent charts under study does not reflect significant dif-
ferent. Our proposed Bayesian scheme does not work well
while detecting shifts in errors variances because the stan-
dard deviation shifts are usually detected by R chart. As the
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TABLE 7. ARL Comparisons for Process Standard Deviation Parameter Shifts σ to δE σ .

FIGURE 1. ARL Curve for EWMA and DEWMA Charts under Classical and Bayesian Set-up for Y -intercept Shifts.

shifts are incorporated in terms standard deviations, it means
increase in shift values will increase the standard devia-
tion of the estimators of the Y -intercepts and slopes. The
effort to smooth these estimators over time with the help of
EWMA or DEWMA charts is not helping.

Figures 1-3 display the results of ARL values at ARL0
of 200 while monitoring the shifts in the Y -intercepts, slopes
and errors variances of simple linear profiles model in
Equation (2). The curves of DEWMA-BCPX charts are at
the lower side for monitoring the Y -intercept and slope shifts
(cf. Figs. 1-2). This reflects the faster detection ability of
proposed chart. The magnitude of difference in ARL values
of proposed and competing chart is high for small shifts
and smaller for large shifts. This reflects the sensitivity of
DEWMA-BCPX chart for small shifts. The graphical display
of different control charts of this study for the shifts in errors
variance have no significant different which indicate similar
performance pattern for proposed and competing charts.

The above findings conclude that the proposed method
has faster detection potential of sustainable shifts in the
Y -intercepts and slopes, while similar in case errors variances
monitoring. Our proposed method outperforms the compet-
ing methods for small-to-moderate shifts, although for larger
values of shifts, its performance is roughly the same. It is
observed that for process structures where parametric uncer-
tainty is unavoidable the incorporation of Bayesian schemes
of control charts seems wise decision. The inclusion of prior
information weights the posterior estimates and enhances
its potential for better performance. The tangible benefits
obtained by using Bayesian charts should be tradeoff with
cost on such information.

This study with its all benefits has some limitations as the
selection of priors mostly subjective because Bayesian does
not tell much about it. It requires sound knowledge and skills
about understudy problem to convert subjective prior belief
into mathematical form of priors. Posterior distributions
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FIGURE 2. ARL Curve for EWMA and DEWMA Charts under Classical and Bayesian Set-up for Slope Shifts.

FIGURE 3. ARL Curve for EWMA and DEWMA Charts under Classical and Bayesian Set-up for Errors Variance Shifts.

FIGURE 4. Control chart display of DEWMA-Cx & DEWMA-BCPx charts for shift in Y -intercept.

heavily depend upon prior distribution which required careful
attention while selecting priors as well as its hyper-parameter
values. So from practical view point some time it’s really

difficult to convince subject expert on the valid selection
of priors. Bayesian results often come with high compu-
tational cost particularly for large numbers of parameters.
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FIGURE 5. Control chart display of DEWMA-Cx & DEWMA-BCPx charts for shift in Slope.

FIGURE 6. Control chart display of DEWMA-Cx & DEWMA-BCPx charts for shift in Errors Variance.

The simulation results may provide slightly different results
if same random seed is not used.

VII. CASE STUDY
This section consider a real data application to further jus-
tify the importance of proposed Bayesian DEWMA charts
when explanatory variables are not fixed and the process
parameters are uncertain. This will give some insight into the
computer implementation of proposed Bayesian approach.
One can follow accordingly to apply proposed DEWMA
charts to monitor production line.

Let us consider a data set of Typhoon predication for
Xiamen city in the Fujian region of P. R. China for the
year 2014. The data set composed in the libratory of College
of Oceanography and Environmental Science, Xiamen Uni-
versity. An area with low atmosphere pressure is called
Typhoon i.e., low pressure weather systems, while the air
rotates anti-clockwise around the center point of low pressure
area. The observation of high intensity of low pressure means
highwind speed around the center point. The categories of the

Typhoon are usually described by using the Saffir-Simpson
hurricane wind scale (SSHWS) to rank the hurricane. Usually
the tropical cyclone must have wind speed of at least 33 (m/s)
to rank the storm in category-1, while the highest category-5
reserved for the hurricane with wind speed over 70 (m/s)
and results in catastrophic damages. The high speed of wind
means more dangerous and destructive nature of hurricane.
The response variable of Atmosphere Pressure (Y ) measured
in hecto pascal (hpa) for the explanatory variable of Wind
Speed (X ) measured in meter per second (m/s) is observed
for this study.

We consider the six month data set for the intense period
of Typhoon in this region. The each observation of data set
is measured with a sampling interval of six hour i.e., four
measurements are recorded per day at 6am, 12pm, 18pm,
and 12am, respectively. We have recorded a total of N = 720
observations. The data set is standardized to attain consis-
tency in data and to observe smaller shifts in process parame-
ters. We now defined each day as one profile with a sampling
interval of 24 hours, results in total of m = 180 profiles.
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FIGURE 7. Flow Chart: Bayesian DEWMA charts when random X .

The values of response variable within profiles are random
similar to the case in our study.We now divide the data set into
in-control and out-of-control states. The first N0= 400 obser-
vations or m0= 100 profiles are considered for in-control
state, while N1= 320 observations or m1= 80 profiles are

considered for out-of-control state. For the in-control sit-
uation the shift value for the Y -intercept and slope are 0,
while for the errors variance it is 1. The profile model with
in-control process parameters are Yij= 0.02− 0.99X ij + eij.
Under the in-control values of process parameter the control
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limit coefficients are adjusted for ARL0 of 200. Now based
on the real data sets the hyper-parameter values are elicitated
as: The mean and variance of normal prior for the Y -intercept
are 1.3 and 1.95, and the mean and variance of normal prior
for slope are -0.23 and 2.92. The hyper-parameters for inverse
gamma prior of errors variance are 1.35 and 0.5.

For the out-of-control scenario the shift values for
Y -intercept as 0.4, for slope as 0.7, and for errors vari-
ance as 1.2. The figures 4-6 present the DEWMA-CX and
DEWMA-BCPX statistics after incorporating aforesaid infor-
mation. The values of DEWMA control chart under classical
and Bayesian setups are plotted at Y -axis and the profiles
are scaled at X -axis. The solid lines reflect the statistics
and control limits of DEWMA-CX, while the dotted lines
represent the statistics and control limits of DEWMA-BCPX.
Figures 4-6 indicate that DEWMA-BCPX detect 15, 14, and
one more out-of-control signals than that of DEWMA-CX
control chart for shifts at Y -intercept, slope and errors vari-
ance, respectively. This mean the profiles shown in-control
by DEWMA-CX are actually out-of-control and are identi-
fied by DEWMA-BCPX control charts. These findings are
in accordance with the simulated results of section 5. This
concludes the study that Bayesian schemes with prior infor-
mation enhance perform of control charts and comes up with
substantial benefits in manufacturing processes.

The procedural flowchart for the implementation of
proposed methodology for efficient process monitoring is to
given in Fig. 7.

VIII. CONCLUSIONS AND SUGGESTIONS
In this paper we have investigated the case of random
explanatory variables for the monitoring of linear pro-
files and process parameters are assumed uncertain. The
Bayesian DEWMA control structures are presented using
non-conjugate and conjugate priors. Bayesian control charts
incorporated the parametric uncertainty in the form of prior
distributions that required more knowledge and keen obser-
vation of manufacturing process. There are situations in
manufacturing processes where parametric uncertainty is
unavoidable then Bayesian setups efficiently handle such
situation which is not the case with classical approach.

Based onARL values it is observed that proposed Bayesian
DEWMA charts perform efficiently than that of classical
DEWMA charts. This indicates that the inclusion of prior
knowledge improves the efficiency of DEWMA control
charts. It is observed that DEWMA-BCPx control charts
outperform the competing control charts for monitoring the
Y -intercepts and slopes, while almost similar performance for
errors variances monitoring. For the monitoring of linear pro-
files using Bayesian setup, conjugate priors aremore effective
than non-conjugate priors. This reflects that choice of priors
and corresponding hyperparameters values should be selected
carefully.

The proposed Bayesian schemes consider the simple case
that can be extended to multivariate schemes of charts.

Further, the simple linear case can also be extended and
investigated for non-linear functions of profiles.
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