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ABSTRACT In order to meet the rigorous motion accuracy requirement and efficiently utilize the repetitive-
task characteristics in modern precision industry, this paper concentrates on the comprehensive research of
model-based data-driven learning adaptive robust control (LARC) strategy for precision mechatronic motion
systems. The proposed LARC can achieve not only excellent transient/steady-state tracking performance but
also adaptation ability and disturbance robustness. Specifically, the LARC strategy contains robust feedback
term, adaptive model compensation term, and iterative learning term. Herein, the former two terms are
designed based on the system dynamic model under parametric uncertainty and uncertain nonlinearity, and
the data-driven iterative learning term is synthesized to generate optimal input to adjust the optimal reference.
The whole controller design procedure and stability is presented, while the reason for the practically
achievable performance of LARC is analyzed. Comparative experiments, among proportional—integral—
differential, adaptive robust control, iterative learning control, and the proposed LARC, are conducted on a
developed linear motor stage. The experimental results consistently validate that the proposed LARC scheme
simultaneously achieves excellent transient/steady-state tracking performance, parametric adaptation ability,
and disturbance robustness. The LARC strategy essentially provides an effective control technology with
good potential in industrial applications.

INDEX TERMS LARC, motion control, linear motor, tracking accuracy, adaptive control, iterative learning.

I. INTRODUCTION
Modern precision/ultra-precision mechatronic equipments
such as lithography wafer/reticle stages, machine tools, laser
cutting machines, and robotic manipulators, require intelli-
gent motion control technologies [1]–[5]. When the motion
control accuracy requirements are macro/nano-meter level,
the effects of model uncertainty and uncertain disturbance
cannot be neglected, and even become the major obstacle
to achieving excellent transient/steady-state tracking perfor-
mance. This problem has been extensively studied and many
advanced control methods are resultantly developed [6]–[10].
A typical scheme is adaptive robust control (ARC) which
possesses good parametric adaptive capability and robust-
ness to nonlinear uncertainties/disturbances [11]–[13]. Sub-
sequent ARC studies have been applied to theory extension

and practical mechatronic applications such as linear motor
driven systems, pneumatic muscles, and hydraulic manipula-
tors [14]–[19]. However, ARC primarily depends on the plant
system model and has certain conservativeness on practical
steady-state tracking accuracy.

In modern industry, mechatronic systems often have com-
plex structures and uncertainties those make it difficult to
obtain accurate motion control models. Meanwhile, industry
systems often perform repetitive motion tasks in a limited
time. Therefore, iterative learning control (ILC) scheme is
constructed as a feedforward control scheme based on repet-
itive task over a finite time horizon [20]. ILC utilize the
information from previous iteration data to generate opti-
mal control input. The advantage of ILC is that, it can
achieve good control performance without need of accurate
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dynamics model, which is very important for mechatronic
motion control systems with significant nonlinearity and
complexity [21]. For nearly two decades, ILC has been
extended and applied to wafer stages and robots [22]–[24].
The basic idea of ILC is easy for practical engineer to under-
stand, yet sustained effort is needed to analyze appropriate
structure and update rule to handle robustness and optimiza-
tion issues [25]. However, ILC needs several iteration learn-
ing experiments to generate the final optimal control input,
while is rather sensitive to non-repetitive disturbance and
noise, which leads to application limitations in industry [26].
For example, if there exist distinct load variation or random
disturbance, the tracking accuracy of the data-driven ILC will
deteriorate significantly [27].

It can be summarized that, ARC guarantees transient
performance with parameter adaptation capability and dis-
turbance robustness, while the steady-state tracking perfor-
mance is conservative due to the existence of unmodelled
dynamics. On the other hand, ILC does not need accurate sys-
tem model and has excellent steady-state tracking accuracy,
but with issues of sensitivity to non-repetitive disturbance and
parametric uncertainty. In current researches, newly devel-
oped advanced control methods such as neural networks [28]
and repetitive control [29] combined with ARC further
improve transient and steady-state tracking performance.
However, the resulting controllers are theoretically compli-
cated, and the steady-state tracking performances still have
performance improvement potential [30], [31]. On the other
hand, considering the characteristics of ILC, researchers
are also trying to explore other advanced control meth-
ods to fill the disadvantages of ILC to improve control
scheme [25]. As an illustration, research has been undertaken
to study iteration learning schemes in adaptive control using
Lyapunov like methods [32]. However, due to different
research backgrounds, rigorous theoretical deduction and
analysis are of main concern in the above researches, while
the application to precision industry systems is reported lim-
itedly.

In this paper, inspired by the idea that the advantages and
disadvantages of ARC and ILC can be mutually complemen-
tary, and the fact that the practical plant system model can-
not be completely accurate for perfect model compensation,
we completely present a model-based data-driven learning
adaptive robust (LARC) controller for mechatronic systems
to practically achieve high performance. This research can
also be considered as significant theory and application exten-
sion of our previous preliminary attempt in [33]. Specifically,
the LARC framework scheme includes iterative learning
term, adaptive compensation term, and robust feedback term.
The first term is designed to create optimal input to adjust
the optimal reference, while the later two terms are designed
based on the system dynamics model under parametric uncer-
tainty and uncertain nonlinearity. The whole controller design
procedure and stability is presented, while the reason for
the practically achievable performance of LARC is analyzed.
Comparative experiments among PID, ARC, ILC, and the

proposed LARC, are conducted on a developed linear motor
stage under different tracking motions. The experimental
results consistently validate that the proposed LARC scheme
performs much better than the other controllers while the
practical performances can meet the challenge of external
disturbances and load variation. In other word, the proposed
scheme simultaneously achieves excellent transient/steady-
state tracking performance, parametric adaptation ability, and
disturbance robustness. The proposed LARC essential offers
an effective motion control technology for industrial imple-
mentation, and also supplies another perspective for control
engineers.

II. MODEL-BASED DATA-DRIVEN LEARNING ADAPTIVE
ROBUST CONTROL (LARC) STRATEGY
In order to facilitate understanding of the LARC control
scheme, consider a second-order electromechanical device
system (e.g., the linear motor driven stage system) which is
common in practical industry, i.e.,

θ1ẍ = ϕ(ẋ, x, t)Tϑ +1(x, t)+ u (1)

where x means the position of the motion stage, u repre-
sents the control input, θ1 is the unknown parameter of the
system, ϑ is an unknown parameter matrix, ϕ(ẋ, x, t) is a
known shape function set, and1(x, t) means the set of all the
uncertainties. According to the definition of θ = [θ1, ϑ]T ,
we can obtain the following assumption, i.e., the ranges of
uncertainties of parameters and disturbances are limited by

θ ∈ �θ , {θ : θmin < θ < θmax}

1 ∈ �1 , {1 : ‖1(x, t)‖ ≤ δ} (2)

where θmin, θmax and δ are known.
In order to track the desired trajectory xd (t), i.e., x(t) →

xd (t), the schematic of LARC control scheme with the serial
structure is plotted in Fig. 1. It is well shown in Fig. 1
that, the green part means the iterative learning control (ILC)
term, the function of the brown part is adaptive compensa-
tion, the blue part is responsible for robust feedback control,
and the yellow one is the plant. Herein, the adaptive compen-
sation and robust feedback control constitute of the ARC term
which is the purple part. As illustrated in Fig. 1, ILC, i.e., the
green part, can be viewed as a kind of trajectory optimization
which can achieve excellent compensation of unmodelled
repetitive uncertainty using the repetitive historical control
data such as tracking error e = x−xd . Through the additional
input uILC generated by ILC, the desired trajectory xd can
be adjusted to x ′d = xd + uILC which is essentially a new
trajectory to be followed by the ARC control term. And then,
parameter adaptation, model compensation and robust feed-
back control are synthesized in ARC term based on the plant
model and the adjusted tracking error e′ = x− (xd +uILC ) =
x − x ′d . It is easy to find in the schematic that the ILC and
the ARC term belongs to feedforward and feedback control,
respectively. Herein, the stability of whole control system just
depends on the closed-loop characteristics of ARC and the
plant. Essentially, the optimal trajectory pre-compensation
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FIGURE 1. LARC control strategy in a serial structure.

should be obtained through the ILC term which can improve
tracking performance significantly in practical applications.
It should be noted that, the serial structure employed here
facilitates the theory conduction and practical implementa-
tion, when compared to others such as the parallel structure
shown in [34]. In the following, the different terms the pro-
posed LARC scheme, i.e., ARC and ILC will be introduced,
respectively.

A. ADAPTIVE ROBUST CONTROL (ARC) TERM IN LARC
Basically, ARC combines the advantages of conventional
adaptive control and deterministic robust control, and has
good adaptability to parameter changes and robustness to
uncertain disturbances [11]. With the schematic of LARC
framework shown in Fig. 1, the ARC term is designed with
adjustedmodel compensation and robust feedback as follows.

Firstly, a switching-function quantity is defined as

p = ė′ + k1e′ = ẋ − xeq, xeq , ẋ ′d − k1e
′ (3)

where k1 is any positive feedback gain; e′ = x−(xd+uILC ) =
x − x ′d is the adjusted tracking error while e = x − xd is the
actual tracking error. Differentiate (3) and notice (1):

θ1ṗ = ϕ(ẋ, x, t)Tϑ − θ1ẋeq +1(x, t)+ u

= φ(ẋ, x, t)T θ +1(x, t)+ u (4)

where φ(ẋ, x, t)T = [−ẋeq, ϕ(ẋ, x, t)T ] and θ = [θ1, ϑ]T .
Noting the structure of Eq. (4), we can design the ARC
control term as [13]

u = uf + us, uf = −φ(ẋ, x, t)T θ̂

us = us1 + us2, us1 = −ksp (5)

where uf is the model compensation required for perfect
trajectory tracking, θ̂ is the estimated parameter, us repre-
sents the feedback control term, us1 is a simple proportional
feedback item, and us2 is a robust feedback term which is
detailedly explained in [11] and [31].

The estimated parameter θ̂ in the ARC term is updated
by the following parameter adaptive rules which is a kind of
discontinuous projection.

˙̂
θ = Proj

θ̂
(0τ ),

Proj
θ̂
(•i) =


0, if θ̂i = θimax and •i > 0
0, if θ̂i = θimin and •i < 0
•i, otherwise

(6)

where τ is an adaptation function; 0 is any diagonal symmet-
ric positive definite adaptation rate matrix. Define the projec-
tion map proj

θ̂
(·) to ensure that the boundary of parameter is

the same as Eq. (2).
As shown in [11], for any adaption function τ , the pro-

jection mapping expressed in (6) satisfies the following
conditions:

E1 θ̂ ∈ �θ , {θ̂ : θmin ≤ θ̂ ≤ θmax}

E2 θ̃T (0−1Proj
θ̂
(0τ )− τ ) ≤ 0, ∀τ (7)

Substitute Eq. (5) into (4), and then simplify the resulting
expression:

θ1ṗ = us − φ(ẋ, x, t)T θ̃ +1(x, t) (8)

where θ̃ is the estimation deviation (i.e., θ̃ = θ̂ − θ ). Noting
(2) and E1 of (7), there exists a us2 so the following two
conditions are satisfied, i.e.,

i p{us2 − φθ̃ +1} ≤ ε

ii pus2 ≤ 0 (9)

where ε is a parameter designed to be arbitrarily small. Essen-
tially, i of Eq. (9) shows that the model uncertainties from
parametric uncertainties as well as uncertain nonlinearities
are dominated by the synthesized us2.
And ii of (9) is to make sure that us2 dissipates naturally

so that it does not interfere with the function of the adaptive
control term.
Theorem 1: If the adaptation function expressed in Eq. (6)

is set to

τ = φ(x)p (10)

Then for the closed-loop control system, the ARC control
term (5) of the proposed LARC approach can achieve the
following results:

1) Generally, all signals are bounded and the positive
definite functionVs defined byVs = 1

2θ1 p
2, is bounded

by

Vs ≤ exp (−λt)Vs(0)+
ε

λ
[1− exp (−λt)] (11)

where λ = 2ks/θ1max .
2) If after a limited time t0, there is only parametric uncer-

tainty, then the tracking error converges to zero finally,
i.e., e′→ 0 and p→ 0 as t →∞.
Proof: Noting (5) and (8), we can obtain

V̇s = −ksp2 + p{us2 − φθ̃ +1} (12)

According to condition i of (9), and choosing λ =

min{2ks/θ1max}, we have

V̇s ≤ −ksp2 + ε ≤ −λVs + ε (13)

the above inequation leads to (11) and proves the results
in 1) of the Theorem 1. Now consider the situation in 2) of
Theorem 1, i.e.,1 = 0,∀t ≥ t0. Choosing the function Va as

Va = Vs +
1
2
θ̃T0−1θ̃ (14)
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From (12), condition ii of (9) and P2 in (7), the derivative of
Va satisfies

V̇a = V̇s + θ̃T0−1
˙̃
θ ≤ −ksp2 + θ̃T0−1(

˙̃
θ − 0τ ) ≤ −ksp2

(15)

Therefore, p ∈ L2. Intuitively, ṗ is bounded. Accordingly,
p is uniformly continuous. By Barbalat’s lemma, p → 0 as
t →∞.
Remark 1: One smooth example of us2 which satisfies (9)

can be found in the following way [11]. Let h be any smooth
function satisfying

h ≥‖ θM ‖‖ φ ‖ +δ (16)

where θM = θmax − θmin. Then, us2 can be chosen as

us2 = −
1
4ε
h2p (17)

It should be noted that the asymptotically stability is satis-
fied under null disturbance assumption, which is unrealistic
in practice. Therefore, the tracking error inevitably exists.
Detailed analysis about this situation will be explained in next
subsection. Through Theorem 1, the stability of the system is
guaranteed as the feedforward ILC term in Fig. 1 does not
affect the stability but just do a trajectory pre-compensation
job. The ILC design would be described in the following
section.

B. ITERATIVE LEARNING CONTROL (ILC) TERM IN LARC
ILC delivers outstanding stable tracking performance under
repetitive tasks without the need for an accurate system
model. Notice the serial LARC structure in Fig. 1, which
iteratively learns to generate inputs to change the reference
of ARC. If the closed-loop dynamics of ARC controller and
the plant are expressed as P(s) shown as the blue dashed line
frame in Fig. 1, with the denotation of P(s), the whole LARC
control system can be described by

Xi(s) = P(s)[UILC,i(s)+ Xd (s)] (18)

where i means the iteration index. To obtain the optimal ILC
input, an iteration learning law is used as

UILC,i+1(s) = Q(s)(UILC,i(s)+ L(s)Ei(s)) (19)

In Eq. (19), UILC,i+1(s) is the input in i+ 1 iteration, Ei(s)
is the tracking error in i iteration, L(s) represents learning
function to generate ILC input used in the next iteration, and
Q(s) is the Q-filter which can limit learning bandwidth for
robustness at the expense of tracking performance. As we all
know, the designmethods of learning functionmainly include
several types, namely PD-Type adjustable design, plant inver-
sion, H∞ method and quadratically optimal design [26]. PD-
type tunable ILC learning function due to its simple structure
and tunability for PD-type tunable designs:

L(s) = Kip + Kid s (20)

Accordingly, stability and convergence of the iterative learn-
ing rule defined in Eq. (19)-(20) can be guaranteed under
certain conservative condition [26].
Lemma 1: The ILC law Eq. (19)-(20) acting on the stable

system P(s), is monotonically convergent, i.e., ‖E∞(s) −
Ei+1(s)‖∞ < α‖E∞(s)−Ei(s)‖∞ where α is the convergence
rate, if

‖Q(s)(I − L(s)P(s))‖∞ < α < 1 (21)

Substantially, Lemma 1 is to assurance that the output of
ILC control UILC,i converges to the optimal one which can
capture the effects of the unmodeled repetitive uncertainties
and achieve an effective compensation for the residual track-
ing errors. Consequently, once the ILC term is convergent as
stated in Lemma 1, i.e., theUILC is optimally designed, it can
be concluded that the stability of the whole control system is
guaranteed.
As illustrated in Theorem 1, if there only is parametric

uncertainty, zero final tracking error can also be achieved,
which is theoretically equivalent to that P(s) in Fig. 1 can be
viewed as P(s) = 1. Then, substituting Eq. (20) into (21),
the convergence condition can thus be obtained

‖Q(s)(I − Kip − Kid s)‖∞ < α < 1 (22)

Intuitively, Eq. (22) illustrate that, if Kip = 1 and Kid = 0,
the ideal convergence rate could be chosen as α = 0, and
the ILC term will achieve converged error after only one
iteration. In Theory, the resultant feedforward signal uILC
would be optimized by just one iteration. Simulation was
conducted in our previous attempt [33] that the ILC term
could significantly attenuate the low-frequency tracking error
part and not amplify the high-frequency error part. It was
also shown by simulation that Kip = 1 is a good learning
gain, which enabled guaranteed learning after one iteration.
The effect of Kid is also examined with different values and
the results showed that when Kid ≤ 1, there are no distinct
differences in learning performance, but when Kid is too
large, the learning process will be unstable. Considering the
analysis and simulation results in [33], learning gain Kip = 1
and Kid = 0 will be used in experiments to provide an
example. Researcher also could design more advanced ILC
term as research extension of the proposed LARC scheme.

C. PRACTICAL NATURE OF LARC
In the proposed LARC algorithm, the ARC part is responsible
to track x ′d = xd + uILC as accurately as possible. Actually,
there is inevitable tracking error even the stability can be
guaranteed theoretically as stated in Theorem 1. In other
word, e′ = x − x ′d cannot be zero in practical applications,
which means e′ = ζ is consequent where ζ is the residual
tracking error of the practical motion system. Noting e′ =
e+ uILC , one obtains

e+ uILC = ζ (23)

Consequently, if the characteristics of the residual error ζ
could be captured by the optimal ILC feedforward signal
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FIGURE 2. Experimental setup.

uILC as accurately as possible, i.e., uILC → ζ , a really ideal
performance of the real tracking error e could achieve, i.e.,
e → 0. This is the key essence of the proposed LARC
control framework which makes sense of excellent tracking
performance in practical applications. In the LARC control
scheme, the ILC term is chosen as a typical one which may be
simple to some degree. More advanced ILC based term [26]
can also be extended under the proposed control framework.

III. COMPARATIVE EXPERIMENTAL STUDIES
A. EXPERIMENTAL SETUP
In this paper, the proposed LARC method is tested on an
industrial linear motor shown in Fig. 2. The mechanical reso-
nant modes and electrical dynamics are neglected in the linear
motor system model, and the mathematical model is listed as
follows [12], [13]:

Mẍ = u− F, F = Ff + Fr + Fd (24)

where x means the position of the motor,M is the mass of the
inertia load, u is the control input, F is the normalized lumped
effect of the uncertain nonlinearities such as friction force Ff ,
ripple force Fr and external disturbance Fd . We choose to
model the friction force as a function of velocity [35], [36],
i.e., Ff (ẋ) = Bẋ +Af Sf (ẋ). And the ripple force Fr is simply
considered as part of the disturbance Fd . Therefore, Eq. (24)
can be rewritten as

Mẍ = u− Bẋ − Af Sf (ẋ)− Fd (25)

where Af is the unknown static value of Coulomb friction
term, B is an equivalent viscous friction coefficient, and Sf (ẋ)
is a continuous function, e.g., Sf (ẋ) = 2

π
arctan(2000ẋ) which

is an approximate expression for the Coulomb friction [12],
[29], [35]. It can be seen that Eq. (25) is in the form of Eq. (1).
The unknown parameter set is defined as θ = [θ1, θ2, θ3, θ4]T

where θ1 = M , θ2 = B, θ3 = Af , θ4 = Fd , while
φ(x) = [−ẋeq,−ẋ,−Sf (ẋ),−1]T [13].

In the following, the controller described in Section II for
the plant (25) would be tested on the linear motor stage. The
position sensor for feedback is an optical grating scale with a

resolution of 156.25 nm. System identification based on least-
square is implemented to get the parameters of the X-axis
of the linear motor driven stage. The approximate nominal
values of θ1, θ2, θ3 and θ4 are: θ̂1 = 0.18Vs2/m, θ̂2 =
1.14Vs/m, θ̂3 = 0.37V , θ̂4 = 0. The parameter variation
bounds are determined based on the system identification
results, i.e.,

θmin = [0.15, 0.80, 0.20,−2.00]

θmax = [0.30, 1.60, 1.50, 2.00] (26)

The control algorithms are tested on the linear motor through
dSPACE DS 1106 controller system [35], [36]. The control
algorithms are executed at a sampling frequency of fs =
5 kHz.
For fair comparison, several performance indexes will be

employed to evaluate the practical quality of the control
algorithms [35], i.e.,
• eRMS : the root-mean-square (RMS) value of the tracking
error.

• eM : the maximal absolute value of the tracking error.

B. COMPARATIVE EXPERIMENTAL RESULTS
For sufficient comparison, four controllers, i.e., PID, ARC,
ILC, and the proposed LARC controllers are all carried out
as follows:
C1: PID—A parallel PID form is used with the expression

like

C(s) = Kp + Ki/s+ Kd s (27)

Frequency identification of the linear motor motion stage sys-
tem is conducted, and the open-loop frequency-domain char-
acteristic is illustrated in Fig. 3. According to the frequency
response shown in Fig. 3, the PID parameters are set as Kp =
48000,Ki = 3200000,Kd = 100. As a result, the open-loop
crossover frequency is 135Hz, the phase-margin is 40.1deg,
and gain-margin is 10.8dB. It should be noticed that these
margins are all at a practically common level to ensure
the system stability. Herein, considering actual situations to
attenuate high frequency noise, the PID controller connects a
first-order low-pass filter whose cutoff frequency is 3000Hz.

C2: ARC — The control scheme introduced in
Section II-A while the ILC term is unused. Actually, there
exist certain link between PID control parameters and ARC
control parameters [13], i.e.,

−Kp +
Ki
k1
+ Kdk1 = 0

Ki
k1
= γ4

Kd = ks

(28)

Therefore, the control parameters of ARC are determined
by the control parameters in C1 through Eq. (28) for a fair
comparison. The resultant control parameters are k1 = 400,
ks = 100, and γ4 = 8000. In addition, the adaptation rate
matrix is 0 = diag[10, 10, 1, 8000], while the parameter
initial estimates are chosen as θ̂ (0) = [0.15, 0.80, 0.20, 0]T.
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FIGURE 3. Frequency response of the linear motor.

C3: ILC—The controller introduced in Section II-B while
the ARC term is unused. In this ILC controller, the feedback
term is chosen as same as the above PID feedback control of
C1. It is known in [23] that zero-phase filter can attenuate the
bad transients and has application merit. In this paper, for no
phase lag, the filter is designed as F(s) = (2π fs)2

s2+2ζ (2π fs)+(2π fs)2

with damping ratio ζ = 0.7 whose crossover frequency is
fs = 80 Hz.

C4: LARC—The controller proposed in whole Section II.
In LARC, the ARC term is the same as C2, and the iteration
learning law is the same as C3. Moreover, all the controller
and filter parameters of LARC here are set the same as those
parameters in C2 & C3.

To further illustrate the tracking performance, the follow-
ing three test sets are implemented:
• Set1: experiments without payload for testing the nomi-
nal tracking performance.

• Set2: a 12kg load is fixed on the motor mover to test the
performance robustness to parameter uncertainty.

• Set3: 1.5V input is added to the control at 5.2s and
removed at 7.2s to test the performance robustness to
uncertain disturbance.

It must be pointed out that, in Set2 and Set3, the payload
and the disturbance are all added in the case that the control
inputs are determined in the nominal case (i.e., Set1), which
is meaningful in industrial applications.

1) CASE I— HIGH SPEED SINUSOIDAL TRACKING MOTION
Firstly, the linear motor is to track a high speed sinusoidal
trajectory like

xd = 0.05 · sin (4π t − π/2)+ 0.05(m) (29)

with a speed of v = 0.628 cos (4π t − π/2)m/s and an angu-
lar velocity of ω = 12.56 rad/s.
Table 1 shows the experimental results after running the

linear motor stage for several periods. It should be noticed
that, the control performance under point-to-point tracking
motion in Case II and III will illustrate explicitly the transient

TABLE 1. Tracking performance indexes in Case I.

FIGURE 4. Tracking errors in Set 1 of Case I.

FIGURE 5. Tracking errors in Set 2 of Case I.

performance, thus Case I just shows the the steady-state
tracking performance while the related transient performance
discrepancy is similar to that in Case II and III. Seen from
Table 1, the four tested controllers all achieve good steady-
state tracking accuracy during fast sinusoidal motion. Specif-
ical speaking, in Set1, the tracking errors showed in Fig. 4
illustate that eRMS of C4 is about 2.5µm, while C2 and
C3 both achieve around 3.4µm, and C1 achieves 6.5µm.
It can be seen that, C2 and C3 outperforms C1 on tracking
performance, while C4 outperforms C2 and C3 a lot. In Set2,
the tracking errors showed in Fig. 5 also illustrate that C4 is
the best—eRMS of C4 is 2.38µm, while eRMS of C2 is 3.21µm
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FIGURE 6. Tracking errors in Set 3 of Case I.

FIGURE 7. Desired trajectory of a high-speed point-to-point motion.

as C2 and C4 both have robustness to parameter variations.
In this set, the performance of C3 deteriorate obviously:
the eRMS becomes 4.16µm, i.e., 21% enlargement; the eM
becomes 20.8µm, i.e., 26% enlargement, which means that
the ILC control input is just the optimum for no-load case
but not for 12kg payload case. It also can be concluded
that C4 possesses parameter variation robustness. In Set3,
the fixed load in Set2 is removed, and an unexpected dis-
turbance is added into the control input. Figure 6 shows
the steady tracking errors and the result here further verify
that C4 obtains the best accuracy. By comparison among the
error signals, it is obvious that C4 possesses performance
robustness of C2 to unknown disturbance. To summarize,
the above comparative results verify that the proposed LARC
control strategy can achieve excellent tracking performance
with uncertain disturbance robustness.

2) CASE II—HIGH-SPEED POINT-TO-POINT MOTION
TRACKING
As shown in Fig. 7, a point-to-point trajectory is tested with
a maximum speed of vmax = 0.5m/s and a maximum

TABLE 2. Tracking performance indexes in Case II.

FIGURE 8. Tracking errors in Set1 of Case II.

FIGURE 9. Magnified error plots over running period in Set1 of Case II.

acceleration of amax = 5m/s2. Set1 and Set2 are imple-
mented in this case.

Table 2 shows the experimental results after running the
linear motor for several periods. eRMS and eM in the table
are the RMS and Maximum of tracking error just at the
point-to-point motion segments while the positioning error
in the steady-positioning segments are not used. Fig. 8 shows
the tracking errors of C1-C4 in Set1, and Fig. 9 shows the
magnified error over the running period. It can be seen from
the table and the figures that, C4 is rather better than other
three controllers — eRMS = 1.19µm of C4 is much smaller
than the others. In Set2, the 12kg payload is fixed on the
motor mover to test the parameter variations robustness of
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FIGURE 10. Tracking errors in Set2 of Case II.

FIGURE 11. Magnified error plots over running period in Set2 of Case II.

the algorithms. Fig. 10 shows the tracking errors of all con-
trollers, and Fig. 11 shows the magnified error over the run-
ning period. It can be seen from these plots that, the tracking
accuracy of C1 and C3 deteriorates obviously when the pay-
load is added. For example, eRMS of C3 becomes 2.84µm,
i.e., 87% enlargement, while eM of C3 becomes 9.13µm,
i.e., 41% enlargement. On the other hand, C2 and C4 perform
as well as in the no-load situation of Set1. These results
illustrate that online parameter adaptation is important when
true parameter values differ from their nominal values. And
it also shows that the proposed LARC possesses performance
robustness.

It should be pointed out that, in Case II ILC seems to out-
perform ARC, while in Case I ILC performs at the same level
as ARC. The reason is that in the sinusoidal tracking motion,
the adjustablemodel compensation term inARC contribute to
the performance improvement. However, in Case II, i.e., the
point-to-point motion, the tracking period is very short while
the positioning period is comparatively long, which leads
to the function reduction of the model compensation term,
especially the friction compensation.

TABLE 3. Tracking performance indexes in Case III.

FIGURE 12. Tracking errors of Case3 (VM=0.02 m/s).

FIGURE 13. Magnified error plots over constant speed period of Case3
(VM=0.02 m/s).

3) CASE III—LOW-SPEED POINT-TO-POINT MOTION
TRACKING
The maximum constant maximum speed vmax is set as
0.02m/s, 0.002m/s, 0.0002m/s, the maximum acceleration
amax is 0.5m/s2, 0.05m/s2, 0.005m/s2, while the motion
distance is 0.05m, 0.005m, 0.0005m, respectively. For these
slow motion experiments, the resolution of the grating scale
is reset to 39.0625nm for position measurement.

The experimental results of vmax = 0.02m/s, 0.002m/s,
0.0002m/s, are listed in Table 3, respectively. Similar to
Case II, eRMS and eM here are the RMS andMaximum values
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FIGURE 14. Tracking errors of Case3 (VM=0.002 m/s).

FIGURE 15. Tracking errors of Case3 (VM=0.0002 m/s).

of tracking error in the point-to-point motion segments while
the positioning error in the steady-positioning segments are
not used. In Fig. 12, the tracking errors of four controllers
are showed for vmax = 0.02m/s with the blowout portions
for the constant-speed motion plotted in Fig. 13. In Fig. 14,
the tracking errors of four controllers are plotted for vmax =
0.002m/s, and in Fig. 15, the tracking errors of four con-
trollers are showed for vmax = 0.0002m/s. It can be observed
from the table and figures that the proposed LARC algorithm
achieves excellent performances in all three low speeds. The
tracking errors of LARC in acceleration and deceleration
periods are all within 3.25µm, and the errors in constant speed
motion period are all within a few hundred nanometers. For
example, in the vmax = 0.002m/s case, the tracking errors
of constant-speed portions showed in Fig. 13 are obviously
within 400nm. All these results consistently illustrate that the
proposed LARC scheme performs well in low-speed motions
as well.

4) CASE IV—ADDITIONAL COMPARATIVE EXPERIMENTS
To further evaluate the practical superiority of the pro-
posed LARC method, the zero phase error tracking

FIGURE 16. Desired high-speed point-to-point trajectory of Case V.

FIGURE 17. Tracking errors of Case V.

TABLE 4. Tracking performance indexes in Case V.

controller (ZPETC) is implemented for comparison. ZPETC
is an well-known efficacious feedforward method to improve
tracking accuracy, which achieves zero phase error and unity
DC gain frequency response [37]. A ZPETC feedforward
term is synthesized based on the PID closed-loop response
obtained in Case IV, where stable poles and well-damped
zeros are kept while unstable and lightly damped zeros are
compensated. A high-speed point-to-point trajectory with a
maximum speed vmax = 0.6m/s and maximum acceleration
amax = 7m/s2 plotted in Fig. 16 is carried out in this case.
Besides, a 5kg payload is added to justify the robustness.
Experimental results are illustrated in Fig. 17 and Table 4.
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From Fig. 16-17 and Table 4, for no payload and 5kg
payload situation, the eRMS of LARC decrease 48% and 42%
comparing to ZPETC, while the eM of LARC decrease 23%
and 26%, respectively. These similar improvements of perfor-
mance indexes indicate that LARC holds stable performance
under different situations. Besides, the tracking accuracy of
LARC is significantly better than ZPETC. All these exper-
imental results consistently validate the superior nature of
LARC.

IV. CONCLUSION
In this paper, a model-data driven learning adaptive robust
control (LARC) strategy has been developed and investigated
for mechatronic systems to practically achieve excellent tran-
sient/steady tracking performance, and robustness to para-
metric uncertainty and unknown disturbance. The proposed
LARC scheme includes adaptive compensation term, robust
control term, and iterative learning term, for the modeled
dynamics, uncertain nonlinearities, and unmodelled repeti-
tive dynamics, respectively. Comparative experiments have
been implemented on a linear motor for a case study. Suf-
ficient results consistently verify that the proposed LARC
scheme performs with excellent tracking accuracy even under
parametric variations and disturbances. The proposed LARC
controller design for linear motor stage systems essentially
provides a practically effective motion control technology for
industrial applications, and also supplies another perspective
which could be followed with extensive researches in the
future.
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