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ABSTRACT Fog computing is an encouraging technology in the coming generation to pipeline the breach
between cloud data centers and Internet of Things (IoT) devices. Fog computing is not a counterfeit
for cloud computing but a persuasive counterpart. It also accredits by utilizing the edge of the network
while still rendering the possibility to interact with the cloud. Nevertheless, the features of fog computing
are encountering novel security challenges. The security of end users and/or fog nodes brings a major
dilemma in the implementation of real life scenario. Although there are several works investigated in the
security challenges, physical layer security (PLS) in fog computing is not investigated in the above. The
distinctive and evolving IoT applications necessitate new security regulations, models, and evaluations
disseminated at the network edge. Notwithstanding, the achievement of the current cryptographic solutions
in the customary way, many aspects, i.e., system imperfections, hacking skills, and augmented attack,
has upheld the inexorableness of the detection techniques. Hence, we investigate PLS that exploits the
properties of channel between end user and fog node to detect the impersonation attack in fog computing
network. Moreover, it is also challenging to achieve the accurate channel constraints between end user and
fog node. Therefore, we propose Q-learning algorithm to attain the optimum value of test threshold in
the impersonation attack. The performance of the propose scheme validates and guarantees to detect the
impersonation attack accurately in fog computing networks.

INDEX TERMS Fog computing, physical layer security, reinforcement learning, impersonation attack.

I. INTRODUCTION
In the last decade, due to the exponential growth of mobile
internet traffic, the attractiveness of mobile devices has been
directing the remarkable development in wireless commu-
nication and networking [1]. Particularly the revolutions in
small cells based heterogeneous networks, massive multiple
input and multiple output (MIMO) and millimeter (mm)-
Wave communications cater users gigabit wireless access in
next generation [2], [3]. Therefore, the remote cloud data
centers have high processing power and large memory stor-
age that enables low processing mobile devices to run their
respective computing services. However, cloud computing

has certain limitations. For instance, the data generation and
consumption can be occurred at diverse applications, users’
locations, interaction time and response time. For instance,
video calls, voice and online gaming are highly affected
by users’ movement and locations [4]. This leads to higher
latency, processing and storage requirements, and such prob-
lems varies across applications. In this new era, the users’
requirement of lower latency, lower processing and storage
may not be suitable for applications relying on cloud com-
puting due to static condition of cloud, and long distance
between cloud-servers and end-users. Additionally, the data
execution of different applications does not take user mobility
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into consideration in cloud computing [5]–[8]. Therefore,
cloud computing is inadequate for a broad range of egressing
mobile applications. It is necessary that the data processing
of an application can take place at a geographically dis-
tributed data centers. This conducted to the egression of novel
research arena called fog computing and networking [9], [10].

However, fog computing networks become vulnerable to
impersonation attack due to the exposed nature of wireless
behavior between fog node and end users. In imperson-
ation attack, nodes (fog nodes & end users) can claim to
become an alternative user/node by utilizing a forged char-
acter i.e., media access control address (MAC-A). Therefore,
an impersonation attack would acquire the illegitimate ben-
efits, and accomplish man-in-the-middle attacks as well as
denial-of-service (DoS) attacks [11], [12]. To cope with the
problem, PLS technique is considered a promising methodol-
ogy to cover the security needs of wireless physical layer [15].
PLS techniques leverage physical layer properties of the
wireless communication links to cope with the impersonation
attack. The properties of physical layer (i.e., received signal
strength (RSSs), received signal strength indicators (RSSIs),
channel frequency response (CFR), and channel state infor-
mation (CSI)), are taken into consideration as the identifi-
cations of wireless channels between nodes to perceive the
impersonation attack [13]–[15].

In the reinforcement learning methods, for instance
Q-learning, the user would get the optimal schemes in
dynamic setting without being conscious of system’s details.
In addition, the end users are not static in real life, and the
channel between the end user and fog server is continuously
changing due to the movement of end users or for node.
Hence, in real life scenario, the environment between end user
and fog node is not static but dynamic. Therefore, we apply
Q-learning algorithm to detect the impersonation attack from
the dynamic environment. The PLS is proposed by exploiting
the channel states of the wireless packets between nodes.
Therefore, the channel responses are difficult to predict and
easily tempered by the attackers. Here, a hypothesis test
relates the CFR of the data with similar MAC-A. This deter-
mines the test value threshold grounded on the reinforcement
learning in dynamic wireless communication. It is deprived
of knowing the complete information of the channel param-
eter i.e., the channel time variations. The accuracy of the
PLS impersonation attack is depending on the value of test
threshold in hypothesis test, which is achieved at the receiver
end. This is a perplexing for a receiver node to indicate an
appropriate threshold value without perceptive of the accurate
values of channel parameters against non-legitimate nodes.
These non-legitimate nodes can submissively prefer their
attack probabilities to fleece and impersonate efficiently.
In addition, the optimal value of the test threshold in hypoth-
esis test of the Q-learning would accomplished by trial and
error to exploit the long-term effectiveness.

Although fog computing can play a central role in deliv-
ering a rich portfolio of services more effectively and effi-
ciently to end users, yet it is imposed by diverse security

challenges [16], [17]. Hence, the security issues of IoT in
fog computing are tackled in different ways. For instance,
Ni et al. [18] proposed secure service authentication scheme
for networking slicing and for computing for IoT services.
Additionally, the authors also introduce the negotiation of
session keys among end users, local fog nodes and IoT ser-
vices to guarantee secure access of service data. In another
article, Fu et al. [19]suggested a retrieval features tree to
support secure data retrieval and an index encryption scheme.
The encryption scheme is based on the secure k-nearest
neighbor (kNN) algorithm to support privacy-preserving data
search. A securable and verifiable outsourcing scheme is
investigated in [20] to compute the matrix inverse in a
server to secure user data. The authors proposed a secret
key generation based on chaotic system for matrix encryp-
tion and decryption to protect input and output data privacy.
Alrawais et al. [21] proposed key exchange protocol based
on cipher-text policy attribute based encryption (CP-ABE).
The authors combine CP-ABE and digital signature tech-
nique to achieve confidentiality, authentication, verifiability
and access control. Hu et al. [22] proposed authentication
and session key agreement scheme, data encryption scheme
and data integrity checking scheme to solve the issues of
confidentiality, integrity, and availability in the processes of
face identification and face resolution using fog computing in
IoTs.

It can be seen that most of the existing works did not
consider the physical layer security in fog computing net-
work. Researchers tried to secure the network security by
conventional techniques of cryptography, and did not pay
attention towards communication security between end users
and fog servers/nodes. They do not exploits the properties of
physical layer security, and the randomness or variation in the
channel between their physical connectivity. No work to date
however has explicitly considered the PLS technique in fog
computing networks. Against the above research background,
we pay attention to the impersonation attack in fog computing
through physical layer security. The impersonation attack is
tackle in with reinforcement learning. The research on the
security issue of fog computing is still in its early stage.
Therefore, in this article, we take a closer look at the security
issue of fog computing. Moreover, it is the first work to
investigate the physical layer security (PLS) in fog computing
through reinforcement learning. The main contributions of
this work are as complies.
• We propose physical layer security (PLS) to tackle the
impersonation attack. The PLS exploits the CSI of the
wireless packets in order to perceive the impersonation
attack. We formulate the zero-sum game between an
attacker and the receiver in a static environment.

• We propose reinforcement learning technique i.e.,
Q-learning in order to attain an optimal value of the test
threshold of the dynamic environment for the hypothesis
test. The hypothesis test is based on the channel state
information (CSI), and find out diverse factors such as,
the average time, false alarm rate (FAR), miss detection
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rate (MDR) and average error rate (AER). We inves-
tigate that the Q-learning in a dynamic environment
improves the impersonation detection attack and the
accuracy of the receiver by learning from the dynamic
environment.

The rest of the paper is organized as follows. After the
introduction in Section I, we illustrate the system overview,
model and problem formulation in Section II. The reinforce-
ment learning technique for impersonation attack detection
is also described in Section II. The performance evaluation
of our propose method is presented in Section III. Finally,
Section IV depicts the discussion section, and Section V
concludes the paper.

II. SYSTEM OVERVIEW, MODEL AND
PROBLEM FORMULATION
We consider a wireless communication links between fog
node and end users in fog computing networks. The net-
work consists of N = {1, 2, · · · , n},∀n ∈ N receivers
and M = {1, 2, · · · ,m},∀m ∈ M transmitters as shown
in Fig. 1. The network consists of I = {1, 2, · · · , i},∀i ∈ I
of legitimate nodes and F = {1, 2, · · · , f },∀f ∈ F non-
legitimate nodes that impersonate the authentic node with
fake MAC-A. The non-legitimate node can either fog node,
who want to impersonate towards the end user or vice versa.
Hence, the total transmitters in the network is M = (I ∪ F).
However, we differentiate them with different notations in
order to differentiate the legitimate node from non-legitimate
node. The MAC-A of mth transmitter is represented by γm
∈ 0, ∀m ∈ M , where 0 is the set of all MAC-A. The
illegitimate node can send a fake MAC-A in a time slot with
probability i.e., pj ∈ [0, 1]. The receiver n approximates the
CSI relatedwith the packet, once a packet is received. Particu-
larly, the pilots of the packet can use for the channel response
estimation of the linked transmitter. However, it is positioned
at the frequency fo, along with the bandwidth B. The receiver

FIGURE 1. General overview of impersonation attack in fog computing.

n ∈ N samples the CSI for each packet in the communication
link between nodes. Therefore, the channel vector of the
tth packet from the mth transmitter is represented by αtγ =[
αtγ,x

]
1≤x≤X . We also denoted the channel record of the tth

packet from the mth transmitter by β tγ =
[
β tγ,x

]
1≤x≤X . In this

discussion, the αtγ and β
t
γ are the channel vector and channel

record, respectively, by the xth tone of the tth packet from the
transmitter i.e., M = (I ∪ F).1

Next, we perform the hypothesis test to investigate the
authentication of the packet i.e., a packet with the channel
vector αtγ is certainly driven by the legitimate transmitter.
Therefore, we denote the MAC-A of the node that transmits
a packet with channel vector αtγ by U

(
αtγ
)
. The hypothesis

H◦ implies that the packet of the MAC-A is transmitted by
the legitimate node. Alternatively, the hypothesis H? is the
test of non-legitimate transmitter i.e., a packet is transmitted
by non-legitimate transmitter. Therefore, the impersonation
detection is grounded on the following hypothesis test and is
specified by

H◦ : U
(
αtγ
)
≥ 0, (1)

H? : U
(
αtγ
)
6= 0. (2)

In PLS, the channel state information is unique, therefore,
the receiver can authenticate the tth packed based on the
channel state information (CSI). Thus, on the basis of CSI,
if the channel vector i.e.,U

(
αtγ
)
and the channel recordU

(
β tγ
)

are identical, then the packet sent by the transmitter will be
considered as legitimate packet. Conversely, the packet is sent
from non-legitimate node. On this point, we can formulate the
statistic of the hypothesis test in the impersonation attack. The
statistic is denoted by

S
(
(αtγ ), (β

t
γ )
)
=

∥∥∥(αtγ )−(β tγ )∥∥∥2∥∥∥(β tγ )∥∥∥2 . (3)

In (3), ‖·‖ is the Frobenius norm, and S is the normalized
Euclidean distance between αtγ and β tγ , respectively. We fix
the test threshold i.e., λ. Therefore, we can illustrate that if
S
(
(αtγ ), (β

t
γ )
)
< λ, the receiver node n ∈ N accepts the H◦,

otherwise, the receiver acceptH?. Consequently, the hypoth-
esis tests for impersonation attack in PLS is given by

S
(
(αtγ ), (β

t
γ )
)
< λ H⇒ H◦, (4)

or

S
(
(αtγ ), (β

t
γ )
)
> λ H⇒ H?. (5)

According to (3), S
(
(αtγ ), (β

t
γ )
)
≥ 0. In result, λ ≥ 0.

Therefore, in the next step, we define the probability of FAR
and MDR. The FAR is the probability that a legitimate node
sent an authentic packet, but the receiver notice it as non-
legitimate packet. Here, it is denoted by PA and is given by

PA = PR
(
H?|H◦

)
. (6)

1Note that, the transmitter can be either legitimate node, represented by
i ∈ I or it can be also be impersonated node (non-legitimate node) i.e., f ∈ F
who are pretending to be a legitimate node (impersonation attack)
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Here, PR
(
· | ·
)
is to be conditional probability. We have also

the possibility of MDR, and it is the probability that a non-
legitimate packet is considered as legitimate packet by the
receiver. Thus, we denote the MDR by PB, and is given by

PB = PR
(
H◦|H?

)
. (7)

However, the probability for a receiver to consent an
authentic packet from (6) is set by

PR
(
H◦|H◦

)
= 1− PA. (8)

Similarly, the probability for a receiver to discard a non-
legitimate packet from (7) is specified by

PR
(
H?|H?

)
= 1− PB. (9)

The detection accuracy of the PLS authentication in
(4) and (5) depends on the value of test threshold i.e., λ. It is
assumed that by increasing the test threshold λ, the MDR
of the non-legitimate node increases. On the other side,
the small value of λ consequently increases the FAR. There-
fore, the most important factor for the receiver is to select
the test threshold value (λ) to avoid impersonation attack.
However, it is also assumed that the receiver pertains the
higher layer authentication (HLA) to process the packets that
get permitted by the PLS authentication. It is considered in
our work that the only packets are accepted if and only if
both the PLS authentication and HLA accept the packet. It is
assumed that the channel record β tγ is updated once a packet
is transmitted from the transmitter M , and is acknowledged
by HLA, i.e., β tγ ← αtγ . Conversely, it will updated as
β tγ ← β t−1γ .
The impersonation detection method in (4) and (5) can

be formulated initially by zero-sum game, and thus to find
the utility function. In zero sum game, there are F non-
legitimate nodes and N receivers [23]. The receivers apply
the PLS authentication to detect the impersonation attack
while each unauthentic node sends packets by exploiting the
MAC-A of an authentic transmitter. Each receiver selects the
threshold test value λ ∈ [0,∞) in the hypothesis test to
perceive the impersonation attack. The non-legitimate nodes
select their delude frequency and is denoted by pj ∈ [0, 1],
1 ≤ j ≤ F . The set of all non-legitimate packets of the non-
legitimate nodes are denoted by Y =

[
pj
]
1≤j≤F . It is consid-

ered that non-legitimate nodes can cooperate each other to
send the delude packets without collisions with

∑F
j=1pj ≤ 1.

However, it is assumed that only one non-legitimate node
attacks as an impersonated node in a time slot. Therefore,
the probability for the receiver to attain a delude packet is
written as

∑F
j=1pj.

The accuracy of the impersonation detection method is
highly depended on the utility of the receiver. The gain of
the receiver to accept the legitimate packet is denoted by G1,
whereas, the gain of the receiver to reject the non-legitimate
packet is denoted by G0. Similarly, the cost for receiver
to deceptively discard the packet of the legitimate node is
denoted by C1, whereas, the cost for a receiver to deceptively

accept a delude packet from non-legitimate node is denoted
by C0. At this stage, we define the Bayesian risk [24]–[26] of
the impersonation detection under a prior distribution of the
impersonation attack is denoted by E

(
λ,Y

)
, and is given by

E
(
λ,Y

)
=
(
G1(1− PA(λ))− C1PA(λ)

)(
1−

F∑
j=1

pj
)

+
(
G0(1− PB(λ))− C0PB(λ)

)( F∑
j=1

pj
)
. (10)

In (10), the first term i.e.,
(
G1(1−PA(λ))−C1PA(λ)

)(
1−∑F

j=1 pj
)

corresponds to the gain from a legitimate
packet, whereas the second term i.e.,

(
G0(1 − PB(λ)) −

C0PB(λ)
)(∑F

j=1 pj
)
is the gain under an impersonation attack

i.e., non-legitimate node. The utility of the non-legitimate
node, and a receiver in the zero-sum game is denoted
by UF (λ,Y), and UN (λ,Y), respectively. As defined the
Bayesian risk in (10), the utilities of the non-legitimate node
and a receiver are given by

UN (λ,Y) = −UF (λ,Y) = E
(
λ,Y

)
=
(
G0 − G1

) F∑
j−1

pi −
(
G0 + C0

)
PB(λ)

F∑
j=1

pj

−
(
G1 + C1

)
PA(λ)

(
1−

F∑
j=1

(pj)
)
+ G1. (11)

The PLS impersonation detection is based on the frequency
responses of the channel with a single attacker that is denoted
by G =

[
{n, f }, {λ, p}, {UN ,UF }

]
. It consists of receiver n,

∀n ∈ N , and an attacker f , ∀f ∈ F . Therefore, the receiver
selects its test threshold value λ ∈ [0,∞). The attackers also
establish their attack frequency p ∈ [0, 1]. Thus, the utilities
of the receiver and attacker are given by (11). The utilities
function in (11) is based on static PLS. However, for more
practical scenario, the environment between end users and
fog nodes is changing at every instant due to mobility, and
thus we achieve the incomplete information of the channel
state. In result, we present reinforcement learning in the next
section to uncover the optimal scheme with an incomplete
information of the channel state in dynamic environment.

The Q-learning is the reinforcement learning algorithm
that can be utilized to seek out the optimum stratagem with
inadequate information in a dynamic environment [27], [28].
It is stated that the receivers are oblivious of the channel
model and delude frequencies in a dynamic radio envi-
ronment. Therefore, the optimum test threshold would be
attained by the receiver’s end through error and trail in the
impersonation detection. Generally, it is assumed that optimal
legitimation threshold value λ∗ will decrease with the number
of attack encounters. In Q-learning algorithm, each agent is
learnt to attain the optimal strategy. The receivers build the
hypothesis test to evaluate the transmitter for each T packets
acknowledged in the time slot for impersonation detection
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with Q-learning. The test threshold i.e., λ is selected from
L + 1 stages, i.e., λ ∈ {l/L}0≤l≤L . The states perceived
by the receiver’s end at time τ , and this is represented by
sτ , comprises FAR as well as MDR at time τ−1. This is
represented by sτ = [P t−1

A ,P t−1
B ] ∈ S, where the S is the set

of all the states those detected by the receivers. The error rates
are quantized into L + 1 levels, i.e., PA,PB,∈ {l/L}0≤l≤L .
These receivers select their action λτ on the basis of state sτ
to maximize the expected utility sum that is denoted by 5τ ,
and is given by

5τ =

τT∑
t=(τ−1)T +1

U t
N .
(
λ,Y

)
. (12)

In (12), the U t
N is the immediate utility function repre-

sented in (11). The receiver indicates the suboptimal actions
with a small probability ε on the basis of ε-greedy policy.
However, the preference of the utility that is maximized by
the optimal actions is 1 − ε. Hence, the probability is given
by

ϒr (λ) =

{
1− ε, λ = λ∗,

ε/L, λ ∈ {l/L}λ≤l≤L , λ 6= λ∗.
(13)

In Q-learning, the impersonation detection depend upon
the learning rate, i.e., µ ∈ (0, 1]. This implies the weight
of the present Q-function i.e., Q(sτ , λτ ). The discount factor
signifies the improbability on the rewards impending, which
is expressed by δ ∈ (0, 1]. The value of the state s is the
maximumvalue of theQ-function, and is represented byV(s).
Consequently, the receivers update itsQ-function as follows:

Q(sτ , λτ ) ← (1− µ)Q(sτ , λτ )+ µ(5τ + δV(sτ + 1)),

(14)

V(sτ ) ← max
λ∈{l/L}0≤l≤L

Q(sτ , λ). (15)

The optimal value of the test threshold, λ∗ is given by

λ∗ = arg max
λ∈{l/L}0≤l≤L

Q(sτ , λ). (16)

In order to obtain an optimal action, and maximizes the
utility, we summarise the impersonation attack detection dis-
cussion in Algorithm 1.

III. PERFORMANCE EVALUATION
In this section, we perform our simulation results to evalu-
ate the impersonation attack. In the performance evaluation,
we consider randomly scattered nodes in 500×500m2 square
area. All the channels gains are rendered accordingly to the
conventional distribution of ξ (0, 1). The center frequency is
set to be f0 = 2.4 GHz, along with G0 = 9, G1 = 6, C0 = 4,
C1 = 2, p = 0.3, µ = 0.6, and ε = 0.6. Moreover, as there
is no existing work done for fog computing security based on
PLS impersonation attack, therefore, we compared our results
with the fixed threshold as a zero-sum game. Hence, fixed
threshold value is considered as a benchmark for imperson-
ation attack in our analysis.

Algorithm 1 Algorithm for Impersonation Detection
Step # I Initialization:
Compute ε, µ, δ, Q(s, λ), V(s) = 0, ∀λ ∈ {l/L}0≤l≤L .
Step # II: Current State:
while τ = 1, 2, 3, · · · do

Observe the current state sτ
Choose the test threshold value λτ ;
for t = 1 to T do

Notice MAC-A γm ∈ 0
Extract αtγ and β tγ
Calculate S

(
(αtγ ), (β

t
γ )
)
, Ref. to (3)

if S
(
(αtγ ), (β

t
γ )
)
≤ λτ then

Pass tth packet for HLA
β tγ ← αtγ
Accept the tth packet
else;
Reject the tth packet;

end
end
Step # III: Next State:
Observe sτ+1
Observe 5τ
Update Q(sτ , λτ ) Ref. to (14)
Update V(sτ ) Ref. to (15)

end

In our first experiment, we calculated the average time to
detect the impersonation attack. This is based on the time
taken by the receivers to detect the impersonated bits/node.
It is obvious that as the number of bits/node is increasing,
the average time for the receiver to detect the legitimate
and non-legitimate bits/node are also increasing. However,
the average time taken by Q-learning is lower and stabilizes
as compared to fixed threshold value. Thus, it is concluded
from Fig. 2 that the performance of Q-learning is almost 47%
lower than the fixed threshold value. We also calculate the
probability of reliability to detect the impersonation attack
based on bits/node. As the number of transmitter increases,
more and more bits are required to detect by the receiver
for authentication. Therefore, the reliability of the receiver to
detect the impersonation attack decreases as shown in Fig. 3.

The FAR andMDR of the hypothesis test is also calculated
for Q-learning and is given by [29]

PA(λ) = 1− Fx22M
( 2λρ
2ρ2 + bρσ 2

)
. (17)

PB(λ) = Fx22M
( 2λρ
2ρ2 + (1+ k)ρσ 2

)
. (18)

In (17) & (18), Fx22M
(·) is the cumulative distribution func-

tion with the degree of freedom 2M . The receiver observes
the average power gain of the authentic transmitter by σ 2.
ρ is the signal-to-interference plus noise ratio (SINR) of
the legitimate packet of an authentic transmitter. The rela-
tive change in the channel’s gain is b, owing the dynamic
variations in the environment. k is measured as the ratio
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FIGURE 2. Average time for the detection of impersonation attack.

FIGURE 3. Reliability of the receiver to detect bits/node.

FIGURE 4. Accuracy of FAR at the receiver end.

of the impersonator’s channel gain to that of the authentic
transmitter. Therefore, we calculate the FAR andMDR based
on fixed detection and Q-learning. The values of k , b, and
ρ are taken as 3 dB, 0.2, and 10 dB, respectively. The reason
behind these two experiments is that by increasing the number
of nodes, the FAR and MDR will increase. Because it will be
difficult for the receiver to detect the impersonated packet and
an authentic packet as the number of nodes increases.

However, we compare FAR and MDR on the basis of fixed
detection and Q-learning. From Fig. 4, we can clearly notice
that the probability of FAR in Q-learning is lower than the
fixed detection. Hence, it is concluded that the receiver notice
the packet more accurately than the fixed detection rate.

FIGURE 5. Accuracy of MDR at the receiver end.

On the basis of Q-learning, there is less chance that a legiti-
mate node sends an authentic packet, but the receiver notices
it as non-legitimate packet. Similarly, in the case of MDR,
the Q-learning based authentication outperform than the fixed
detection rate as shown in Fig. 5. In result, the accuracy of
receiver to detect the legitimate and non-legitimate packet
based on Q-learning is outperform than the fixed detection
rate. Consequently, we also calculate the AER in our next
experiment to find out the performance of Q-learning and
fixed detection rate. We calculate the AER for the fixed and
Q-learning threshold value on the basis of FAR and MDR,
as depict in Fig. 6. It is clear from Fig. 6 that the AER for the
fixed value of threshold is higher than the Q-learning. Hence,
the accuracy of receiver based on Q-learning to detect the
impersonation attack is better than the fixed detection rate.

FIGURE 6. AER for fixed and Q-learning based on FAR and MDR.

IV. DISCUSSION
Reinforcement learning (RL) is a subset of machine learning
algorithms that learns by exploring its environment. Unlike
supervised learning, which trains on labeled datasets, RL
achieves its stated objective by receiving positive or nega-
tive rewards for the actions that it takes. The environments
in which RL works can be both simulated and real-world
environments, although real-world environments are seldom
used for training RL algorithms. Therefore, in our work,
the rewards are based on the detection of authentic and
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non-authentic packets and the actions are taken by the
receiver correspondingly. This is justified from the simula-
tion results. However, using RL, is that one does not really
know what should be the correct answer is, or does not
have the labeled data at hand, with the algorithm exploring
its state space and achieving the given objective. There-
fore, we tried to figure out the how the receiver can detect
the impersonation attack through Q-learning. Comparatively,
the results based on Q-learning are better than the fixed
detection.

From the simulation results, it is concluded that reinforce-
ment learning technique outperformed than the fixed detec-
tion values. From Fig. 4, it is reported that the probability
of FAR based on Q-learning is approximately 30 % bet-
ter than the fixed detection. It means that the receiver can
automatically learn the environment from the CSI and easily
distinguish between the authentic and non-authentic packets.
Similarly, the probability of MDR is approximately 60 %
better than the fixed detection.Moreover, theMDRat receiver
throughQ-learning does not increase and remain in the steady
state. On the side, the probability of MDR at fixed detection
rapidly increases. This is because the receiver does not recog-
nize the authentic and un-authentic users, and hence they are
also considered the non-authentic packet as an authentic one
in the fixed detection. Finally, the AER is also measured in
our results to find out the average error probability between
Q-learning and fixed detection. However, this experiment is
based on the probability of FAR and MDR. It seems that the
AER is increased rapidly based on Q-learning but still it is
lower than the fixed detection rate, and is almost 20% to 60%
lower than the fixed detection.

V. CONCLUSION
In this work, we investigate the PLS that exploits the radio
channel information between end user and fog node to detect
the impersonation attack in fog computing network. We find
out the exact channel parameters between end user and fog
node. The work is formulated as zero sum game for fixed
detection. The PLS authentication Q-learning scheme is pro-
posed for a dynamic environment. Our proposed scheme
shows that the impersonation detection is robust against
dynamic environment. The simulation results show that the
proposed impersonation detection scheme outperforms fixed
detection based on zero sum game. For instance, it is con-
cluded that as the number of nodes increases, the accuracy
of receiver (FAR and MDR) on the basis of Q-learning to
detect the legitimate and non-legitimate is higher than the
fixed detection. Similarly, in the case of AER, the accu-
racy of receiver based on Q-learning to detect the imper-
sonation attack is approximately 20 % to 60 % better than
the fixed detection rate. Since the impersonation detection
with Q-learning intensifies the learning speed over the fixed
detection, the implementation of authentication is efficiently
improved. In our future work, we will tackle diverse secu-
rity threats for channel authentication, device authentication,
spoofing attack, jamming and anti jamming, confidentiality,

and denial of service (DoS) attacks through reinforcement
learning technique.
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