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ABSTRACT In 1993, Krishnapuram and Keller first proposed possibilistic C-means (PCM) clustering by
relaxing the constraint in fuzzy C-means of which memberships for a data point across classes sum to 1. The
PCM algorithm tends to produce coincident clusters that can be a merit of PCM as a good mode-seeking
algorithm, and so various extensions of PCM had been proposed in the literature. However, the performance
of PCM and its extensions heavily depends on initializations and parameters selection with a number of
clusters to be given a priori. In this paper, we propose a novel PCM algorithm, termed a fully unsupervised
PCM (FU-PCM), without any initialization and parameter selection that can automatically find a good
number of clusters. We start by constructing a generalized framework for PCM clustering that can be a
generalization of most existing PCM algorithms. Based on the generalized PCM framework, we propose the
new type FU-PCM so that the proposed FU-PCM algorithm is free of parameter selection and initializations
without a given number of clusters. That is, the FU-PCM becomes a FU-PCM clustering algorithm.
Comparisons between the proposed FU-PCM and other existing methods are made. The computational
complexity of the FU-PCM algorithm is also analyzed. Some numerical data and real data sets are used
to show these good aspects of FU-PCM. Experimental results and comparisons actually demonstrate the
proposed FU-PCM is an effective parameter-free clustering algorithm that can also automatically find the
optimal number of clusters.

INDEX TERMS Clustering, fuzzy clustering, possibilistic clustering, fuzzy C-means (FCM), possibilistic
C-means (PCM), fully-unsupervised PCM (FU-PCM).

I. INTRODUCTION
Cluster analysis is a method for clustering a data set into
groups of similar individuals with the most similar objects
in the same cluster and the most dissimilar objects between
different clusters. It is a branch in statistical multivariate
analysis and an unsupervised learning method used in pattern
recognition. Since Zadeh [1] proposed fuzzy sets that pro-
duced the idea of partial memberships described by a mem-
bership function, fuzzy clustering has been widely studied
and applied in various areas (see [2]–[5]). In fuzzy clustering,
the fuzzy c-means (FCM) clustering algorithm proposed by
Dunn [6] and Bezdek [2] is the best known method where
the FCM with feature reduction has been recently considered
in Yang and Nataliani [7]. Although FCM and its extensions
are often used, the memberships do not always correspond
well to the membership degree of data points. To improve on
this weakness of FCM, Krishnapuram and Keller [8] created

a possibilistic approach to clustering, called a possibilistic
c-means (PCM), which used a possibilistic type of member-
ship function to describe the degree of belonging by relax-
ing the constraint of the fuzzy c-partition summation to 1.
Krishnapuram and Keller [8] showed algorithms with pos-
sibilistic c-memberships, such as PCM, are more robust to
noise and outliers than FCM.

However, Barni et al. [9] presented PCM may some-
times produce coincident clusters. Afterwards, Krishnapuram
and Keller [10] provided more insights and recommen-
dations that PCM can be seen as a mode-seeking algo-
rithm. There are many varieties of PCM in the literature.
Zhang and Leung [11] proposed an improved PCM to avoid
the tendency of identical clusters by building the fuzzy
c-partitions into a PCM objective function. Timm et al. [12]
introduced a mutual repulsion of the clusters into the PCM.
Pal et al. [13] proposed a possibilistic FCM algorithm with
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a hybridization of PCM and FCM. Yang and Wu [14] pro-
posed an extended PCM objective function so the resulting
possibilistic memberships become exponential-type func-
tions. Tseng and Kao [15] used the mountain method pro-
posed by Yager and Filev [16] and correlation coefficient
algorithm proposed by Yang and Wu [17] to create a so-
called similarity-based PCM algorithm. Filippone et al. [18]
applied the PCM algorithm in kernel-induced spaces, and
Chang et al. [19] recently applied it to stepwise c-regressions.
Yang and Lai [20] proposed an automatic merging possibilis-
tic clustering method (AM-PCM). Xenaki et al. [21] devel-
oped adaptive possibilistic c-means (APCM) by handling the
penalty parameters of PCM.

In this paper, we construct a generalized clustering frame-
work for PCM. Based on the generalized framework, we can
induce most of existing PCM algorithms proposed in the
literature. Furthermore, we develop a new type of PCM
algorithm, called fully-unsupervised PCM (FU-PCM), based
on the generalized framework. Although the PCM algorithm
can be as a good mode-seeking algorithm, PCM with its
various extensions may heavily depends on initializations
and parameters selection with a number of clusters to be
given a priori. Our new constructing FU-PCM is free of
parameter selection and initializations with automatically
finding the optimal number of clusters. That is, the proposed
FU-PCM becomes a fully-unsupervised PCM algorithm.
Some experiments with numerical and real data sets are
used to demonstrate the effectiveness and usefulness of our
proposed algorithm. The organization of this paper is as
follows. Section II describes some related works on PCM
and our generalized PCM clustering framework. Section III
constructs the proposed FU-PCM algorithm. Section IV gives
several examples with numeric and real data sets being made
to demonstrate effectiveness and usefulness of the proposed
algorithm. Finally, conclusions are stated in Section V.

II. RELATED WORKS
Let X = {x1, x2, . . . , xN } be a set of N data points in
S-dimensional space with the jth data point xTj = [xjd ]1×S .
The clustering of X is a technique used to partition the data
set X into C subsets that can effectively represent the data
structure ofX. The partition ofC clusters can be described by
a C ×N partition matrix U = [u1,u2, . . . ,uC ]T = [µij]C×N
where each element µij of U represents the membership of xj
belonging to the ith cluster. In general, there are three kinds of
partition matrices used in clustering: 1) The hard C-partitions
UH with µij ∈ {0, 1} for all i and j, where

∑C
i=1 µij = 1 for

each j; 2) The fuzzy C-partitions UF with µij ∈ [0, 1] for all
i and j, where

∑C
i=1 µij = 1 for each j; 3) The possibilistic

C-memberships UP with µij ∈ [0, 1] for all i and j, where∑C
i=1 µij > 0 for each j.
The best known clustering algorithmwith hard C-partitions

UH is K-means (or called hard C-means). The fuzzy C-means
(FCM) clustering algorithm with fuzzy C-partitions UF is
a well-known fuzzy extension of K-means. The FCM is an

iterative algorithm using the necessary conditions for mini-
mizing the objective function JFCM with

JFCM (U,A) =
C∑
i=1

N∑
j=1

µmij d
2(xj, ai) (1)

where the weighting exponent m ∈ [1,∞) is a fuzziness
index;µij ∈ UF are fuzzy C-partitions;A = {a1, a2, . . . , aC }
over the S-dimensional real space RS is the set of C cluster
centers and dij is a dissimilarity measure where the Euclidean
distance between xj and ai is generally used. The update
equations of µij and ai are

µij =
d2(xj, ai)−1/m−1
c∑
t=1

d2(xj, at )−1/m−1
(2)

ai =
N∑
j=1

µmij xj

/ N∑
j=1

µmij (3)

Although FCM and its variant of extensions are useful
methods in clustering, their memberships do not always cor-
respond well to the membership degrees of data points to
classes and may be inaccurate in a noisy environment [8].
To improve this weakness of FCM, and to produce member-
ships that provide a better explanation for the memberships
of a data point across classes, Krishnapuram and Keller [8]
relaxed the constraint

∑C
i=1 µij = 1 in FCM and used the

possibilistic C-membershipsUP. To avoid trivial solutions for
minimizing the FCM objective function JFCM as relaxing the
constraint

∑C
i=1 µij = 1, Krishnapuram and Keller [8] added

the constraint term
∑C

i=1 ηi
∑N

j=1 (1− µij)
m to JFCM (U,A)

and then proposed the PCM objective function JPCM as
follows:

JPCM (U,A) =
C∑
i=1

N∑
j=1

µmij d
2(xj, ai)+

C∑
i=1

ηi

N∑
j=1

(1− µij)m

(4)

where m ∈ [1,∞), ηi > 0 for all i, µij ∈ [0, 1] for all i and j,
and max

i
µij > 0 for all j. The update equations of µij and ai

are as follows

µij =
1

1+
(
d2(xj, ai)/ηi

)1/m−1 (5)

ai =
N∑
j=1

µmij xj

/ N∑
j=1

µmij (6)

To solve the selection of the parameter ηi,
Yang and Wu [14] proposed the possibilistic clustering algo-
rithm (PCA). The PCA objective function is given with

JPCA(U,A) =
C∑
i=1

N∑
j=1

µmij d
2(xj, ai)

+
β

m2
√
C

C∑
i=1

N∑
j=1

(
µmij lnµ

m
ij − µ

m
ij

)
(7)
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where β =
∑N

j=1 d
2(xj, x̄)

/
N and x̄ =

∑N
j=1 xj

/
N .

Yang and Wu [14] gave various values of m and used validity
indexes to find an optimal cluster number C .The update
equations of µij and ai can be rewritten as

µij =

(
exp

(
−
d2(xj, ai)

β

))m√C
(8)

ai =

N∑
j=1

(
exp

(
−d2(xj, ai)/β

))m2
√
Cxj

N∑
j=1

(
exp

(
−d2(xj, ai)/β

))m2
√
C

(9)

Ifm andC are given a priori in Eqs. (8) and (9), we can obtain
the PCA algorithm.

III. THE PROPOSED FULLY-UNSUPERVISED
POSSIBILISTIC C-MEANS CLUSTERING
ALGORITHM
In this section, we propose a fully-unsupervised PCM
(FU-PCM) clustering algorithm. First, we construct a gen-
eralized framework for PCM clustering. This generalized
framework can be a generalization of most PCM algorithms.

A. GENERALIZED FRAMEWORK OF PCM CLUSTERING
Since the term

∑C
i=1 ηi

∑N
j=1 (1− µij)

m in the PCMobjective
function (4) is a function ofµij, wemay replace it with a more
general function P(U) of µij. Therefore, we first propose a
generalized PCM (GPCM) objective function as follows:

JGPCM (U,A) =
∑C

i=1

∑N

j=1
µmij d

2(xj, ai)+ P(U) (10)

where P(U) =
∑C

i=1 ηi
∑N

j=1 p(µij), ηi > 0 for
all i, and p(µij) is a general function of µij. By set-
ting ∂

∂µij
JGPCM (U,A) = 0, we obtain the equation with

mµm−1ij d2(xj, ai) + ηip′(µij) = 0. Thus, we have the
membership update equation with

µm−1ij = −ηip′(µij)
/
md2(xj, ai) (11)

In Eq. (11), we examine the following three properties:
(1) Since m, ηi, µij, and d2(xj, ai) are nonnegative, then

p′(µij) ≤ 0. That is, the function p(µij) of µij must be
a decreasing function.

(2) Since µij ∈ [0, 1], then a suitable ηi must be related
to distances between data points and cluster centers.
Further, the parameter ηi should be also related to m.

(3) The degree of membershipµij becomes larger when the
distance between the data point xj and the cluster center
ai becomes smaller.

When we take a solution for d2(xj, ai) in terms of µij accord-
ing to Eq. (11), we obtain

d2(xj, ai) = −
ηip′(µij)

mµm−1ij

(12)

If we embed Eq. (12) into the GPCM objective function
JGPCM , we can obtain another GPCM objective function
JGPCM only through µij with

JGPCM (U) =
C∑
i=1

N∑
j=1

−

[µij
m
ηip′(µij)

]
+

C∑
i=1

ηi

N∑
j=1

p(µij)

= −

C∑
i=1

ηi

N∑
j=1

(µij
m
p′(µij)− p(µij)

)
.

If we consider a fixed ηi for all i, then minimizing JGPCM (U)
over U is equivalent to maximizing the following objective
function J∗GPCM over U with

J∗GPCM (U) =
C∑
i=1

N∑
j=1

(µij
m
p′(µij)− p(µij)

)
(13)

By following the spirit of PCM that has decreasing influences
of those data points being far away from the cluster center,
we set

J∗(U) =
C∑
i=1

N∑
j=1

µαij (14)

where α ≥ 1 is a fuzziness index likem. It is seen, in Eq. (14),
if α becomes larger, then large memberships will become
more important and the influences of those small mem-
berships will become weaker when maximizing Eq. (14).
Corresponding to Eqs. (13) and (14), we get the following
equation:

µij

m
p′(µij)− p(µij) = µαij (15)

Replacing µij with x, we can rewrite Eq. (15) as p′(x) −
m
x p(x) = mxα−1, so it becomes a first-order differential
equation. We next solve the differential equation. By the inte-
gration factor exp(

∫
−
m
x dx) = eln x

−m
+c
= c0x−m, we can

obtain a general solution for the differential equation with

p(x) =
∫
c0x−mmxα−1dx

c0x−m
=

∫
mxα−m−1dx
x−m . Thus, we get the

following two cases:
(1) If α = m, then

p(x) = xm
∫
mx−1dx = xm(m ln x + c1)

= mxm ln x + c1xm.

(2) If α 6= m, then

p(x) = xm
∫
mxα−m−1dx = xm

(
m
xα−m

α − m
+ c2

)
= mxm

xα−m

α − m
+ c2xm

Therefore, we have

p′(x) =


m2xm−1 ln x + mxm−1 + c1mxm−1,

if α = m
α

α − m
mxα−1 + c2mxm−1,

if α 6= m

78310 VOLUME 6, 2018



M.-S. Yang et al.: FU-PCM Clustering Algorithm

TABLE 1. Relations between the GPCM framework and various PCM algorithms.

Because of 0 < x = µij ≤ 1, we have p′(x) ≤ 0. Thus,
we obtain, if α = m then m ln x + 1 + c1 ≤ 0 implies c1 ≤
−1− m ln x; and if α 6= m, then α

α−m + c2x
m−α
≤ 0 implies

c2 ≤ −αx
α−m

α−m . For 0 < x = µij ≤ 1, we have, if α = m
then c1 ≤ −1, and if α 6= m, then c2 ≤ − α

α−m . Simply
let c1 = −1 and c2 = −α

/
(α − m). We finally obtain the

following equation:

p(µij) =


µmij lnµ

m
ij − µ

m
ij , if α = m

mµmij (µ
α−m
ij − 1)

α − m
, if α 6= m

(16)

with m ≥ 1, α ≥ 1.
We combine the GPCM with Eq. (16). Thus, we pro-

pose a generalized framework of PCM with the generalized
objective function JGPCM (U,A) of Eq. (10) with following
updating equations of µij:

If α = m, µij = exp(−
d2(xj, ai)
mηi

) (See Theorem 1) (17)

If α 6= m,

µij =



0, if d2(xj, ai) >
α

α − m
ηi[

1−
α − m
α

.
d2(xj, ai)

ηi

] 1
α−m

,

if d2(xj, ai) ≤
α

α − m
ηi

(18)

According to derived Eqs. (10), (17) and (18), Table 1 sum-
marize the relations between the GPCM framework and these
extended PCM algorithms. These are PCM1 [8], PCM2 [10],
PCA [14], AMPCM [20], and APCM [21].

B. FULLY-UNSUPERVISED POSSIBILISTIC C-MEANS
In the previous subsection, we had constructed the general-
ized PCM (GPCM) framework. We also showed most exist-
ing extensions of PCM in the literature are special cases
of the generalized PCM objective function. One of them is
PCA proposed by Yang and Wu [14]. The PCA algorithm is
presented below.

Algorithm 1 PCA Algorithm
Step 1. Fixm ≥ 1, 2 ≤ C ≤ N , and any ε > 0. Give initials

A(0)
= {a(0)1 , a

(0)
2 , . . . , a

(0)
C } and let the iteration

counter t = 0.
Step 2. Compute U(t) by Eq. (8).
Step 3. Update A(t+1) by Eq. (9).

IF
∥∥A(t+1)

− A(t)
∥∥ < ε (convenient matrix norm),

THEN stop; ELSE set t = t + 1 and RETURN to Step 2.

As mentioned in Section II, PCA can solve the drawback
of PCM that depend on ηi and m which heavily influence the
clustering performance. We next give an example to demon-
strate it.
Example 1: The data set with 400 data points, as shown

in Fig. 1(a), is generated from a two-component Gaussian
mixture distribution where one component has the proportion

0.75, mean (5, 0)T , and covariance matrix
(
0.16 0
0 0.25

)
;

Another component has the proportion 0.25, means (5, 7)T ,

and covariance matrix
(
2.56 0
0 4

)
. Fixing m = 2 and C = 2

we implement the PCA Algorithm for the data set using
different initial cluster centers. We obtain clustering results

VOLUME 6, 2018 78311
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FIGURE 1. (a) Data set; (b)-(f) Clustering results of PCA Algorithm using
different initial cluster centers.

with two different clusters, as shown in Figs. 1(b)∼1(f),
where final cluster centers are denoted by symbol ‘‘•’’,
and initial cluster centers are denoted by symbol ‘‘♦’’.
Clearly, different initial cluster centers actually affect clus-
tering results. In Figs. 1(b) and 1(c), one initial cluster cen-
ter is near the larger spread cluster and another is near the
smaller spread cluster so we obtain good clustering results.
Figs. 1(d) and 1(e) show two initial cluster centers are near
the larger spread cluster, and so two final cluster centers are
agglomerated together. Fig. 1(f) shows two initial cluster cen-
ters are near the smaller spread cluster, and therefore two final
cluster centers are agglomerated together near the smaller
spread cluster. The drawbacks of the PCA Algorithm are: (i)
It is always affected by initial cluster centers; (ii) To a certain
extent it depends on m and C . Thus, we need to solve these
two drawbacks. We next solve the first problem that is an
initialization problem.

We mentioned the PCA in Yang and Wu [14] used various
selection values of m and validity indexes to find an optimal
cluster number C . Obviously, it is necessary to perform PCA
repeatedly with different values of m and C . In fact, we may
consider a more simple way to determine the number of
clusters. Example 1 demonstrated two final cluster centers
will be agglomerated together if the two initial cluster centers
are near the same cluster. This gives us a hint to find the
number of clusters. Our method is described as follows:
(i) If we set all data points as initial cluster centers, then
we can precisely solve initialization problem; (ii) Most data
sets with N data points usually have at most

√
N clusters,

i.e., in general, C ≤
√
N . Thus, we assign C =

√
N in

Eqs. (8) and (9), and so we have Eqs. (19) and (20) as follows:

µij =
(
exp

(
−d2(xj, ai)/β

))m 4√N
(19)

ai =

N∑
j=1

(
exp

(
−d2(xj, ai)/β

))m2 4√N xj

N∑
j=1

(
exp

(
−d2(xj, ai)/β

))m2 4√N
(20)

According to the above discussion, we improve the PCA
Algorithm, termed the Robust-PCA Algorithm, and summa-
rize the algorithm as follows:

Algorithm 2 Robust-PCA Algorithm

Step 1. Fix m ≥ 1 and ε > 0. Give initial A(0)
= X and let

iteration counter t = 0.
Step 2. Compute U(t) by Eq. (17).
Step 3. Update A(t+1) by Eq. (18).

IF
∥∥A(t+1)

− A(t)
∥∥ < ε (convenient matrix norm),

THEN stop; ELSE set t = t + 1 and RETURN to Step 2.

Example 1 (Continued): Fix m = 1.05, we implement
the Robust-PCA Algorithm for the data set in Fig. 1(a). The
states of the cluster centers after different iterations are shown
in Figs. 2(a)-2(e). We can see that all cluster centers are
centralized to two locations. This means that a proper number
of clusters is 2. In fact, if values of m are between 1 and 1.3,

FIGURE 2. (a)-(e): Cluster centers with m = 1.3 after 0, 1, 3, 11, and
35 iterations, respectively; (f) Final cluster centers with m = 2 after
45 iterations.
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then we also obtain the same result. Fig. 2(f) shows the results
when m = 2 where the final states of cluster centers are
centralized to eleven locations with an incorrect number of
clusters. Thus, different values of m actually influence the
search for the number of clusters, and so we need to solve
the problem for selection of m. We solve this problem in the
next section.

The remaining problem is how to estimate m. We first
consider a parameter γ with γ = m2

√
C . Thus, we have

m =
√
γ /
√
C . In the Robust-PCA Algorithm, we substituted

C =
√
N . On the other hand, we know the fuzziness index

m has a restriction with m ≥ 1. Therefore, we obtain formula
for m as

m = max
{√

γ /
4√N , 1

}
(21)

The parameter γ influences the number of clusters and
also the clustering results. We should focus on finding a good
estimate for γ , and then consider an estimate form according
to γ . We next illustrate the influence of γ and discuss how to
choose γ by following Example 2.
Example 2: In this example, we consider a data set with

1000 data points generated from a three-component Gaussian
mixture distribution, as shown in Fig. 3(a). We implement
the Robust-PCA Algorithm for the data set and take different
γ values with γ = 1, 5, 10, 20, respectively. We analyze the
number of clusters and clustering results. We find all cluster
centers are merged to one point when γ = 1, as shown
in Fig. 3(b). Therefore, we obtain the cluster number of
C∗ = 1 with only one cluster, as shown in Fig. 3(c). Fig. 3(d)
shows all cluster centers are merged to three points when
γ = 5. This indicates the cluster number of C∗ = 3 and
obtains three clusters, as shown in Fig. 3(e). If we have
γ = 10, then all cluster centers are also merged to three
points, as shown in Fig. 3(f), and its clustering results with
three clusters are shown in Fig. 3(g). This means the values of
γ from 5 to 10 could obtain good clustering results. However,
if we have γ = 20, then all cluster centers aremerged to seven
different points, as shown in Fig. 3(h), with bad clustering
results, as shown in Fig. 3(i). This means too large value of
γ will lead to an incorrect cluster number of C∗ = 7 and also
bad clustering results.

The above demonstration shows different γ values may
lead to different cluster numbers and clustering results.
In fact, the parameter γ is related to the mountain function
with

fs(xi) =
N∑
j=1

(
exp(−d2(xj, xi)/β)

)γ
, i = 1, 2, . . . ,N

(22)

The parameter γ can precisely control the number of peaks
of the mountain function fs. We next use the three-component
data set to analyze this phenomenon. This mountain func-
tion fs denotes the mountain height on data points. It is similar

FIGURE 3. (a) Three-component data set; (b)-(c): Final cluster centers and
clustering results when γ = 1; (d)-(e): Final cluster centers and clustering
results when γ = 5; (f)-(g): Final cluster centers and clustering results
when γ = 10; (h)-(i): Final cluster centers and clustering results when
γ = 20.

to the sum of µ(0)
ij . We employ fs to show the mountain func-

tion on the three-component data set with γ = 1, 5, 10, 20.
Fig. 4(a) shows fs with γ = 1 has only one peak. This is the
reason all cluster centers are merged to one point for Robust-
PCA Algorithm when γ = 1. Figs. 4(b) and 4(c) show fs
with γ = 5 and 10 has three peaks. In Figs. 3(d) and 3(f),
the Robust-PCA Algorithm with γ = 5 and 10 obtains an
identical cluster number of C∗ = 3. Finally, Fig. 4(d) shows
fs has more than three peaks when γ = 20. We also see
the Robust-PCA Algorithm with γ = 20 clusters the three-
component data set into seven clusters, as shown in Fig. 3(i).

According to our experiments, we can see the param-
eter γ greatly effects the performance of the Robust-
PCA Algorithm. We next give some properties to explain
how the parameter γ influences the cluster centers derived
from Eq. (9).
Property 1: When γ tends to zero, all cluster centers are

centralized to the sample mean.
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FIGURE 4. Mountain function on the three-component data set;
(a): γ = 1; (b): γ = 5; (c): γ = 10; (d): γ = 20.

Proof:

lim
γ→0

ai = lim
γ→0

N∑
j=1

(
e−

d2(xj,ai)
β

)γ
xj

/
N∑
j=1

(
e−

d2(xj,ai)
β

)γ

= lim
γ→0

N∑
j=1

xj/N = x̄.

�
Note that Property 1 tell us that, as γ → 0, the data set has

only one cluster, and so the cluster center is the sample mean.
Property 2:When γ tends to infinity, all cluster centers are

individual data points.
Proof: Let E = max

j
exp(−d2(xj, ai)

/
β) and E ′j =

exp
(
−
d2(xj,ai)

β

)/
E . Then, we have that

lim
γ→∞

ai = lim
γ→∞

N∑
j=1

(
e−

d2(xj,ai)
β

)γ
xj

/
N∑
j=1

(
e−

d2(xj,ai)
β

)γ

= lim
γ→∞

N∑
j=1

(
E ′j
)γ

xj

N∑
j=1

(
E ′j
)γ =

∑
E ′j=1

xj∑
E ′j=1

1
.

This means that, as γ → ∞, all cluster centers are
individual data points. �

From the above analysis, we know finding a proper esti-
mated value for γ is important. Compare Fig. 4(b) with
Fig. 4(c), we observe the mountain functions with γ = 5
and γ = 10 have similar shapes with almost the same
peaks. In fact, the shapes of the mountain functions with
γ = 5 ∼ 10 are similar. This means the values of correlation
of the mountain function with these different γ values are
high. Thus, we can use the value to estimate γ such that it
produces stable clustering results. From this point of view,
we consider the correlation comparison algorithm (CCA)

proposed by Yang and Wu [17] to estimate the parameter γ .
Yang andWu [17] suggested a threshold εCCA of CCA around
0.97∼0.999. We use εCCA = 0.97 as the threshold in this
paper. The CCA is summarized as follows:

Algorithm 3 Correlation Comparison Algorithm (CCA)
Step 1. Give l = 1 and εCCA = 0.97.
Step 2. Compute the correlation values of fs(xi), i =

1, 2, . . . ,N with pair (γ = 5l, γ = 5(l + 1)).
Step 3. IF the correlation value greater than or equal to

εCCA, THEN γ = 5l; ELSE l = l + 1 and GOTO
Step 2.

In Example 1 (continued), we can obtain γ = 5 by the

CCA. Therefore, m =
√
5/ 4
√
400 = 1.0574. This estimate

of m can have the Robust-PCA Algorithm obtain a correct
number of clusters. In Example 2, we find both of γ = 5 and
γ = 10 have good clustering results. We obtain γ = 10
by the CCA. Since the three-component data set contains

1000 data points, and so m =
√
10/ 4
√
1000 = 1.33. Now we

had solved the drawbacks of the PCA Algorithm. We next
propose a fully-unsupervised PCM algorithm.

According to analysis mentioned earlier, we give a novel
PCM algorithm that is exactly a fully-unsupervised cluster-
ing algorithm, called a fully-unsupervised PCM (FU-PCM)
algorithm. We summarize the FU-PCM algorithm as follows.

Algorithm 4 FU-PCM Clustering Algorithm
Step 1. Call CCA to obtain γ .
Step 2. Estimate m by Eq. (21).
Step 3. Fix ε1 > 0 and 0 < ε2 < 1. Give A(0)

= X. Let
iteration counter t = 0.

Step 4. Compute U(t) by Eq. (19).
Step 5. Update A(t+1) by Eq. (20).

IF
∥∥A(t+1)

− A(t)
∥∥ < ε1, THEN go to Step 6,

ELSE set t = t + 1 and RETURN to Step 4.
Step 6. Construct the matrix D, with Dij as the distance of

pairs a(t+1)i and a(t+1)j in the set A(t+1) of cluster
centers, where i, j = 1, . . . ,C .

Step 7. For all i, find Ti =
{⋃

a(t+1)j

∣∣Dij < ε2,∀j
}
and

assign all elements of column j in the matrix D with
1.

Step 8. Let I = {i |Ti 6= ∅}, then compute C∗ = |I | and
a∗i = mean(Ti), for i ∈ I . Reorder the index i of the
new set {a∗i , i ∈ I } to be {1, . . . ,C∗}.

Step 9. Assign all points to their cluster by
computing the minimum distance of points
and cluster centers, with Clusteri ={
xj

∣∣∣∣∥∥xj − a∗i
∥∥2 ≤ ∥∥∥xj − a∗p

∥∥∥2 ,∀j, 1 ≤ p ≤ C∗},
i = 1, . . . ,C∗.

We know the PCM algorithm has a tendency to produce
coincident clusters that can be a good mode-seeking algo-
rithm. However, the performance of PCM heavily depends
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on the parameter ηi. Some research has attempted to find
an appropriate ηi in the literature. In the proposed GPCM,
we set ηi = β/m2

√
C for finding a good estimated value of γ

We have shown the parameter γ becomes another parameter
to affect the performance of the GPCM, and so we use the
CCA to find a good estimated value for γ . That is, we use
another schema for finding the parameter γ instead of finding
an appropriate ηi, and we finally propose the GPCM algo-
rithm such that it becomes a fully-unsupervised clustering
algorithm, called the fully-unsupervised PCM (FU-PCM)
algorithm.

We next analyze the computational complexity of the
FU-PCMalgorithm. In CCA,we need to compute the value of
the mountain function on data points in S-dimensional space,
and so its computational complexity is O(N 2St1) where t1
denotes the number of iterations in CCA. In Step 3, we set all
points as initial cluster centers. The computational complex-
ity in each iteration for computing U and A are O(N 2S) and
O(NS). If t2 denotes the number of iterations in Steps 4 and 5,
then the computational complexity is O((N 2S + NS)t2).
Finally, we analyze the robustness of the generalized PCM

algorithm to noise and outliers. Let {x1, . . . , xN } be a data
set and θ be an estimated parameter. A location M-estimator

is given by M-estimator = argmin
θ

N∑
j=1
ρ(xj − θ ), where ρ

is an arbitrary loss measure function. Then, the M-estimator

can be obtained by solving the equation d
dθ

N∑
j=1
ρ(xj − θ ) =

N∑
j=1
ϕ(xj − θ) = 0, ϕ(xj − θ ) = d

dθ

N∑
j=1
ρ(xj − θ ). The

influence function (IF) of the M-estimator is given by
IF(x;F, θ) = ϕ(x−θ )∫

ϕ(x−θ)dF(x) , where F(x) is the distribution

function of X . The M-estimator has shown IF is proportional
to its ϕ function. If the influence function of an estimator is
unbounded, an outlier might cause trouble where the ϕ func-
tion is used to denote the degree of influence. The cluster
center ai in Eq. (9) is a location M-estimator with a loss

measure function given by ρ(xj − ai) = 1 − (e−
d2(xj,ai)

β )γ ,
with d(xj, ai) =

∥∥xj − ai
∥∥. Then, ϕ(xj − ai) = d

dai
ρ(xj −

ai) =
2γ
β
(ai − xj)(e

−
d2(xj,ai)

β )γ . By applying the L’Hospital’s
rule, we can derive lim

xj→±∞
ϕ(xj − ai) = 0. We can also

find the maximum influence by solving d
dxj
ϕ(xj − ai) = 0.

From the above discussion, we can see the ϕ function is
bounded. Since the influence function is proportional to its
ϕ function, the influence function is also bounded. We also
have IF(xj;F; ai) being equal to zero when xj tends to
infinity or negative infinity. This means the influence of an
extremely large or small xj on the cluster center ai is very
small. For example, by considering ai = 2.5, β = 1, and γ =
1, 3, 5, we can demonstrate the graphs of the ϕ functions,
as shown in Fig. 5. From Fig. 5, we can see the results: (i)
The influence of xj becomes very small when d2(xj, ai) > β;
(ii) The influence of an outlier becomes small when γ is large.

FIGURE 5. Graphs of ϕ functions.

IV. COMPARISONS AND EXPERIMENTAL RESULTS
In this section, we use some numerical and real data sets
to illustrate the performance of the FU-PCM algorithm.
We also compare the proposed FU-PCM algorithm with
some existing algorithms, such as k-means, FCM, PCM,
PCM2 [10], PCA [14], AMPCM [20], and APCM [21].
Since the k-means, FCM, PCM, PCM2, and PCA algo-
rithms need to use validity indices to find the number C∗

of clusters, we consider the validity indices of the par-
tition coefficient (PC) [22], partition entropy (PE) [23],
and Xie and Beni (XB) [24]. The PC, PE, and XB are

defined as follows: PC(C) = 1
N

C∑
i=1

N∑
j=1
µ2
ij, PE(C) =

−
1
N

C∑
i=1

N∑
j=1
µij lnµij, XB(C) =

C∑
i=1

N∑
j=1
µmij ‖xj−ai‖

2

N min
i,j
‖ai−aj‖

2 . We find the

optimal C∗ by solving max
2≤C≤N−1

PC(C), min
2≤C≤N−1

PE(C),

and min
2≤C≤N−1

XB(C), respectively. However, the possi-

bilistic c-membership µij does not satisfy the condition∑C
i=1 µij = 1. Yang and Wu [14] normalized µij to be µ′ij by

µ′ij = µij

/
c∑
i=1
µij, and then generalized PC, PE, and XB

to be GPC, GPE, and GXB for PCA by replacing µij with
µ′ij, respectively. Finally, we apply the FU-PCM to image
segmentation.
Example 3: In this example, we first consider an artificial

data set, as shown in Fig. 6(a), where there are two circle-
shape clusters, three strip-shape clusters, and one ellipse-
shape cluster. We implement the FU-PCM for the data set.
From the CCA results, we obtain γ = 15. The data set
contains 4480 data points, and so the estimated value of m
is 1.35. Figs. 6(b)-6(d) are states of cluster centers after 11,
43, and 149 iterations, respectively. The FU-PCM algorithm
gives the final clustering results with the number of clusters
C∗ = 6 as shown in Fig. 6(e). We also implement the FCM
and PCA algorithms for this data set. To obtain the numberC∗

of clusters for FCM, we consider validity indices PC, PE, XB,
and for PCA, we use GPC, GPE, and GXB.We perform FCM
and PCAwith different fuzzinessm = 1.5, 2, and 2.5.Wefind
these validity indices for FCM and PCA with m = 1.5, 2,
and 2.5 obtain C∗ = 2, but only the XB index indicates
the cluster number C∗ = 6 when FCM with m = 1.5 and
m = 2. By assigning the cluster numberC = 6 and giving the
same initial cluster centers where denoted by symbol ‘‘♦’’,

VOLUME 6, 2018 78315



M.-S. Yang et al.: FU-PCM Clustering Algorithm

FIGURE 6. (a) Data set; (b)-(d): States of cluster centers of FUPCM after
11, 43, and 149 iterations, respectively; (e): Final clustering results of
FU-PCM with C∗ = 6; (f): Clustering results of FCM with m = 2; (g):
Clustering results of PCA with m = 2; (h): Clustering results of k-means;
(i): Clustering results of PCM2; (j): Clustering results of APCM with αA = 1
and Cinitial = 18.

the clustering results of FCM (m = 2) and PCA (m = 2)
are shown in Fig. 6(f) and Fig. 6(g), respectively. We find
FCM (m = 2) cannot obtain correct clustering results. PCA
have better clustering results, but they are not good enough.
We also implement k-means and PCM2 with initial cluster
centers ‘‘♦’’. The clustering results of k-means and PCM2 are
shown in Figs. 6(h) and 6(i), respectively. We can see
k-means has bad clustering results and the clustering results
from FCM and PCM2 are not good. Further, we also con-
sider the AMPCM and APCM algorithms. The clustering
results from the AMPCM are the same as the FU-PCM,

as shown in Fig. 6(e). The AMPCM can find C∗ = 6 and
obtain correct clustering results. For the APCM proposed by
Xenaki et al. [21], they suggested the parameter αA is chosen
from the interval [1, 3] and initial cluster number Cinitial is
3 or 4 times of the correct cluster number for the APCM.
Therefore, we implement the APCM with Cinitial = 18 and
αA = 1 for the data set in Fig. 6(a). The clustering results
from the APCM are shown in Fig. 6(j). The APCM finds the
final cluster number is C∗ = 6, but clustering results are not
good as these of the FU-PCM and AMPCM.
Example 4: In this example, we consider a three-

dimensional data set, as shown in Fig. 7(a). This data set
consists of 200 data points where 100 data points are gen-
erated from the plane z = 0, and another 100 data points are
generated from the plane z = 0.4. The distance between two
consecutive data points is 0.1. The mean of 100 ‘‘×’’ data
points is (0.55, 0.55, 0), and another mean of 100 ‘‘◦’’ data
points is (0.55, 0.55, 0.40). The CCA algorithm gives γ = 5.
The m = 1.15 is obtained. Fig. 7(b) shows the final states
of the cluster centers of FU-PCM. All clusters are centralized

FIGURE 7. (a) Data set; (b): Final states of cluster centers of FUPCM;
(c): Clustering results of FU-PCM; (d)-(f): Clustering results of FCM with
m = 1.5,2,2.5, respectively; (g): Clustering results of AMPCM.
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TABLE 2. Final cluster centers from different algorithms.

TABLE 3. Average accuracy rates of FU-PCM, K-means, FCM, PCM2, PCA, and AMPCM.

in (0.55, 0.55, 0.0095) and (0.55, 0.55, 0.3905), where there
are very closed to planes z = 0 and z = 0.4, respectively.
Fig. 7(c) shows the clustering results of FU-PCM which are
well fitted to the data structure. Validity indices PC and PE
find C∗ = 2. Validity indices GPC, GPE, and GXB also
find C∗ = 2 for PCA when m = 1.5 or m = 2. The
clustering results of PCA with m = 1.5 or m = 2 are
the same as Fig. 7(c). The clustering results of FCM with
m = 1.5, m = 2, and m = 2.5 are shown in Figs. 7(d)-7(f),
respectively. Clearly, they do not fit well. The final cluster
centers are shown in Table 2. Table 2 shows the cluster centers
of FCM are laid on plane z = 0.2. FCM cannot perform well.
The cluster centers of PCA when m = 2 are closer to the
original planes. PCA with m = 2 performs better than PCA
with m = 1.5. The cluster results of k-means are the same
as Fig. 7(d). The cluster centers of k-means are also laid on
plane z = 0.2 like FCM. The cluster results of PCM2 are
the same as Fig. 7(c). Table 2 shows that the cluster centers
of PCM2 are on the original planes. PCM2 performs very
well for this data set. Fig. 7(e) shows the clustering results of
AMPCM.AMPCMfindsC∗ = 1 for this data set. The cluster
center of AMPCM is (0.55, 0.55, 0.20). The clustering results
of APCM with αA = 3 and Cinitial = 6 are the same as
Fig. 7(c). APCM find C∗ = 2 for this data set. Table 2 shows
the final cluster centers of APCM are close to the original
planes, like FU-PCM and PCA.
Example 5: In this example, we use a data set with

11 blocks which are consisted of 4900 data points and
1000 randomly noisy points (denoted ‘‘+’’ sign), as shown
in Fig. 8(a). The CCA algorithm gives γ = 15 for the data set.
Figs. 8(b)-(e) are states of cluster centers by running FU-PCM
after 1, 11, 31, and 179 iterations, respectively. The FU-PCM
algorithm converges after 179 iterations withC∗ = 11 for the
data set. The identified eleven clusters are shown in Fig. 8(f).
We can see the influence of noisy points on FU-PCM is
very small. Figs. 8(g)-(l) are plots of validity indices. Note,
the large values and small values of GXB are quite different.
We manifest charts by using a nature logarithm function. The

results show the validity indices cannot find a correct cluster
number C∗. By assigning C = 11 and giving good initial
cluster centers, PCA with m = 2.5 obtains better clustering
results, as shown in Fig. 8(m). The clustering results of
AMPCM are shown in Fig. 8(k). AMPCM finds C∗ = 11
and obtains good clustering results. We consider Cinitial = 33
and αA from 1 to 3 for APCM, but APCM cannot find
C∗ = 11. Hence, we implement APCMwithCinitial = 33 and
αA = 0.5. The cluster number C∗ = 11 is
obtained, but clustering results are inadequate, as shown
in Fig. 8(o).
Example 6: In this example, we consider the seeds

data set from the UCI Machine Learning Repository [25].
The seeds data set contains three kinds of wheat kernels
(Kama, Rosa, and Canadian). Each kind has 70 samples.
Each data point was measured by seven characteristics of
wheat kernels: area, parameter, compactness, length of ker-
nel, width of the kernel, asymmetry, and length of kernel
groove. By implementing FU-PCM, we obtain γ = 10
and final cluster number C∗ = 3 which is fitted to the
three kinds of wheat kernels. All validity indices of PC,
PE, XB, GPC, GPE, and GXB for FCM and PCA indicate
C∗ = 2. By implementing AMPCM, we obtain the number
C∗ = 3 of clusters. By implementing APCMwithCinitial = 9
and αA = 1, it also obtains the number C∗ = 3 of clusters.
Note, the FU-PCM and AMPCM set all data points as initial
cluster centers, and so if we implement FU-PCM or AMPCM
100 times for the data set, then 100 consistent cluster-
ing results with the same cluster number C∗ are obtained.
However, APCM uses the results of FCM as initial values.
We know that the results of FCM are affected by the initial
values. It induces APCM to obtain different clustering results
and a different number C∗ of clusters for different initials.
Thus, we implement APCMwith 100 different initials for the
data set, and there are about 35% to obtain C∗ = 3. Further,
by assigning the number C = 3 of clusters to k-means,
FCM, PCM2, and PCA, we run each algorithm 100 times
and compute the average accuracy rates, as shown in Table 3.
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FIGURE 8. (a) Data set; (b)-(e): States of cluster centers of FUPCM after 1,
11, 31, and 179 iterations, respectively; (f): Clustering results of FU-PCM;
(g)-(l): Plots of PC, PE, XB, GPC, GPE, and GXB indices, respectively;
(m): Clustering results of PCA (m = 2.5); (n): Clustering results of AMPCM;
(o): Clustering results of APCM (αA = 0.5,Cinitial = 33).

FIGURE 9. (a) Original MRI and its window selection; (b) Histogram of
window segmentation image; (c)-(e) Locations of cluster centers after
iterations 1, 5, and 142, respectively; (f) Segmentation result
of FU-PCM.

We find FU-PCM actually has the best average accuracy rate
among these algorithms.
Example 7: In this example, we consider the Iris data set

from the UCI Machine Learning Repository [25]. The Iris
data set contains 150 data points with three clusters (setosa,
versicolor, and virginica), where each cluster has 50 points.
As we know, two clusters in this data set overlap. Thus, it is
prevalent to get C∗ = 2 if the cluster number is not given.
By implementing FU-PCM and AMPCM, they can obtain
C∗ = 2 without any parameter and initialization assign-
ment. By using APCM, from 90 experiments with different
initializations and parameters, there are about 20% to obtain
C∗ = 3. The other cluster numbers obtained by APCM are
C∗ = 1, 2, 4, 5, 6, 10, 11.
In the next example, we apply the FU-PCM algorithm to

image segmentation. Image data usually consists of large
pixel data points. Since we set all data points as initial clus-
ter centers in FU-PCM, it may take more time to perform
FU-PCM on the image data set. Therefore, we set up a
technique to reduce the computational time. The technique
is stated as follows. Suppose that X = {x1, x2, . . . , xN } is
a large data set where each data point only takes values on
{y1, y2, . . . , yM }. Let n1, n2, . . . , nM be the data setX on cor-
responding counts of y1, y2, . . . , yM , respectively. Then the
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update equation of the cluster center ai in Eq. (20) can be
rewritten as

ai =
M∑
j=1

(
e−

d2(yj,ai)
β

)m2 4√N

njyj

/
M∑
j=1

(
e−

d2(yj,ai)
β

)m2 4√N

nj

(23)

Therefore, we can set {y1, y2, . . . , yM } as initial clusters and
replace Eq. (20) by Eq. (23) in the FU-PCM algorithm for
large data sets.
Example 8: This example applies the FU-PCM algorithm

to MRI segmentation [26], as shown in Fig. 9(a). The MRI
data set is from 2-years old female patient. She was diagnosed
with retinoblastoma of her left eye, an inborn malignant
neoplasm of the retina with frequent metastasis beyond the
lacrimal cribrosa. The window segmentation in Fig. 9(a) con-
tains three kinds of tissue (connective tissue, nervous tissue,
and tumor tissue (red circles)). This image is processed at
283 × 292 = 82636 pixels and takes the maximum gray
level with 255 and the minimum gray level with 5. Fig. 9(b)
shows the histogram of the window segmentation image.
Two peaks are more obvious in Fig. 9(b). The CCA for
window segmentation image obtains γ = 15 and we compute
m = 1.94. Figs. 9(c)-(e) are the locations of the clus-
ter centers following iterations 1, 5, and 142, respectively.
The FU-PCM finds the final cluster number C∗ = 3 after
142 iterations. The segmentation results of the FU-PCM are
shown in Fig. 9(f). Clearly, FU-PCM can detect tumor tissue
(red circles).

V. CONCLUSIONS
In this paper, we propose a generalized framework for pos-
sibilistic c-means (GPCM) clustering. Based on the GPCM
framework and the merit of PCM with a tendency to produce
coincident clusters, we gave a novel PCM clustering algo-
rithm, called FU-PCM. The proposed FU-PCM algorithm
could automatically estimate parameters and also generate an
optimal number of clusters. The advantages of the FU-PCM
are robust to initial values, cluster numbers and different
cluster volumes and shapes. Several examples with numer-
ical and real data sets demonstrated the effectiveness and
superiority of the proposed FU-PCMalgorithm. Comparisons
of the FU-PCM algorithm with k-means, FCM, PCM, PCA,
AMPCM, and APCMwere made. The FU-PCM outperforms
these algorithms according to these results. Further, the FU-
PCM also shows good performance for segmentation of
images. Overall, the proposed FU-PCM algorithm is actu-
ally effective and useful as a fully-unsupervised clustering
algorithm. Our future work will continue developing more
novel PCM algorithms based on the GPCM framework, such
as the feature-weighting GPCM with a feature-reduction
procedure or sparse-regularization feature selection based on
L1-norm penalty terms.
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