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ABSTRACT Particle swarm optimization (PSO) is an evolutionary algorithm that is well known for its
simplicity and effectiveness. It usually has strong global search capability but has the drawback of being
easily trapped by local optima. A scaling mutation strategy and an elitist learning strategy are presented
in this paper. Based on these strategies, an improved PSO variant (LSERPSO) is developed through a local
search and ring topology strategy. The new scalingmutation strategy involved an exploration and exploitation
balance focusing on mutation operation. A collection of elite individuals is maintained such that an array of
current particles can learn from them. A ring topology-based neighborhood structure is adopted to maintain
the population diversity and to reduce the possibility of particles being trapped in local optima. Finally,
a quasi-Newton-based local search is incorporated to enhance the fine-grained capability. The effects of
these proposed strategies and their cooperation are verified step by step. The performance of LSERPSO is
comprehensively studied using IEEE CEC2015 benchmark functions.

INDEX TERMS Particle swarm optimization, elitist learning, local search, ring topology, scaling mutation,
swarm intelligence.

I. INTRODUCTION
Particle swarm optimization (PSO) is a simple yet effi-
cient optimization method that has been rapidly developed
in recent years, mainly due to its simple conceptualization,
easy implementation, and fast convergence speed to derive
a reasonable solution [1], [2]. PSO has been extensively
studied in not only the complex numerical optimization prob-
lem, but also in difficult real-world optimization problems in
recent years. PSOwas proposed by Kennedy and Eberhart [3]
in 1995 as a competitive, population-based algorithm. PSO
is a bio-inspired computing algorithm that is enlightened
by crowd behaviors such as bird flocking and fish school-
ing [4]. In the PSO method, each particle adjusts its posi-
tion by gaining experience from its own past best position
information and that of the global best particle in the entire
population or its neighboring populations.

In recent years, various effective strategies have been
developed to strengthen the performance of PSO, such as
parameter tuning [5]–[7], the combination of various topo-
logical structures [4], [8]–[11], and hybridization with other

optimization techniques [12]–[15]. Although noticeable
progress and fruitful achievements have been attained, suc-
cessfully balancing the exploration and exploitation capabil-
ities of PSO has been the key to determining its competitive
performance for optimization problems, especially for those
with multimodal landscapes or high-relevance variables [16].

However, three defects exist in PSO: difficulty in maintain-
ing diversity, limitations in local search ability, and difficulty
balancing the exploration and exploitation capabilities of the
population. It has been a challenge to improve PSO search
capabilities because these defects generally contradict each
other [17], [18]. In this study, four cooperative strategies are
proposed to combat these critical defects and improve search
capability: a steady framework with ring topology, an elitist
select and learning strategy, a scaling mutation strategy, and
a local search technique.

Firstly, the strategy of ring topology is incorporated into
a standard PSO to promote and maintain the information
diversity of multiple niches with the aim of escaping from
local optima. A PSO with ring topology searched for optima
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in parallel. Accordingly, the probability of being trapped by
the same local optimum may be reduced.

Secondly, a collection of elite individuals is maintained as
a possible learning source for each particle. It is composed
of the personal best particles and solutions with competitive
fitness values. Each particle comprehensively learns from all
recorded elite solutions [19].

An individual level-based conservatism and scaling muta-
tion strategy is proposed in this study to provide more
accurate guidance for the diversification of particles while
improving the adaptation and flexibility of each particle [20].

PSO has strong global search capabilities; however, it lacks
local search abilities. Therefore, it is only natural to incor-
porate a local search strategy into PSO so that the two
could benefit each other. The combination of local search
techniques and evolutionary algorithms has been widely
investigated. Two examples include the gradient-based local
search method [21]–[23] and the derivative-free local search
method [24]–[27].

The four strategies collaborated and benefited each other
to enhance the performance of PSO and to conquer its pos-
sible characteristic drawbacks. In order to maintain popula-
tion diversity, a ring topology and elitist learning are used
as non-greedy strategies in place of the traditional update
method based on gbest and pbest, so that all the individuals
did not necessarily need to fly to the only globally promising
area. Then, a local search technique is used to find better solu-
tions to improve the elite solution quality and to accelerate
the convergence rate. Even if some particles fall into local
optima, a scaling mutation strategy with a long jump would
provide more opportunities to jump out of local optima and
to begin to search in a new area.

The goals of this paper are as follows:
1) To provide a framework of ring topology based on

modified PSO, which promotes and maintains information
diversity.

2) To introduce a collection of elite solutions as learning
sources for particles. The influence of an elite pool on the
performance is analyzed.

3) To provide an individual level-based conservatism and
scaling mutation strategy.

4) To demonstrate the benefit of adopting the local
search method, which is combined with the ring topology
framework.

This paper is organized as follows. Section 2 briefly
introduces the canonical PSO and the related works.
Section 3 describes the ring topology strategy and com-
bined PSO framework. Section 4 briefly introduces the eli-
tist select and learning strategy with different-sized elite
pools. Section 5 provides the details of the scaling muta-
tion strategy. Section 6 provides the algorithm framework
of LSERPSO with local search techniques. Section 7 lays
out the experimental and comparative studies we performed
on the CEC 2015 benchmark suit. Section 8 concludes this
paper.

II. RELATED STUDIES
A. CANONICAL PSO
When a particle swarm initializes, the individuals attempt to
search for more and more promising solutions by learning
from each other, communicating information, and interact-
ing with the velocities of each other. Each particle adjusts
its position and velocity dynamically according to its fly-
ing experience and its neighbors in the search space. The
state of particle i is described by its current position xij =
[xi1, xi2, . . . xiD] and velocity vij = [vi1, vi2, . . . viD], where
D is the number of decision variables. In the canonical
PSO [28], the position and velocity of particles are repre-
sented through the following equations:

vk+1ij = w =kij +c1r1(pbest
k
ij − x

k
ij)+ c2r2(gbest

k
ij − x

k
ij) (1)

xk+1ij = xkij + v
k+1
ij , (2)

where xkij is the j-th dimension of the i-th particle at the
k-th iteration and vkij is its velocity component; pbesti is the
personal best position found by particle i; gbest is the global
best position found so far by the whole swarm; c1 and c2
are the acceleration coefficients; r1 and r2 are two random
uniform numbers in [0, 1]; and w is the inertia weight used to
balance between flight inertia and changing momentum.

B. SOME PSO VARIANTS
PSO has become one of the most popular forms of swarm
intelligence since its emergence. It has attracted a lot of atten-
tion from researchers worldwide [29]–[31]. Generally, there
are four ways to strengthen the capability of PSO, as observed
from the evolutionary history of PSO.

(1) Utilizing self-adaption parameters in the particle evolv-
ing process instead of the fixed parameters. Shi & Eber-
hart [32] designed an inertia-weight strategy with linearly
decreasing over iterations and a fuzzy self-adaptive strat-
egy to adapt the different optimization problems [33].
With respect to the acceleration parameters c1 and c2,
Suganthan [34] suggested different values of c1 and c2 for
different problems rather than fixed values to yield better
performance. In comparison, a linearly time-varying acceler-
ation coefficient was proposed to enhance the performance of
PSO [35]. Zhan et al. [36] proposed a real-time evolutionary
state estimation procedure. The algorithm parameters were
adaptively updated based on the results of an ‘‘evolutionary
factor’’ and evolutionary state estimations. Ismail and Engel-
brecht [38] embedded the strategy parameters of PSO into the
positions of particles, which enhanced the performance of the
comprehensive learning PSO (CLPSO) [19].

(2) The niche and species methods with different topo-
logical structures have been extensively researched for PSO.
Kennedy and Mendes [39] suggested that a small niche size
was more suitable to maintaining diversity for complicated
multimodal problems, whereas a larger niche size was shown
to be more effective for unimodal problems. The selection of
an appropriate niche size is hampered by various problems.
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Aware of the noticeable effects of niche size, researchers have
investigated the dynamic adaptation mechanisms to enhance
the flexible selection for parameters [40]. Mendes et al. [41]
presented a fully informed particle swarm in which all indi-
viduals interacted with each other and learned experiences
around all their neighbors instead of the gbest individual and
its own personal best individual only. Qu et al. [42] proposed
a distance-based locally informed particle swarm method
that attempted to eliminate the difficulties of specifying the
parameters and enhance the global search ability of PSO.
In order to preserve the potentially promising solutions that
have been developed so far, Parsopoulos and Vrahitis [43]
designed rules to check whether the solutions were satisfying
or not. If the solution was satisfying, several individuals
were generated around this particle for a finer search in
a local area. With this modification, PSO could locate all
the global optima for the selected functions. Brits et al. [44]
proposed a NichePSO that further extended Parsopoulos and
Vrahitis’s model [45]. In NichePSO, multiple subswarms
are produced from a main swarm population to locate mul-
tiple optimal solutions in the search space. In speciation-
based PSO (SPSO), proposed in [46], subpopulation species
are evaluated by independent PSOs. As species are updated
around different local areas, the multiple global optima have
the potential to be found successfully in parallel.

(3) Introducing the effective evolutionary techniques from
other heuristic or metaheuristic algorithms to PSO is another
modification direction. Gong et al. [47] proposed a general-
ized ‘‘learning PSO’’ paradigm, the GL-PSO, that included
two cascading layers (exemplar generation and particle
updates as per a normal PSO). Genetic operators were used
to generate exemplars from which particles learned, and,
in turn, historical search information of the particles provided
guidance to the evolution of the exemplars. Liang et al. [19]
described using the new learning strategy CLPSO, in which
all other particles’ historical best information was used
to update the flying velocity. Zhan et al. [2] proposed the
orthogonal learning PSO (OLPSO) to discover more useful
information from the historical best experience and the neigh-
borhood’s best experience. OLPSO can help particles fly in
better directions through the construction of a much more
promising and efficient exemplar. Deb and Padhye [49] estab-
lished clear and fundamental algorithmic linking between
particle swarm optimization and genetic algorithms. The goal
of their study was to highlight the concept of algorithmic
linking in an attempt to design more efficient optimiza-
tion algorithms. Chen et al. [50] presented an aging leader
and challenger mechanism to adaptively establish a suitable
leader to lead the swarm evolution.

(4) Traditional optimization methods are combined with
PSO because they offer strong local search capabilities.
However, PSOs usually have better exploration capabili-
ties for global searches; however, they are weaker at fine
local searches. To enhance the exploitation capability of
PSO algorithms, different optimization techniques have been
employed as local search strategies [25], [51]. These local

search strategies are expected to drive PSO tomore efficiently
find a local or a global optimum. Both gradient-based local
search and derivative-free local search techniques have been
adopted to date. The Nelder-Mead simplex searchmethod has
been combined with PSO [52] to produce faster and more
accurate convergence of both the method and particle swarm
optimization. Santos et al. [53] presented a semi-autonomous
particle swarm optimizer that used gradient-based informa-
tion (fast exploitation with gradient information) and diver-
sity control (exploration with diversity control) to optimize
multimodal functions.

III. RING TOPOLOGY FRAMEWORK
In the history of PSO development, the connectivity model
has been categorized as either local population or global pop-
ulation. In a global topology, every particle is connected with
each other, which increases the risk of convergence on sub-
optimal local minima. As an alternative to global topology,
a ring topology can be used to adjust the speed of information
propagation in PSO population, thus alleviating the problem
of premature convergence [54].

FIGURE 1. Ring topology in PSO in which each member interacts with its
immediate left and right neighbors.

A ring topology with seven particles is shown in Fig.1,
where p11 − p15 and p21 − p25 represent the current particles
and the next generation particles, respectively, and pb1− pb5
represents the personal best solutions of the current parti-
cles. Each particle interacted with three information sources,
including the pbest of two neighboring particles and its own
pbest. Each particle’s pbest could be updated by comparing
the particle itself with the particle from the next generation.
Each stable topology consisted of three particles and their
personal best solutions.

In order to maintain the population diversity, more stable
personal best positions are retained in the topology to provide
the best positions found so far. These positions could be
further explored through the particles of the next generation.
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In this study, we demonstrate that a PSOwith ring topology
is able to induce stable behavior and maintain a diverse
population. Other ring communication topologies, such as
two neighborhood members and one interacting member (left
member or right member), have been shown to be very effec-
tive in alleviating the premature convergence of PSO [55].

PSO with ring topology operates as a niche algorithm by
using particles’ local memories (pbest) to form a stable net-
work. It retains the best positions found so far and maintains
diverse solutions with an elitist learning strategy instead of
one pbest only. A ring topology can be described as follows.
One particle interacts with two neighboring particles to form
an ecological niche. The first particle is the neighbor of the
last one and vice versa. The neighborhood of thei-th particle
returns the best-fit personal best solution nbesti in its neigh-
borhood, which represents the neighborhood best for the
i-th particle.
Different particles residing on the ring may have different

nbests. Thus, it is possible to converge to different optima for
different particles over time.

vk+1ij = wvkij + c1r1(pbest
k
ij − x

k
ij)+c2r2(nbest

k
ij − x

k
ij). (3)

The ring topology neighborhood structure not only pro-
vides a mechanism to slow down the fast information propa-
gation from the super individuals, but it also allows different
neighborhood bests to coexist (rather than becoming homo-
geneous) over time. The reason for this phenomenon is that
a particle’s nbest will be updated only when there is a better
personal best in its neighborhood. Furthermore, nbest-based
PSOs do not require any prior knowledge of and no need to
specify any niche parameters. The pseudocode of PSO with
ring topology is presented in Algorithm I as follows:

Algorithm 1 Pseudocode of PSO With Ring Topology
Initialize population and parameters;
Repeat
for i← 1 to population size do
if fit(xi) < fit(pbesti)
pbesti← xi

end if
nbesti← neighorhoodbest(xi−1, xi, xi+1)
end
for i← 1 to population size do
Eq. (3)
Eq. (2)
end
Until termination criterion is met

IV. ELITIST SELECTION AND LEARNING STRATEGY
It should be noted that PSO with a ring topological structure
provides each particle the chance to learn from its local niche
best and the pbest solutions. As a result, the probability of
being trapped by local optimum is reduced. However, due to
the inherent difficulties of a multimodal functional algorithm,

it is also easy to be trapped by local optima. In addition,
a particle’s pbest is used as the learning source, and the
promising particles are adopted as the potentially exemplars
to guide the particle in flying. In canonical PSO, each particle
discards its current pbest solution if an even better solution
is found. However, the discarded solution may also be of
relatively good quality and contain the promising information
relating to the global optimal solution. In order to utilize this
beneficial historical information, one elite set is constructed
to act as an exemplar guidance pool. It is possible to increase
the evolving diversity to yield an improved performance.

The elite set is composed of the historical pbestand other
satisfactory suboptimal individuals with 10, 20, and 30 indi-
viduals. The satisfactory suboptimal solutions record some
discarded individuals with comparable fitness with pbest
solutions, but the location is opposite to the pbest solutions.
After one iteration, the worst solution in the elite set is
updated by the current particle, or the pbest, which has a
better function value. Each particle learns information from
the elite set (eset) randomly, which is described as (4) in
Algorithm II as follows:

vk+1ij = wvkij + c1r1(eset
k
ij − x

k
ij)+ c2r2(nbest

k
ij − x

k
ij). (4)

V. SCALING MUTATION STRATEGY
Anew hybridmutation strategy is proposed that aims tomain-
tain the swarm diversity and prevent premature convergence.
The proposed strategy also balances between exploration and
exploitation by combining the mutation operation of differ-
ential evolution [56] and the global search ability of PSO.
In evolutionary algorithms, large search space usually means
great difficulties for convergence, because it is a challenge to
give particles a large search space.

How to enlarge the exploitation areas of particles is impor-
tant when improving the direction for PSO. However, overly
large exploitation areas would not meet the inherent need
of the algorithm to decrease the quality of particles. Muta-
tion operation can preserve information through a crossover
operation in differential evolution [26]. If a random number
is larger than the crossover probability, the component of
the original position of the particle will be copied to the
new individual. Therefore, it is natural to combine both sides
to utilize their advantages simultaneously. The conservatism
and adventurism principle mutation, i.e., the scaling mutation
strategy, is defined as follows:

lj =
{
0 if sj < −1
1 else

(5)

vk+1ij = wvkij + c1r1(eset
k
ij − x

k
ij)+ c2r2(nbest

k
ij − x

k
ij) (6)

xk+1ij = xkij +
∣∣sj∣∣ · ljvk+1ij , (7)

where the Gaussian random number s ∼ N (0, 1), lj ∈ {0, 1}.
If sj < −1, lj = 0, xk+1ij = xkij . In this conservatism
principle procedure, the corresponding j-th component of
the i-th particle preserves the initial information from the
previous position.
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Algorithm 2 Pseudocode of Elitist Selection and Learning
Strategy

Initialize population and parameters;
Repeat
for i← 1 to population size do
zk = argmax {f (zm) |zm ∈ eset }
if fit(xi) < fit(pbesti)
if fit(zk ) > fit(pbesti)

zk ← pbesti
end
pbesti← xi

else
if fit(zk ) > fit(xi)

zk ← xi
end

end
end for
for i← 1 to population size do
Eq. (4)
Eq. (2)
end
Until termination criterion is met

Algorithm 3 The Pseudocode of Local Search
The objective function is f(x), the starting point is x0,
the convergence tolerance is ε, the initial inverse
Hessian approximation H0, the gradient of the objective
function is gk
Set k = 0
While ‖gk‖ > ε

compute search direction dk = −Hkgk
set xk+1 = xk + akdk , where ak is the step and computed
from line search method
calculate sk = xk+1 − xk , yk = gk+1 − gk

HBFGS
k =

(
I −

skyTk
sTk yk

)
Hk

(
I −

yk sTk
sTk yk

)
+

sk sTk
sTk yk

k = k + 1;
End while

If sj >= −1, lj = 1. Currently, this becomes the adven-
turism principle, in which particles can potentially move to
new positions with different coefficients. Thus, it is possible
for the search space to be scaled by this mutation strategy
according to the above analysis.

VI. LOCAL SEARCH TECHNIQUE
PSO causes difficulty in improving the accuracy of solutions
because of its exploration-biasing inherent principle. This can
be enhanced through local search techniques; thus, a local
search strategy based on the quasi-Newton method is pro-
posed in this study.

By measuring the changes in a gradient, we used
the quasi-Newton method [57] to construct a model of
an objective function that is good enough to produce

Algorithm 4 The Flowchart of LSERPSO
Initialize maximum function evaluationsMaxFEs, the elite
pool of eset, particle size ps, the position xi and velocity vi
for each particle
Set pbesti← xi;
Select random pbest to eset
Set fitcount = ps
While fitcount <MaxFEs
for i← 1 to ps do
if fit(xi) < fit(pbesti) && fitcount > η∗MaxFEs
execute local search on xi, xi+1;
n is the function evaluations cost by local search;
fitcount = fitcount + n;
update xi, xi+1
end if
nbesti← neighorhoodbest(xi, xi+1)

end for
for i← 1 to ps do
update the velocity of particle i according to (6)
update the position of particle i according to (7)
evaluate the position;
fitcount = fitcount + 1;
zk = argmax {f (zm) |zm ∈ eset }
if fit(xi) < fit(pbesti)

if fit(zk ) > fit(pbesti)
zk ← pbesti;

end
pbesti← xi;

else
if fit(xk ) > fit(xi)

zk ← xi
end

end
if fit(nbesti+1) < fit(nbesti)

update nbest i
end if

end for
End while
output the best individual and its fitness

super-linear convergence. The improvement over steepest
descent is dramatic, and the second order derivative is not
required. In this study, if the pbest particle in the ring topology
structure was replaced by an even better one at the later evo-
lutionary stage of PSO (indicated by fitcount > η∗MaxEFs),
the local search strategy is triggered and a fine search is con-
ducted around the local promising neighborhood. With this
modification, the newly proposed PSOmake it more possible
to locate the global optima for the optimization problems.

Of course, an overly strong local search technique can
also pose a risk of premature convergence. To reduce such
a risk, the algorithm also employs two exploration biasing
strategies: the elitist selection and learning strategy and the
scaling mutation strategy. These strategies is jointly used to
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TABLE 1. Strategy comparison among canonical PSO, RPSO-2, and RPSO-3.
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TABLE 1. (Continued.) Strategy comparison among canonical PSO, RPSO-2, and RPSO-3.

balance searches. The pseudocode of local search is given in
Algorithm III as follows:

VII. FLOWCHART OF LSERPSO
The overall performance of LSERPSO is enhanced as a
result of the mutual cooperation of four strategies to remedy
the defects. To afford a balance between exploration and
exploitation, a scaling mutation strategy is utilized to gener-
ate offspring and utilize the advantages of the conservatism
and adventurism principle mutations. To further promote
diversity, both the ring topology and elitist learning strate-
gies are embedded in the framework of PSO. In addition,
a local search algorithm is added to enhance the solution
accuracy.

The LSERPSO flowchart based on the four cooperative
strategies described previously is given in Algorithm IV.

VIII. EXPERIMENTAL STUDIES
This section documents the series of experiments are car-
ried out to verify the feasibility and the cooperation of the
proposed strategies and LSERPSO. Firstly, Section VII-A
describes the benchmark functions suite and the usual param-
eters. Then, our observations and verification of the influence
of each strategy is laid out step-by-step in Section VII-B.
Section VII-C presents the detailed comparison between
LSERPSO and several state-of-the-art algorithms.

A. BENCHMARK FUNCTIONS
Fifteen benchmark functions of IEEE CEC 2015 special
session on real-parameter optimization are used to study
the performance of the strategies and algorithms. A detailed
description of these functions can be found in [58], which are
divided into four classes:

1) unimodal functions f1–f2;
2) simple multimodal functions f3–f5;
3) hybrid functions f6–f8;
4) composition functions f9–f15.
To evaluate the performance of the proposed strategies and

LSERPSO and to make fair comparison with the state-of-the-
art algorithms, we utilized the following evaluation metrics:
the best of, the mean of, the median of, and the standard
variance of the final results in multiple runs. The maximum
fitness evaluations (Max_Fes), the population size (NP), and
the dimension number are set to the same value for all

comparison algorithms as 800,000, 100, and 30, respectively.
We carried out 30 independent runs of all experiments for
statistical purposes.

B. OBSERVATION OF STRATEGIES
We considered the individual effects and the superposition
effects of the proposed strategies. (i.e., the ring-topology,
the elitist selection and learning strategy, the scaling mutation
strategy, and the local search technique) in order to investigate
the individual influence of the proposed strategies adopted in
LSERPSO.

1) INFLUENCE OF RING TOPOLOGY SIZE
PSO, combined with a ring topology (RPSO) is used to
maintain population diversity. The more ring communication
topologies, the more effective performance is in preventing
the premature convergence. Two differently-sized RPSOs are
designed for the ring topology to verify the usefulness of the
ring topology strategy. One group of ring topology contains
only one neighborhood member (left member or right mem-
ber), named RPSO-2 for short. The other one interacts with
both members (left member and right member); it is named
RPSO-3 for short.

Table 1 exhibits the comparison results among RPSOs
with different ring topology size and canonical PSO based
on the CEC2015 benchmark suite. The best results are high-
lighted in bold. The following phenomena can be observed
from Table 1. Firstly, RPSO-2 and RPSO-3 show their
superiority to canonical PSO for all functions. Secondly,
RPSO-2 undoubtedly outstands among them on most func-
tions. In summary, the ring topology strategy is shown to
be helpful in improving the optimization algorithm, and this
benefit is more evident for RPSO-2. Such a benefit comes
from the potential balance between exploration and exploita-
tion, which resulted from more small niches around the ring.
So, the ring topology with one neighborhood member is
considered in this paper.

2) INFLUENCE OF ELITIST SELECT AND LEARNING STRATEGY
For the elitist select and learning strategy, the elite individual
is given tries with different sizes of {10, 20, 30} to enrich
the pool of learning exemplars. The learning mechanism,
chosen from the different local best or the elite individuals,
is expected to significantly optimize the process.
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TABLE 2. Strategy comparison on RPSO-2 and RPSO-2 with different elite pool sizes.
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TABLE 2. (Continued.) Strategy comparison on RPSO-2 and RPSO-2 with different elite pool sizes.

In order to determine whether the results of RPSO with the
elitist learning strategy (ERPSO) is consistently superior to
those of RPSO, the simulation results between them are pre-
sented in Table 2. Table 2 presents the statistical comparison
among RPSO-2 and RPSO-2 with the elitist learning strategy,
which has three different-sized elite pools. ERPSO-10 illus-
trates RPSO-2 combining with the elitist learning strategy of
size 10. ERPSO-20 and ERPSO-30 have a similar meaning.
The best results are highlighted in bold.

Some phenomena can be observed from the earlier dis-
cussion and Table 2. (1) ERPSO achieves better results on
all functions than RPSO-2, except for f3. Even for f3, they
also all achieve comparable results. (2) Three ERPSOs with
an elite set of different sizes all perform similarly well on
fifteen functions. Among them, ERPSO-10 yields a compar-
atively better performance compared with ERPSO-20 and
ERPSO-30. Furthermore, ERPSO-10 achieved the same best
results as RPSOE-20 on functions 3–6, and both of them
perform much better than ERPSO with 30 sizes on these
functions. ERPSO-20 achieves a better performance on some
unimodal functions than ERPSO-30. ERPSO-10 also per-
forms well on unimodal functions, and it performs better
than ERPSO-20 on functions 6, 7, 8, 10, 11, and 12. To sum
up these results, it is observed that the performance of the
algorithm is affected by the elite pool size.

The numerical grading method is utilized to measure
which performs the best among ERPSO-10, ERPSO-20, and
ERPSO-30. If the mean fitness are equal, a grade of ‘‘0’’
is assigned, which means that both methods have the same
performance in terms of the statistical test. If the differ-
ence in mean fitness between ERPSO-10 and ERPSO-20 or
ERPSO-30 is larger than zero, the corresponding algorithm
is denoted as ‘‘−1.’’ Accordingly, its component is denoted
as ‘‘1.’’ If the difference in mean fitness is larger than
one or two magnitudes, it is denoted as ‘‘−2’’ or ‘‘−3.’’
On the contrary, it is denoted as ‘‘2’’ or ‘‘3.’’ This numer-
ical grading method indicates that the higher the score,
the stronger the performance. As a result, the grades between
ERPSO-10 and ERPSO-20 are ‘‘2’’ and ‘‘−2,’’ and the grades
between ERPSO-10 and ERPSO-30 are ‘‘1’’ and ‘‘−1.’’ This
means that the performance of ERPSO-10 is better than
that of ERPSO-20 and ERPSO-30. Although the size of an
elite individual set is set as 10 in this study for efficiency
control and faster updating speed, both sizing 20 and 30 show
improved performance.

3) EFFECTS OF SCALING MUTATION AND LOCAL SEARCH
This subsection the observations on the influence of the scal-
ing mutation and its combination with the local search are
conducted. ERPSO-10 with the scaling mutation is denoted
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TABLE 3. Strategies comparison on scaling mutation and local search.
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TABLE 3. (Continued.) Strategies comparison on scaling mutation and local search.

as SERPSO, and SERPSO with the local search is denoted
as LSERPSO. Table 3 presents the results of SERPSO and
LSERPSO using the IEEE CEC2015 benchmark. The param-
eter of η is set as 0.05. The best items are highlighted in bold.

As Table 3 shows, LSERPSO defeated SERPSO
in 11 functions (f1–f3, f6, and f8–f14), and SERPSO slightly
outperforms LSERPSO in f4, f5, and f7. Both of them
perform similarly in f15. Secondly, SERPSO defeats ERPSO
on most functions except for f5, f11, and f12.

As a whole, these results indicates that the combination of
scaling mutation and local search provides potential help for
most of the functions, and that the benefit is more obvious in
hybrid and complicated functions. Secondly, the local search
scheme makes the significant improvement on the algorithm.
In short, it can be concluded that both the scaling mutation
strategy and the local search are shown to be very beneficial
for ERPSO in locating the global optima.

C. OVERALL PERFORMANCE COMPARISON AMONG
LSERPSO AND STATE-OF-THE-ART PSO VARIANTS
After observing the influence of four innovative strategies and
their cooperation from the above series of experiments, over-
all performance comparison between LSERPSO and several
state-of-the-art PSO variants are presented. The well-known
competitors of SPSO2011 [59], CLPSO [19], OLPSO [43],
and DMSDLPSO [26] are compared with LSERPSO on CEC
2015 benchmark functions.

Furthermore, the performance of the proposed LSERPSO
is compared with three state-of-the-art peer algorithms,
namely GAPSO [60], DEPSO [61], and GLPSO [47] on
the second test suite (f101–f112) [62]. In the second test
suite, f101–f104 are unimodal functions, f105 is unimodal
in 2-D and 3-D space but has multiple optima when D > 3,
f106 is a step function, and f107 is a noisy quartic func-
tion. f108–f112 are multimodal functions with different land-
scapes whose local optima increase exponentially with the
increasing of dimension size.

To make a fair comparison, the population size and the
maximum number of fitness evaluations are set to the same
value for all algorithms. Other parameters are set as the
recommendation references.

Table 4 shows the comparison results with respect to
‘‘min’’, ‘‘mean,’’ ‘‘median,’’ and ‘‘std’’ terms, which rep-
resent the best, the mean, the median, and the standard

deviation for the final results, respectively, in 30 independent
runs. The best performance is highlighted bold. The signals
of ‘1,’ ‘-1,’ and ‘0’ in the last row for each function indi-
cate whether or not LSERPSO performs significantly better,
significantly worse, or comparably in comparing with its
competitors according to the Wilcoxon rank-sum test (signif-
icance level α = 0.05) among LSERPSO and state-of-the-art
PSO variants.

For the purposes of the illustration, the online evolving
convergence curves for f1–f15 of five algorithms are plotted
in Fig. 2. The horizontal axis is the number of function
evaluations, and the vertical axis is the mean best fitness at
each iteration over the course of multiple runs.

The mean errors and standard deviation obtained by
four algorithms are presented in Table 5, where the per-
formance rank of LSERPSO among the algorithms is also
given.

Based on Table 4 and Fig. 2, LSERPSO possess the ability
to find the best or second-best solutions for all benchmark
functions with a high convergence rate and robust relia-
bility, except for f5. According to the comparison results,
the conclusions can be drawn as follows. For unimodal
functions f1–f2, SPSO2011, CLPSO, and OLPSO have sig-
nificantly worse results than those of DMSDLPSO and
LSERPSO. LSERPSO obtains the best result for function
f2 and achieves the best ‘‘min’’ and comparable ‘‘mean’’
item for f1. According to the average evolving curve and the
statistical result of f1, LSERPSO performs much better than
that of DMSDLPSO for most of the evolving generations, and
DMSDLPSO outperforms LSERPSO only at the last genera-
tion. At the final stage, DMSDLPSO outperforms LSERPSO
slightly. This demonstrates that LSERPSO can significantly
improve the exploitation capability, which is beneficial to
solving unimodal problems.

For multi-modal functions, LSERPSO, OLPSO, and
DMSDLPSO variants all showed significantly better results
than SPSO2011 and CLPSO in f3. DMSDLPSO exhibits
the best performance in f5. However, their performance
showed no significant difference in f4. The good perfor-
mance of LSERPSO in the unimodal functions and some
multi-modal functions are attributed to the cooperation of the
strategies their ability to balance between exploration and
exploitation, which is crucial for solving different kinds of
problems.
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TABLE 4. Comparison among SPSO2011, CLPSO, OLPSO, DMSDLPSO and LSERPSO over CEC 2015 benchmark.
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TABLE 4. (Continued.) Comparison among SPSO2011, CLPSO, OLPSO, DMSDLPSO and LSERPSO over CEC 2015 benchmark.

For the hybrid optimization functions f6–f8, which are for-
med with different multimodal types, LSERPSO dominate its
competitors in f8 and performs comparably with competitors

in f7. The reliability and robustness of LSERPSO and DMS-
DLPSO are almost the same in function f6, in which it
performs significantly better than the other three competitors.
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FIGURE 2. Online evolving convergence comparison among algorithms.
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FIGURE 2. (Continued.) Online evolving convergence comparison among algorithms.
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TABLE 5. Comparison among GAPSO, DEPSO, GLPSO and LSERPSO over second test suite (mean error ± standard deviation).

For composition optimization problems f9–f15, LSERPSO
generally performs better than SPSO2011, CLPSO, and
OLPSO. This is because the landscapes of composition func-
tions are highly complex, and this makes it hard for many
PSO variants to find the proper optima. Therefore, once
the local best individuals are very close to the global best
individual, the updating mechanism of PSO makes the par-
ticles’ evolution stand still and usually result in prematurity.
By contrast, LSERPSO and DMSDLPSO with the mutation
strategy and the local search can more effectively enhance
search directions for the particles to jump out from local traps.
Based on the above analysis, PSO variants with a suitable
mutation strategy and local search technique are usually more
efficient than those without these strategies.

It can be observed from Table 5, the proposed algorithm
is a competitive PSO variant on the second test suite when
compares with its competitors, especially for the classical
GLPSO [47]. During optimization of this test suite of 12 func-
tions, LSERPSO ranks first seven times, second six times,
and third once. This suggested that LSERPSO achieves very
competitive results in most of functions when compared with
algorithms such as GLPSO and the others. This highlighted
the benefit of the cooperation of strategies and their ability to
balance between exploration and exploitation.

Based on the overall performance comparison, LSERPSO
shows a competitive performance when compared with sev-
eral state-of-the-art algorithms. The superior performance of
LSERPSO is attributed to its powerful global search ability
and its accurate local search ability, which resulted from
the proposed cooperative strategies laid out in this paper.
Equipped with these strategies, LSERPSO can make a good
balance between exploration and exploitation, which results

in the efficiency and effectiveness in improving the perfor-
mance of PSO.

IX. CONCLUSIONS
An elitist learning PSO with scaling mutation and ring topol-
ogy is proposed in this study to balance the contradicting
concepts of exploration and exploitation. A ring topology
frame and an elitist select and learning strategy are intro-
duced to maintain population diversity. The analysis on ring
topology size indicates that RPSO-2 with only one neighbor
has comprehensively better performance. It also suggests that
multiple niches would lead to enhanced search ability, espe-
cially for multimodal functions. Different sizes of elite pools
are discussed in terms of their influence on the performance
of the algorithm. The comparison results demonstrates that
ERPSOwith elite sizes 10 and 20 have a similar performance.
The scaling mutation strategy aims to reduce the flying scope
with a high probability, and it stands still or enlarges the
exploring areas with a small probability. The local search
technique is designed to search for an accurate solution
around local optimal seeds.

The influence of the proposed strategies is fully considered
one by one, and their individual effects and cooperation are
verified through simulation experiments. The comparison
results with state-of-the-art algorithms based on two differ-
ent test suites demonstrate the superiority and efficiency of
LSERPSO.
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