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ABSTRACT Using machine intelligence on device and process performance prediction is an emerging
methodology in the IC industry. While semiconductor technology computer-aided design (TCAD) has
been researched and developed for over 30 years, it should contribute to or be used in conjunction with
machine learning algorithms in solution finding procedure. Here, we propose an adaptive weighting neural
network (AWNN) model that combines the advantages of statistical the machine learning model and
the physical TCAD model. Using aspect ratio dependent etching as an example, our proposed AWNN
outperforms conventional artificial neural network in terms of mean square errors in the test set where
5–10 times reduction is observed. The effectiveness of the TCAD AWNN model can be especially effective
in the case of sampling over a vast sample space since the under-sampling problem can be compensated by
the TCAD model. The large and nearly unbounded sample space is very common in IC technology, where
cascaded and repeated process steps exist (∼150 process steps and ∼20 masks for 90-nm CMOS process).

INDEX TERMS Machine learning algorithms, artificial neural networks, semiconductor device manufac-
ture, semiconductor process modeling.

I. INTRODUCTION
In recent years, the research on machine learning has pro-
gressed significantly due to its feasibility and broad appli-
cability [1]–[17]. The purpose of machine learning is to
predict the results or behaviors of new action from collected
experimental data through training procedures. For exam-
ple, Fabrizio et al. demonstrate integrating the data mining
cloud service into scalable data analysis workflows [12].
Saman et al. propose a reversible watermarking technique
for social network data analytics [13]. Yansheng et al.
utilize deep hashing neural networks in remote sens-
ing [15]. Litjens et al. apply machine learning to medical
imaging [16]. Sommer et al. utilized machine learning to rec-
ognize phenotypes in biology [17]. However, in the semi-
conductor industry, the complicated process steps and a
large number of process parameters during the manufactur-
ing process makes machine learning highly suitable to be
used in the semiconductor industry. There are already some
prior works related to using machine learning in semicon-
ductor manufacturing [18]–[37]. Tello et al. propose a deep-
structured machine learning model for defect detection [33].
Susto et al. demonstrate an anomaly detection approaches

in semiconductor manufacturing [34]. Nakata et al. pro-
pose a comprehensive big-data-based monitoring system for
yield improvement in semiconductor manufacturing [35].
Kang et al. demonstrate the application for yield manage-
ment in semiconductor manufacturing [36]. Kim et al. try
to establish a model for plasma etching process by neural
network [37]. In these prior works, standard neural net-
work training and prediction are employed. In many cases
in semiconductor manufacturing, only a limited amount of
experimental data can be made available since the semi-
conductor manufacturing processes are time-consuming and
expensive. Therefore, we cannot conduct as many experi-
ments as desired, and undersampling is inevitable in this case.
As a result, the training dataset can only contain a narrow
range of experimental parameters, and thus the output of
the neural network will have limited prediction capability.
To resolve this issue, we proposed a supervised machine
learning neural network which includes the experimental data
as well as the TCAD data. By the combination of these two
types of training dataset, we look forward to establishing a
more accurate and applicable model using a limited amount
of precious experiment data points.
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FIGURE 1. Schematic diagram of modeling aspect-ratio dependent
etching (ARDE) using gas kinetics, proposed by IBM [38].

FIGURE 2. Illustration of the AWNN vs conventional ANN methods in the
optimal process parameters locating.

In this work, we propose a supervised machine learning
model called adaptive weighting neural networks (AWNN)
is proposed. The concepts of this model are demonstrated
in Fig. 2. In this model, the TCAD data and experimental
data are both utilized to improve the accuracy of the predic-
tion. Initially, we will simulate the etching process by using
TCAD.Varied complexity level of TCADmodel can be found
in literature, and there is abundance of commercial software
packages. In regular SentaurusTM Process, the aspect-ratio
dependent etching (ARDE) cannot be modeled, and a more
advanced software package SentaurusTM topography has to
be used. Instead of using complex SentaurusTM topography
modeling, we employed a simple ARDE model from IBM
based on gas kinetics and chemical reaction as illustrated
in Fig. 1.

The outcome of the TCAD calculation is the etching
depth, and the parameters used to predict the etching depth
are the trench width and the etching time. Apart from
TCAD, we conduct the experiment for deep reactive ion
etching (DRIE) BOSCH etching process to acquire the exper-
iment data. The etching patterns in the experiment are set the

TABLE 1. Pattern parameters are designed for diverse aspect ratio (AR).

same as in the simulation, and therefore, the input feature val-
ues are the same for TCAD calculations and physical experi-
ments. The etching process steps consist of pattern exposure,
development, and dry plasma etching. Finally, the actual etch-
ing depth is examined with the scanning electron microscope
(SEM). After experiment, the experiment data set will be
fed into our artificial neural network first. Then the output
result of experimental data will be combined with the TCAD
data. The weighting for the experimental data and TCAD
data arewNN andwTCAD, respectively. Furthermore,wNN and
wTCAD are input-parameter-dependent, which is modeled by
two additional ANN. By the inclusion of simulation data,
it can reduce the required number of experimental data points.
Therefore, the proposed model can predict the result more
precisely while saving the cost and time in processing.

II. METHOD
A. FABRICATION AND TCAD MODEL
The 6 inch, (100) oriented, p-type boron-doped Si test-grade
wafer was prepared for samples fabrication. The resistivity
of Si wafer ranged between 1.5 and 100 �-cm. Before using
Track (TEL CLEAN TRACK MK-8) to spin on e-beam
positive photoresist (TDUR-P015), Si wafer was cleaned for
600s by SPM solution (4H2SO4:1H2O2, 120◦C) with DI
water rinse and then by DHF solution (1HF:1H2O, 25◦C).
The 700 nm thick e-beam positive photoresist was coated at
1000rpm and soft baked for 90s at 100◦C. The e-beam lithog-
raphy (EBL) was executed on Leica Weprint 200 E-beam
stepper. The exposure beam energy was 40 keV, and the
exposure dose, 5µC/cm2, was selected to form the patterns
with 5, 1 and 0.5µm spacing with different sizes of trench
widths (W ), as listed in Table 1. In our BOSCH process
using OxfordTM machine, the micro-loading effect is not
very pronounced in our one-dimensional (1D) trench pattern.
Therefore, the spacing between adjacent trenches is excluded
from the neural network input features. In a more complex
two-dimensional (2D) pattern, the micro-loading effect can
be non-negligible, but the same AWNN methodology can
be applied to 2D patterns with an arbitrary number of input
features.

The post-exposure baking was conducted at 120◦C for
90s. The patterned wafer was sequentially developed in a
2.38% tetramethylammonium hydroxide (TMAH) solution
for 80s and hard-baked for 60s at 115◦C. After develop-
ing, the wafer was inspected for the different line widths,
by using critical dimension scanning electron microscope
(CD-SEM, HITACHI S-6280H) and then diced into 36 pieces
of 1.2cm×1.2cm samples. The Bosch process for deep Si
etching was carried out in ICP-RIE (OxfordTM Estrelas 100).
Before etching, the dicing sample was bonded onto 4-inch
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TABLE 2. Experimental parameters for main etching step in BOSCH
process.

Si maintaining wafer, which was deposited 2um thick silicon
dioxide on it, with vacuum grease in order to enhance thermal
conductance between the sample and the maintaining wafer.
During whole etching process, the bottom of the maintain-
ing wafer was held at 25◦C under helium cooling. The top
solenoidal coil for ICP source generation was operated with
power between 1000 and 1750W. The bottom of electrode
was used to accelerate ion to bombard surface of the sample
and the power was below 60 W for etching process. In the
Bosch process, there are three steps in a cycle, and the
range of experimental parameters of main etching process are
shown in Table 2. Additionally, the distinct total etching time
for a sample were set to 50, 20, 15, and 10 cycles. A scanning
electron microscope (SEM, Hitachi SU-8010) was used for
checking etching line widths and depth for the processed
samples. Fig. 3 shows the micrograph of the samples after
Bosch etching process. The experimental conditions were at
40 mTorr pressure, 1250 W ICP power, 200 sccm SF6 flow
rate, and 50-cycle etching time.

The calculation of the etching depth taking into account the
aspect ratio dependent etching can be done by considering the
conservation of gas flow [38]

vt − (1− k(
d
W

))vt − k(
d
W

)(1− s)vb = svb. (1)

where k is the transmission probability or Knudsen coeffi-
cient, vt is flux incidence of gas at the top of etched feature, vb
is the flux species at the bottom of etched feature, and s is the
reaction probability on the bottom surface of etched feature.
The etching rate when etching started can be calculated by

R(
d (t)

W
) = R(0)

k( d
(t)

W )

k( d
(t)

W )+ (1− k( d
(t)

W ))s
(2)

where R(0) and R(d (t)/w) is the etching rate at the top and the
bottom of the etched feature respectively. The etching depth
after certain period of time can be known by integration as in

d (t+dt) = d (t) + R
(
d (t)

W

)
dt (3)

where d (t+dt) is the etching depth at time of t+dt, and d (t) is
the depth of the feature at time of t.

B. CONVENTIONAL ARTIFICIAL NEURAL
NETWORK (ANN) MODEL
ANN is considered as a ‘‘black box’’ connecting inputs with
outputs through an explicit set of non-linear functions shown
in Fig. 4. Generally, ANN model consists of the following

FIGURE 3. Cross-sectional SEM micrograph of the etched pattern: (a) and
(b) are carried out at 40 mTorr pressure, 1250 W ICP power, 200 sccm SF6
flow rate, and 50 cycles etching time but different line widths (1µm and
0.8µm respectively). (c) and (d) are under the same etching process, but
the line widths and etching time are 1µm, 20 cycles and 0.3µm, 15cycles
individually.

FIGURE 4. General ANN representation, i.e. input layer, two hidden
layers, and output layer. Trench width (µm), etching time (µsec) and
etching depth (µm) are input and output parameters respectively.

steps: accumulating of experimental data, adjudicating of
input and output parameters, pre-processing of collected data,
training of ANN model, testing the trained model, and evalu-
ating the performance of ANNmodel. ReLU activation func-
tions have lower cost value and converge faster as compare
to sigmoid and hyperbolic tangent function due to no expo-
nential function in ReLU. Escaping from local optimization
and obtaining sparse representation can be easily achieved
by ReLU activation functions. Its derivative also considered
as left-hard-saturation i.e. x < 0, so that ANN with ReLU
activation function, is converged only with positive values of
the input dataset.

Considering the 4-layers ANN with X = {x1, x2, . . . .., xn}
as the input parameters, and the activation function is g. The
mathematical notation of output h1j from any arbitrary ‘j’ node
in first hidden layer is given as.

h1j = g(
k∑
i=1

xi × w1
ij + w

1
b) (4)
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wherewo is the bias in hidden layer, w1
ij represents the weight

between any arbitrary ith node in input layer and jth node in
hidden layer respectively. xi is the ith input from ‘n’ dimen-
sional input vector X . The definition of ReLU as an activation
function is given as

g(x) = max(0, x) =

{
x, if x ≥ 0
0, if x ≤ 0

(5)

ReLU activation function is non-saturated and its derivative
is given as

g′(x) =

{
1, if x ≥ 0
0, if x < 0

(6)

The output of the arbitrary pth node in the second hidden
layer h2p is represented by taking input, as the output of each
neuron from the first hidden layer h1 with their corresponding
weights is given as.

h2p = g(
k∑

i=1

h1i × w
2
ip + w

2
b
) (7)

where k represents the number of neurons in the first
hidden layer, wo is the bias and g is the activation
function.

The output of ANN model, also known as feed forward
propagation, is calculated by the summation of activation
function with their corresponding weights is given as

yNN =
M∑
j=1

h2j × w
3
j1 + w

3
b

(8)

where M is the number of neurons or nodes in the second
hidden layer. The loss of ANN can be determined by

Error =
1
2

s∑
t=1

(yexp,t − yNN,t)2 +
β

2

3∑
k=1

∑
i

∑
j

wk
ij (9)

where β is the regularization hyper-parameter, and s is the
size of training dataset. yexp and yNN is the original and the
predicted value respectively..

C. ADAPTIVE NEURAL NETWORK MODEL
This section consists of a description of adaptive weight-
ing neural network (AWNN). The training procedure is
illustrated in Fig. 5, and the AWNN structure is illus-
trated in Fig. 6. The weights wNN and wTCAD are used
to achieve a balance between machine learning predic-
tion and physical models based on chemistry and fluid
dynamics. Moreover, the proposed AWNN is not very
complicated and thus provides an optimally balanced and
controlled adaptive neural-network-based model with low
complexity.

Firstly, data is collected from the experiment and TCAD
simulation. The data consists of two parts i.e. experiment
dataset by semiconductor processing and the TCAD dataset
by TCAD physical models. For training and verification

FIGURE 5. The flow chart of the adaptive weighting neural
network (AWNN) implementation.

purpose, the experiment or TCAD datasets are split into
the training and the test dataset using parameter parti-
tionas a boundary. In this work, we set thepartition equal
to 15, 30, 45 for a comprehensive comparison. By increas-
ing the partition value, the training dataset expands and
test dataset contracts, respectively. Both datasets have two
independent inputs parameters, namely etching time (sec)
and trench width (µm), and one output parameter etching
depth (µm).

The Python and Scikit Learn are used in this paper. Col-
lected data is cleaned and pre-processed by scaling and nor-
malization. Scikit Learn is an efficient toolbox of Python
for Machine Learning (ML), whose functionality includes
classification, regression, clustering, etc. For the continuous
variable problems, multi-layer perceptron (MLP) regression
model can be employsed. The main hyper-parameter spec-
ification is (50, 50) for the neuron number in each hidden
layer, 0.9 momentum in stochastic gradient descent for neural
network weight locating, maximum iteration of 10000 with
tolerance of 0.00001, and initial learning rate of 0.0001. The
proposed AWNN structure mainly consists of three ANN,
including 1) Traditional ANN trained by the experiment data
set 2) ANN for wNN 3) ANN for wTCAD.
The baseline for comparison is a primary artificial neural

network (ANN), and the training procedure is the same as
in the literature where a training set data points are firstly
fed into the ANN. Afterward, by using stochastic gradient
descent (SGD), amaximum likelihood (MLE) neural network
weights can be evaluated. In the control group basic ANN
model, an experimental dataset is used solely. During the
training stage, the weights and bias are being optimized in
SGD iteration to minimize the loss function, as expressed
in (9). In contrast, the AWNN algorithm is a little bit
more complex, and both experiment and TCAD data sets
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FIGURE 6. The proposed adaptive weighting neural network (AWNN) model with three ANNs. (a) Represents the basic ANN to
predict the yNN from the experimental training set. (b) Illustrates the mapping of the dataset to generate wNN,target and wTCAD,target,
the target values for training the neural network for wNN and wTCAD as illustrated in part (c). (c) represents two additional ANNs to
model the input dependence of wNN and wTCAD. (d) illustrates the calculation of final predicted value yAWNN by yNN and yTCAD.

are utilized. As illustrated in Fig. 6, the first step is quite
similar to basic ANN training where we use a training set to
calculate the MLE weights in the network. The second step is
the construction of thewNN and thewTCAD neural network, in
order to model the input dependence of the adaptive weight-
ing scheme. Before evaluate the MLE weights and biases in
these two ANNs for wNN and wTCAD, we need to know the
target values of the wNN and wTCAD. With the information of
yNN, yTCAD, and yexp in hand, the target values of wNN and
wTCAD are calculated as

wNN,target =



∣∣∣∣yNN − yTCADyexp − yTCAD

∣∣∣∣ , yTCAD > yexp > yNN
yTCAD < yexp < yNN

0,
yexp > yTCAD > yNN
yexp < yTCAD < yNN

1,
yexp > yNN > yTCAD
yexp < yNN < yTCAD

(10a)

wTCAD,target =



∣∣∣∣yNN − yTCADyexp − yTCAD

∣∣∣∣ , yTCAD > yexp > yNN
yTCAD < yexp < yNN

1,
yexp > yTCAD > yNN
yexp < yTCAD < yNN

0,
yexp > yNN > yTCAD
yexp < yNN < yTCAD

(10b)

The wNN,target and wTCAD,target is specified such that the
TCAD output, yTCAD, supplements the inaccuracy of the
ANN output yNN. In case the true value of etching depth
yexp is out of the bounds, i.e. outside the interval between
yTCAD and yNN, the value of (1,0) or (0,1) are assigned to
wTCAD,target and wNN,target, respectively. If yexp is in the inter-
val between yTCAD and yNN, then weighted-averaged scheme
is used to assign proper values to wNN,target and wTCAD,target.
It is important to distinguish between (wNN, wTCAD) and
(wNN,target, wTCAD,target). As in regular NN training using
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FIGURE 7. Illustration of the true function f (X ) and TCAD calculated
function fTCAD(X ). Initially, the function values are quite flat. After x = x1,
f (x) begins to increase, and after x = x2, f (x) begins to saturate.

SGD, the target values are fixed during network training.
As a result, wNN,target and wTCAD,target are calculated based
on Eq.10, and their values are fixed during SGD iterations.
On the other hand, what needs to be updated are wNN and
wTCAD, and their values will change at each SGD iteration
until the values converge. All of wNN, wTCAD, wNN,target,

and wTCAD,target are functions of input features
⇀

X while the
explicit dependence is not included in expressions every time
to prevent wordiness.

As far as the relationship between wNN(X ) and
wNN,target(X ) is concerned, in the training set, wNN(X ) and
wNN,target(X ) will be quite similar if the neural network for
wNN(X ) converges acceptably well. In the test set, there is no
such a thing as wNN,target(X ), and wNN(X ) constructed by the
adaptive weighting neural network can be very useful for test
set prediction. Similar argument can be made for wTCAD(X )
and wTCAD,target(X ).

The ANNs of wNN and wTCAD in the proposed AWNN
algorithm have two hidden layers. The input layer of both
ANNs is also the input feature X , i.e. the trench width and the
etching time, and the output is wNN or wTCAD. Each hidden
layer has 50 neurons with ReLU activation functions, and
the learning rate is set as 0.0001. In general, the adaption in
weighting should depend on the input features, which means
the degree of the correction by TCAD model depends on
the trench width and the etching time. This is a common
scenario since the accuracy of TCAD and conventional ANN
model varies with input parameters X . Without constructing
these additional two NN for wNN and wTCAD, the adaptive
weighting correction becomes ineffective.

Mathematically, thewNN andwTCAD are a function of input
parameters

wTCAD = f1(
−→
X ) = f1(W , t) (11a)

wNN = f2(
−→
X ) = f2(W , t) (11b)

where f1 and f2 represent the two neural networks for wNN
and wTCAD, respectively. In this simple example of ARDE

problem, the input feature array X consist of only two input
parameters, i.e. trench width W and etching time t .

After the construction of the additional two neural net-
works for wNN and wTCAD, we should proceed to calculate
the final predicted value by proposed AWNN scheme. This is
illustrated in (d), and the calculation is simply by

yAWNN(
⇀

X ) = yNN(
⇀

X )× wNN(
⇀

X )+ yTCAD(
⇀

X )× wTCAD(
⇀

X )

(12)

where yNN(
⇀

X ) and yTCAD(
⇀

X ) are the predicted values from the
traditional ANN and from the TCAD model, respectively.

Essentially, the error associated with ANN and AWNN
algorithms, errANN and errAWNN, can be expressed as

errANN =
∫ ∥∥∥fANN (⇀X )− f (⇀X )∥∥∥2 d⇀X (13a)

errAWNN =
∫ ∥∥∥fAWNN (⇀X )− f (⇀X )∥∥∥2 d⇀X

=

∫ ∥∥∥[ fANN (⇀X )wNN (⇀X )
+ fTCAD(

⇀

X )wTCAD(
⇀

X )]− f (
⇀

X )
∥∥∥2 d⇀X (13b)

where
⇀

X is input variable vector, fANN is the baseline ANN
prediction. fTCAD is the TCAD model prediction, fAWNN is
the proposed AWNN prediction, and f is the true function
mapping input

⇀

X to output. Theoretically, we want to prove
that errANN > errAWNN. Though it is difficult to con-
duct a generic proof since both errANN and errAWNN are
highly dependent on the sample space, f (

⇀

X ). As a result,
the effectiveness or any algorithms can only be defined after
dataset or sample space is known. errANN and errAWNN also
depend on fANN(

⇀

X ) in terms of neuron number, hidden layer
number, hyper-parameter selection. errAWNN also depends on
fTCAD(

⇀

X ), which is related to TCAD model selection. With
so many factors affecting errANN and errAWNN, it is very
difficult to conduct a generic proof on errANN > errAWNN,
for all cases.

Graphically we can understand the enhancement of
AWNN:

Consider we have a function f (
⇀

X ) as shown below. The
True function f (

⇀

X ) and TCAD prediction fTCAD(
⇀

X ) are all
shown in Fig. 7. Initially the function values are quite flat,
and after x=x1, f (

⇀

X ) begins to increase, and after x = x2,
f (

⇀

X ) begins to saturate. This f (
⇀

X ) is used as an example to
highlight the effectiveness of AWNN. When we just start the
experiment as illustrated in Fig. 8, insufficient experimental
data points are collected. In this case, we have training set
sampled until x = x1, and the prediction using baseline ANN
will lead to alarge error in the test set. On the other hand,
the AWNN algorithm provides enhancement in prediction
since the TCAD fucntion fTCAD(

⇀

X ) sees the trend of f (
⇀

X )
for x > x1, as shown in Fig. 8(c). With fANN (

⇀

X )wANN (
⇀

X ) +
fTCAD(

⇀

X )wTCAD(
⇀

X ), we predict better values using AWNN.
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FIGURE 8. Initial trial-and-error stage with few experimental data points. The red and black lines are TCAD dataset and experimental dataset,
respectively. (a) The training using baseline ANN. The dashed line indicates the separation between the training and the test set. (b) The prediction using
baseline ANN. (c) The prediction using AWNN with TCAD assistance.

FIGURE 9. Intermediate trial-and-error stage with more experimental data points. The red and black lines are TCAD dataset and experimental dataset,
respectively. (a) The training using baseline ANN. The dashed line indicates the separation between the training and the test set. (b) The prediction using
baseline ANN. (c) The prediction using AWNN with TCAD assistance.

FIGURE 10. Late trial-and-error stage with abundant experimental data points. The red and black lines are TCAD dataset and experimental dataset,
respectively. (a) The training using baseline ANN. The dashed line indicates the separation between the training and the test set. (b) The prediction using
baseline ANN. (c) The prediction using AWNN with TCAD assistance.

After more experiments are conducted, we can have a
better, more expressive training set as shown in Fig. 9. Now
the training set sampling has reached x = x2. Similar to the
previous case in Fig. 8, the AWNN effectiveness will now
be reflected in the portion of dataset in x>x2. In Fig. 10,
we demonstrate the situation where the training set sampling
is complete and over the entire sample space, and it can be
seen that AWNN is now not better than ANN. Nonetheless,
we have to emphasize that if sampling is dense and thorough,
we do not even needmachine learning algorithms of any kind.
In the case of Fig. 11 where the TCADmodel is inaccurate to

some extent, the AWNN can be worse than ANN. Normally
when TCAD model trend is wrong, AWNN cannot provide
advantages in prediction.

One aspect worth to mention is that a more advanced train-
ingmethod for AWNN is a two-training-subset approach. The
training set is firstly divided into two subsets. The first
training subset is used to train yNN (baseline neural net-
work output, Fig. 6), and the second subset is used to train
wNN(X ) and wTCAD(X ). This can be a more robust method
for difficult problems though in our case it is not nec-
essary to use this complex two-training-subset scheme to
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FIGURE 11. Initial trial-and-error stage with few experimental data points but an inaccurate TCAD model. The red and black lines are TCAD dataset and
experimental dataset, respectively. (a) The training using baseline ANN. The dashed line indicates the separation between the training and the test set. (b)
The prediction using baseline ANN. (c) The prediction using AWNN with TCAD assistance.

FIGURE 12. The simulated etching rate versus the aspect ratio under
different reaction probability (s=0.1, 0.25, 0.5, 1).

attain satisfactory results. The convergence of ANN is not dif-
ficult in our case. In a difficult convergence learning problem,
more neurons or more layers can be used.

III. RESULT AND DISCUSSION
The simulated etching depths using the TCAD model
described in section II. In Fig. 12, it can be seen that the
aspect ratio dependent etching (ARDE) exists in a standard
Bosch process, and from Fig. 3 in the previous section, ARDE
indeed exists in our OxfordTM machine. The etchant gas
flowing into the deep and narrow trench can be retarded,
resulting in a decreased etching rate. Now we are going to
use a proposed joint TCAD and machine learning method, to
demonstrate its effectiveness in prediction.

In a regression problem, a mean squared error (MSE) is
the summation of the square of the difference between the
true values and the predicted values, divided by the degree
of freedom. It measures the deviation of the predicted values

FIGURE 13. The standard 90nm CMOS process requires 150 steps, and
there are 1000+ parameters used during the whole process.

with respect to the true values that is by Bosch process in our
case. In our experimental and simulated data set, a partition
parameter divides the data set into the training set and the
test set. For the data point index from 1 to partition(data
[:partition]), we treat them as the training set. For data point
index from partition to the end of the data set (data [partition
:]), we treat them as the test set. Defining partition parame-
ters is used because in real semiconductor fabrication, more
and more batches of experimental data are being collected
when experiment is progressed. With varied partition values,
we can observe the effect of AWNN model from the begin-
ning of the experiment, in which very few data points are
available, to the later stages of the experiment, in which more
data points are collected.

It can be observed in Table 3 that in all cases, the test
set MSE values are reduced by AWNN. The reduced MSE
values are due to the effectiveness of the incorporated TCAD
model in the machine learning prediction, and a more in-
depth reasoning will be discussed in the following para-
graphs. It may be argued that if we can collect a lot of
data points, the TCAD assistance model is unnecessary and
pure statistical algorithms such as ANN can be sufficient
for the prediction. Nonetheless, as far as the semiconductor
processing is concerned, collecting enough data points for the
training purpose can be very difficult due to a very large sam-
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FIGURE 14. Comparison between AWNN and ANN for Partition = 15. (a) Training of ANN model using experiment dataset. (b) Training of ANN with
experiment data set and the training of AWNN with both experiment and TCAD data set. (c) Testing of AWNN and ANN models in the test set.

FIGURE 15. Comparison between AWNN and ANN for Partition = 30. (a) Training of ANN model using experiment dataset. (b) Training of ANN with
experiment data set and the training of AWNN with both experiment and TCAD data set. (c) Testing of AWNN and ANN models in the test set.

ple space commonly encountered in this field, as illustrated
in Fig. 13.

In Fig. 13, we see that even for a standard 90nm CMOS
process, it requires ∼20 photolithography masks, ∼150 pro-
cess steps. Considering that in average we have 20 parameters
for each process steps, the total number of input parameters
(features) will be ∼3000. If we coarsely divide each input
feature into 10 divisions during training, the total number of
data points in the sample space will be 103000, a number that
definitely leads to severe under-sampling in any cases.

Fig. 14(a) illustrates the training results for partition=15.
It can be seen that the conventional ANN can fit the training
set in our ARDE problem. Fig. 14(b) compares the fitting to
the training set for the case of using conventional ANN and
using AWNN. The MSE values of AWNN and ANN in the

case of partition=15 are listed in the first section of Table 3.
The most pronounced difference in their prediction capability
is shown in Fig. 14 (c) in which the prediction using AWNN
on the test set is significantly improved over the conventional
ANN model. We use different random state values in neural
network weight initial guesses in stochastic gradient decent
(SGD), and we list the corresponding MSE values in the
different columns of Table 3. It can be seen that the MSE
values on the test set are always much lower in the case of
AWNN, compared to conventional ANN. In general, the etch-
ing depth (d) is dependent on the trench width (W ), leading
to a so-called aspect ratio (d /W ) dependent etching effect
(ARDE). ARDE effect can be highly chamber-dependent,
together with a high dependence on etchant gas, process pres-
sure, and RF plasma power. In fact, many semiconductor pro-
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FIGURE 16. Comparison between AWNN and ANN for Partition = 45. (a) Training of ANN model using experiment dataset. (b) Training of ANN with
experiment data set and the training of AWNN with both experiment and TCAD data set. (c) Testing of AWNN and ANN models in the test set.

TABLE 3. Mean square error (MSE) for the training and the test set. The
comparison is made between ANN and AWNN.

cesses are highly chamber-dependent, and therefore, machine
learning becomes inevitable in semiconductor industry, and
the accurate prediction and guidance on future experiments
using AWNN can save tremendous amount of cost and time.
Fig. 15 and Fig. 16 further illustrate the results for the cases of

partition=30 and partition=45, and it can be observed that
the improvement is always persistent. In Table 3, we lists all
MSE values for random states from 1 to 5.

It is worth to discuss more in-depth reasoning behind the
effectiveness of AWNN model. Simply speaking, the reason
for AWNN improvement lies in the fact that the TCADmodel
supplements the inaccuracy of conventional ANN, while the
degree of the supplement is modeled by additional neural net-
works to describe its dependence on the input feature values.
The effectiveness is especially prominent in two situations
that are all very common in the application field of semi-
conductor manufacturing. The first situation is at the initial
trial-and-error stage. In machine learning terminology, this is
initial mining stage where we do not have much information
on either what the objective function Y (x) looks like or which
portion of the searching space the optimal input parameters
should be located. The second situation is when searching a
vast sample space is inevitable, and thus many data points are
not sampled leading to significant under-sampling. Adaptive
weighting model uses the relevant weighting scheme, wNN
and wTCAD, to resolve this problem, and the information
regarding the unsampled sample space can be supplemented
by TCAD model values.

In short, in many scenarios, including initial trial-and-
error stage and sampling over a vast sample space, the col-
lected dataset does not reflect the unsampled portion of the
sample space. Therefore, the conventional model described
by ANN, solely based on the limited training set informa-
tion, is not accurate enough, resulting in test set prediction
error. On the other hand, the AWNN model incorporates
TCAD information that can somehow model this unsampled
sample space. Some errors can indeed exist between the
TCAD calculated values based on semiconductor physics and
the real experimentally-sampled values by semiconductor
fabrication. Nonetheless, with a reasonably accurate TCAD
model, the advantages of incorporating TCAD in learning can

VOLUME 6, 2018 78411



C. Y. Huang et al.: Intelligent Manufacturing: TCAD-Assisted AWNNs

easily outperform the fact that deviation can occur between
the TCAD model values and the real experiment values.

The additional advantage associated with the proposed
AWNN model is that the AWNN model can be useful to
supplement the model error between the conventional ANN
output yNN and the corresponding target value yexp, during
the training procedure. Since we are discussing training set
error, the error is not due to the under-sampling problem as
discussed the previous paragraphs. This error comes from
the neural network modeling itself such as an insufficient
neuron or hidden layer number, improper hyper-parameter
setting, or insufficient epoch number. Certainly, more neuron
can improve the ANN model accuracy, but the computa-
tional loading also increases. In a complex, large-scale prob-
lem, such as semiconductor processing illustrated in Fig. 13,
the compromise inevitably has to be made between neuron
number and CPU runtime. This is understandable since the
conventional ANN prediction always has some error after
training. This error can be large if the sample space is irregular
and the problem is overly complex where ANN with reason-
able computational demand can only approximate or fit the
sample space Y(x) to some extent.

IV. CONCLUSIONS
In this paper, a newly proposed algorithm, adaptive weighting
neural network (AWNN) has shown prominently more effi-
cient performance as compared to traditional artificial neural
network (ANN). The test results using ARDE as an example
illustrate that the etching depth (t) of DRIE process, as a func-
tion of trench width and etching time, can be better predicted
by AWNN. The MSE value is reduced from 0.19 to 0.01 for
partition=15, from 0.02 to 0.002 for partition=30, and from
0.01 to 0.001 for partition=45, in the case of random state
= 1. Varied random state does not affect the effectiveness
of proposed AWNN model. This is evident in comparing the
predicted etching depth and the corresponding mean square
error (MSE) in the test data set with varied random state
initialization in codes. The improvement of proposed AWNN
framework is attributed to the fact that the TCAD compen-
sates the error associated with the prediction using traditional
neural networks. The weighting scheme between TCAD and
machine learning tends to arrive at an optimized balance
between physical models and statistical model.

Furthermore, the avantage of AWNN can be more
prnounced if the sample space is very large where it is
impossible to grasp the required amount of information using
the limited sampled data points considering cost and time.
Thus, the adaptive weighting scheme and the incorporation
of TCAD values correct the prediction error of conventional
neural networks, and the degree of correction depends on
TCAD model accuracy, weighting (wNN and wTCAD) depen-
dence on input features, the ratio between sampled and un-
sampled data point number, and the complexity of objective
function, i.e. Y (x), equivalently the complexity of the sam-
ple space. By the aspect-ratio dependent etching (ARDE)
example, we can conclude that AWNN is a more generalized

and also more optimized approach, which is effective in
semiconductor process mining problem.
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