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ABSTRACT In a recent decade, deep neural networks have been applied for many research areas after
achieving dramatic improvements of accuracy in solving complex problems in vision and computational
linguistics area. However, some problems, such as environmental modeling, are still limited to benefit from
the deep networks because of its difficulty in collecting sufficient data of learning process. In this paper,
aside from the accuracy issue, we raise another property—stability—of the deep networks useful for even
such data-limited problems, especially in time-series modeling. Recurrent neural networks with memory cell
structures, a deep network, can be deemed as a more robust network structure for long-term forecasting under
coarse data observation and associated uncertainties, including missing values and sampling/measurement
errors. The stability in forecasting is induced from balancing impact of inputs over all time steps in
the networks. To analyze this property in various problem conditions, we adapt the recurrent networks
with memory structure to environmental time-series problems, such as forecasting water pollution, air
pollution, and ozone alarm. In the results, the recurrent networks with memory showed better performance
of forecasting in non-stationary environment and long-term time lags.

INDEX TERMS Environmental forecasting, recurrent neural network, long short term memory, stability.

I. INTRODUCTION
Artificial neural networks (ANN) of machine learning algo-
rithms have been most widely applied to environmental
modeling due to its powerful performance [1]-[11]. Since
the process-based and statitistical approaches had limitation
in model accuracy to predict complex system dynamics,
ANN has been regarded as one of the alternative modeling
methods to improve the model accuracy. Although there
are some skepticisms in using ANN due to lack of expla-
nation power related to its black-box structure, the power
to portray complex mechanisms of ecosystem has been
improved to some extent by doing a sensitivity analysis.
As a consequence, plenty of ANN research has recently
shown the satisfactory level of predictions of environmen-
tal phenomena such as algal blooms, water body’s toxicity,
rainfall-runoff, ground-level ozone concentration, PM2.5 air
pollution [1], [2], [7]-[11].

In many applications of machine learning, main focus
is often to determine an appropriate model structure for

improving only predictive power. Particularly for forecast-
ing purposes, crucial is identifying the linkage (e.g., peri-
odicity and serial correlations) between input and output
at a long time span. However, the linkage among ecolog-
ical entities may be even more complex, as they are non-
linearly intertwined. Due to the extremely high degree of
system complexity of our interest, the current generation of
machine learning seems inclined to improve model’s pre-
dictability rather than model’s interpretability. In this respect,
conventional ANNs such as multilayer perceptron (MLP)
have evolved to recursive structure such as recurrent neu-
ral network (RNN). In contrast to MLP, RNN’s time-across
vectors derive a competitive advantage, so that RNN may
benefit from the cumulative information derived from pre-
vious observations. Although MLP can also use time-lag
information, the fixed time-lagged inputs have limitation on
accommodating temporal dependency between input and out-
put. In this regard, the use of recursive structure in ANNS is
essential for time-series forecasting models.
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Nevertheless, RNN still suffers from the well-known gradi-
ent vanishing problem [12], [13]. This problem indicates the
phenomenon to reduce the difference of partial derivatives
between parameters at shallower layers when we stack deep
layers. The derivatives build a gradient used for updating
models toward an local optimum. In the case of recurrent
neural networks, passing hidden vectors to the next layer is
regarded as staking one more layer and therefore increasing
the used time steps to derive the final prediction amplifies the
gradient vanishing problem. The biggest disadvantage caused
by the vanishing problem is that RNN cannot correctly fore-
cast from observation in the long term. If the model Increases
the interval between time steps, the model may be able to
cover the long-term dependency as a macroscopic model but
the model cannot capture sophisticated dependency appearn-
ing in only microscopic phenomena.

Using a memory cell with RNN is a promising solution
for this problem as long short term memory (LSTM) [12].
In this type of networks using memory, it uses gated structure
to indicate when to combine received information and when
to apply it to the next layer. This gating can maintain high gra-
dient values of parameters in linking inputs at early time step
to a final output, which reduces the gradient vanishing effect.
Particularly for long-term time-series forecasting, a deep net-
work such as LSTM accounts more effectively for temporal
dependencies between inputs than RNN does. For this reason,
LSTM has shown a dramatic improvement compared to RNN
in many natural language processing applications as machine
translation, question answering, and usual sequential labeling
problems [14]-[17] where the length of dependent words can
be extremely long from the number of words in a sentence to
a document.

Aside from the accuracy improvement, LSTM can offer
more benefits from a perspective of forecasting stability.
Since LSTM maintains high impact to the final prediction for
inputs observed in all time steps, we can expect that the con-
tribution to build the final prediction value is distributed over
all time steps. This balanced contribution reversely implies
that any corruption of information at a specific time step loses
its impact to the final prediction. By doing so, deep structure
such as LSTM can provide more stable predictive power
in time-series forecast, compared to conventional neural
networks.

Our study aims to analyze the predictive stability of LSTM,
comparing with other popular ANNSs, in environmental fore-
casting. We also assess the impact of LSTM’s computa-
tional stability on predictive/forecasting performances using
complex and highly nonlinear environmental data. Moreover,
we offer the instruction to guide readers how to access and use
the method used in this study. Ultimately, it is expected that
the powerful deep learning neural networks can shed light on
environmental forecasting systems in the context of water and
air pollutions.

In Section II, we provide a background knowledge
about LSTM networks and environmental problems.
Section III addresses a property of LSTM enhancing stability
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in forecasting. Section IV proposes LSTM frameworks
designed for each environmental problem, and Section V
shows detailed experimental design to show the effect of
the LSTM property. Section VI analyzes the results and
Section VII discusses their meaning and impact for the
prediction problem. We make a conclusion at Section VIII.

Il. BACKGROUND

A. LONG SHORT TERM MEMORY BASED

RECURRENT NEURAL NETWORK

Recurrent neural network based on long short term mem-
ory (LSTM) has been proposed in late 1990 [12], which is
a type of recurrent neural network (RNN) [18] for handling
time-series data. As RNN, this model has time steps and
recursive edges between networks, but it derives the context
vector from a memory-shaped network.

output Y

( linear combination ]
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FIGURE 1. An example of forecasting process in LSTM for time-series
problems.

A LSTM model is shown in Fig. 1. In detail, a LSTM
network receives a context vector from previous time step and
an input vecor from data. Then it determines the next context
vector and gate vectors to control memory cell state vector.
The gates are usually composed of input, forget, output gate,
and a memory cell. The mechanism of this memory cell is
deriving a context vector for the next time step from adjusting
raw context vectors through the gates. Given an input data
at time # and a context vector A, a raw cell vector and input
vectors for each gate are created by one hidden layer. Then the
cell vector is multiplied by the input vector at the input gate.
The cell input is added to given previous cell vector weighted
by the forget vector. The result vector is then controlled again
by the output vector. There are many variants of composing
the LSTM cell networks, but they commonly uses the mech-
anisms for learning temporal impact.

The most well-known benefit of using LSTM instead of
RNN is relaxing gradient vanishing problem [13]. In predict-
ing a class at time ¢, the observation in old time steps is
difficult to affect the classification. In LSTM, the memory
cell including the gates can store the time to emit for old
observations, so that it can resolve the vanishing in RNN
based structures.

Therefore, LSTM is used for learning a model in domains
where the time delay between observation and class may
be long such as language translation [17]. Variants as gated
recurrent unit (GRU) and simple recurrent unit [19], [20]
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were reported to reduce training speed and to use less model
parameters, but significant improvement of prediction accu-
racy has not been reported yet. In this paper, we use widely-
known LSTM structure for more generality in applying our
conclusion.

This vanilla LSTM is composed of a hidden layer and
an output layer. The inputs of the hidden layer are observa-
tions x; at time ¢ and context k;_1 at t — 1. From the inputs,
we derive a hidden context vector h; by the definition of a
LSTM cell as the following equations.

i = sigm(Wix; + Uih;—1 + b))

o = sigm(Wox; + Uoh;—1 + b,)
f = sigm(Wsx; + Ugh;—1 + by)
¢, = sigm(Welx; + Uch;—1 + b.)

h, =tanh(@-¢, +f -¢,—1)-0
y, = Wih; + b

where y, is a raw output vector used for calculating cost
values. The gate and cell vectors i, o, f, ¢; are generated by
passing the concatenation of input x; and h;_; through a
sigmoid layer composed of weight matrices W, U, and a
corresponding bias vector. After obtaining ki, from the vec-
tors, the LSTM derives the final vector y, by applying linear
combination of the output layer composed of Wi and b;. The
final vector y, is used for calculating various costs depending
on applications.

B. TEMPORAL DEPENDENCY IN VARIOUS NEURAL
NETWORKS FOR TIME SERIES

MLP is the basic, but good performing approach to learn
complex nonlinear relationships between input and output
variables. Yet, it is known that the network is not suitable
for time-series problems, because the time length between
input and output is constant. Given that meaningful time-
lags between time-series variables are unknown, the model
should cover the maximum time steps to reduce the risk of
missing important old observations. The risk may be relaxed
by increasing the length of time-lags. However, the change
of length induces a dimensional increase of model, often
reducing predictivity due to data sparsity. Another problem
of MLP in learning the temporal dependency is assuming
uniform distribution over time steps. In an ideal condition,
MLP can represent temporal dependencies such as decayed
impact to the output variable by time. However, usual MLP
is trained with random initialization of weights and training
mechanisms have no bias on which variables to amplify.
Therefore, the approximated nonlinear function of MLP eas-
ily uses only a few variables selected without consideration
of temporal relations.

RNN is another popularly used neural network, which
solves the restriction of the fixing input sites in MLP.
However, in the perspective of learning complex temporal
dependency, RNN is still limited by the gradient vanishing
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problem [13] which critically decreases the impact of obser-
vations with large time lag. This phenomenon appears when
the network layers are deep, usually more than two, caused
by the information for training network weights disappears at
the shallow layers (close to the input layer) in gradient-based
optimization algorithms. The gradient is a vector composed
of partial derivatives of model parameters with respect to a
function, which indicates the update amount of the parame-
ters to maximally increase the function value at the current
model. Repeating updates by calculating the gradient at each
model, the algorithms converge to a local optimal. This gra-
dient is almost neutralized over parameters in the shallow
layers, because input variables are used to generate values of
all hidden nodes. Any reward from the final cost function to
hidden nodes is shared for all input variables, so the gradient
in the shallow layers is not any more informative to indicate
how to update for obtaining better cost. In RNN, time steps
are similar to depth because the same network is applied to the
results of the previous networks at each time step. Therefore
this vanishing problem equally appears in terms of time steps
and observation before two time steps is almost completely
ignored in training.

A representative structure of using memory structure with
RNN is LSTM. As mentioned in Section II, it solves the
gradient vanishing problem of RNN via using the memory
structure. Thus it can maintain high gradient of each input
regardless of its time step and generate sufficiently high
impact of inputs at specific time steps to outputs if it is
required. It is clear that this property dramatically ease the
restriction of learning the temporal dependency compared
to RNN. In the perspective of bias on time steps, MLP and
LSTM both have no restriction on learning any temporal
dependency.

C. WATER QUALITY FORECASTING
The eutrophication of freshwater systems is an internation-
ally important issue, seen worldwide, resulting from the
interaction of a wide variety of factors [21]. In particular,
cyanobacterial blooms are one of the world’s commonest -
and problematic - water pollution and eutrophication phe-
nomena, occurring in both lotic and lentic ecosystems [22].
Thus eutrophication has been an adequate experimental field
related to prediction of undesirable conditions in ecological
modeling. Since river ecosystems with large populations gen-
erally revolve around multiple anthropogenic impacts such as
dam construction and water resource supply limitations, there
are more difficult challenges in prediction of such phenomena
in relation to water quality deterioration [23]. Due to inaccu-
rate (or dissatisfied) prediction associated with great uncer-
tainty in process knowledge, many recent modeling projects
have attempted to reveal the possible relationship among
plankton dynamics, physicochemical parameters and climate
conditions using machine learning algorithms [24]-[26].

In water quality prediction of river, the long time depen-
dency may not be very important, because strong flow or
flooding may completely reset the states of ecosystems.

VOLUME 6, 2018



K. Kim et al.: Stable Forecasting of Environmental Time Series via LSTM RNN

IEEE Access

Even in previous literature, the networks showed a successful
improvement of the water quality prediction. However it is
not yet deeply discussed how complex temporal dependecies
should be considered in the problem which may be a key
issue to obtain more accurate models. In previous works using
MLP [3]-[7], most of the models manually determines the
length of time steps of inputs, called as memory (different to
the memory cell in LSTM). This approach implicitly suffers
from the uncertain constraint by fixing the time steps. In the
other approaches using RNN [1], [2], models can learn from
inputs in various time steps, however the gradient vanishing
problem has never been raised as an issue which implies
their implicitely downgraded performance by ignoring long
temporal dependencies.

D. AIR POLLUTION FORECASTING

Air pollution is another envionmental domain which we
confront in relation to public health. Various chemical
compounds, such as carbon monoxide (CO), nitrogen diox-
ide (NO»), ozone (O3), sulfur dioxide (SO3) and particles,
have become the main causes of many respiratory diseases.
For instance, lung cancer, cardiopulmonary illnesses are most
typical disease that caused by air pollutant [32], [33].

In previous works, MLP is used to predict maximum con-
centrations of air pollutants into the Palermo [34]. RNN with
LSTM and GRU is also studied in analyzing China National
Environmental Monitoring Center(CNEMC) data [35]. In air
pollution forecasting, it is also shown that 10 day measure-
ment can reduce errors less than 2% in neural networks [29].

E. OZONE ALARM

Ground-level ozone concentration has recently drawn atten-
tion to the public, since its abrupt fluctuation and high con-
centration were considered harmful and toxic to human in
relation to respiratory disease, decrease of crop productivity,
and climate changes. Previous studies have shown that rising
ambient ozone concentrations caused visible injury on plants
and threats yields of wheat and rice [36], [37]. It is also
reported that ozone can increase possibility of human disease
like Pneumonia and Pulmonary disease [38]. Moreover ozone
is greenhouse gas causing global warming and it makes hurt
ecosystem as well as human beings [39].

Neural networks and Bayesian networks have been applied
for ground-level ozone forecasting [40], [41] which selected
predictors based on linear and partial auto-correlation with
nonlinear sensitivity analysis. In those works, effective time
lags is approximately 14 days and fully connected feed for-
ward neural network shows that it can successfully estimate
daily maximum ozone level.

Ill. TEMPORAL IMPACT OF NEURAL NETWORKS

The impact of each input in various time steps is differently
trained in neural networks by their distinguished optimization
characteristics. In this paper, we focus on three major net-
works containing MLP, RNN, and LSTM rather than covering
all variants introduced with different topologies.
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FIGURE 2. Distinguished distributions of impacts of input noise values to
a final output between neural networks.

A. IMPACT DISTRIBUTION OF NEURAL NETWORKS

As different properties in learning mechanisms of RNN,
LSTM, and MLP shown in Section II, the impact of inputs
variables on the outputs has been distributed in different
ways. Using the explained bias, we illustrate an example
distribution in Fig. 2. In the case of MLP, there is no bias
on the impact of inputs, the selected variables completely
relies on the process of optimization. This optimization and
balance distribution is, however, somewhat unstable because
of huge variance of local optima by slight initial change
of weights. Typically in RNN, timely closer input variables
exert larger influences on prediction of desired outputs, while
LSTM maintains the influences of inputs throughout all time
steps minimizing bias. If an input at a time step has noise or
is omitted, prediction of output relies on its estimated value
and the other correct inputs. In the case of MLP, the output
will maintain correct value even if the wrong input has small
impact, but the output may critically change if the impact
of the wrong input is large. Unbalanced distribution of RNN
also has the same problem. LSTM, compared to two models,
balances the impact between all time steps and therefore it
can overcome the sudden drop of output accuracy. MLP and
LSTM both have no bias in determining lengths of sensitive
inputs, but the impact of inputs to an output may be all
focused on a few time steps in MLP while it is distributed
over time steps by combinatorial process of input information
over time steps in LSTM.

B. EMPIRICAL EVIDENCE OF IMPACT
BALANCING OF LSTM
Our preliminary result of sensitivity evaluation supports the
impact distribution example as shown in Fig. 4. To obtain the
result, we create a new test set by changing the value of a
randomly selected input variable at a time step in training
data The changed value is uniformly distributed values in the
range of mean=+tstandard deviation of the input variable in the
training data. After training the neural networks, we evaluated
the standard deviation of an output material in the newly
generated test set and averaged it over runs with changing
different variable and time step.

In this result, we can confirm that LSTM generate almost
no error on output even if wide range of error for a single
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input occurs. Compared to LSTM, RNN shows higher sen-
sitivity in the latest time steps and MLP shows significantly
high errors. In the case of MLP, the high average sensitivity
is observed because sensitivity is extremely high or low in
different runs. More detailed environment of this sensitivity
test is introduced in Section V.

The explanation of impact distribution and this experimen-
tal evidence implies that LSTM balances the impact on inputs
between time steps and the balancing reduces the error in
losing some information of inputs.

C. BENEFIT OF IMPACT BALANCING

Expected benefit of balancing impact of input time steps is
robustness to unexpectedly generated input errors. Because
RNN and MLP both have unbalanced impacts, randomly
selected time steps may generate large error, which leads to
sudden drop of forecasting performance. However, LSTM
distributes all impacts to over time steps and therefore such
sudden drop does not occur. In another interpretation, we can
expect that remaining correct time steps supports LSTM to
generate sufficiently accurate outputs even if there is a few
errors are introduced.

long term forecasting{tl t2 t3 7

missing value [tl Coo

noise 1 © B W B 7] 8

FIGURE 3. Unstable observation-environment in forecasting (long-term
forecasting, noise, missing values).
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FIGURE 4. Standard deviation (sensitivity) of output values generated by
random sampling of input variables in various time steps.

The scenario of using this robustness is shown in Fig. 3.
First of all, we can use it for stable forecasting when miss-
ing values are introduced. Missing value is a common phe-
nomenon where data is observed by human. For this reason,
human-collecting data are easy to include noise in the use
of trained models. Another example is long-term forecasting.
This example is understood as missing values from a few lat-
est time steps. In the example, models should forecast the out-
put from given input data with long time lags. Because LSTM
maintains impact of early time steps, it can again preserve
somewhat accurate outputs compared to other frameworks.
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IV. NETWORK CONFIGURATION FOR
ENVIRONMENTAL PROBLEMS
To analyze effects of balancing temporal impact of LSTM,
we evaluate MLP, RNN, and LSTM in three environmental
problems to forecast following materials. This section is com-
posed of the following four categories of configuration.

« common setting between problems

« specific setting for air pollution

« specific setting for water quality

« specific setting for ozone alarm

A. COMMON SETTING

We selected the simplest topologies for each network to
evaluate distinct effects of impact balancing. As the figure,
MLP is set to have a hidden and an output layer and activation
of hidden node is sigmoid function. RNN is a simple Elman
network [18], which concatenates hidden vector generated
at previous time step with current input vector. LSTM is
designed as the network represented in Section II, which is
a primitive LSTM topology. To apply them to the same time-
series modeling, we set MLP to receive inputs over time steps
as one single input vectors. Thus, the dimension of input
vector of MLP is the multiplication of maximum number of
time steps and the dimension of the input vector at a step in
RNN and LSTM.

Yiy1 = ANN() (raw output of ANN) (1)
Iy = (x,-)izi )
v = output(y,,,) (for forecasting) 3)

The goal of the networks is to predict correct output v by
generating its estimate v. To calcaulte the estimate with a
problem-specific output function, MLP, RNN, and LSTM
generate a raw output vector y,,; at time step ¢ + [ from
the given vector sequence I composed of input parameter
values x; at a time step i in ¢t — k to  — 1. For each problem,
the ANNSs use specifically defined output functions. In imple-
mentation of the ANNs, we modified open source! frequently
used in many other areas. We randomly initialize weights and
biases of networks from [-0.08, 0.08] for all networks. This
small range is selected to locate hidden vectors near the origin
of vector space, which helps training by locating all vectors
near effective regions of hyperplanes represented by a neuron.

To optimize the networks, we used gradient-based opti-
mization method with adaptive strategy to control learn-
ing rate via momentum [42]. Mini-batch approach is used
for exploration of optimization process, which separately
updates parameters for each mini-batch. The size of mini-
batch is 64 for all problems and mini-batches of full training
data are randomly shuffled in training. The mini-batch size
is one of usual small setting in training neural networks to
give sufficient randomness in gradient-based optimization for
more exploration ability.

To suppress overfitting, we equally applied sufficient regu-
larization via batch normalization to all networks [43] instead

1 http://deeplearning.net/tutorial/
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of other regularizations as L1, L2, and dropout [44]. In MLP
and RNN, batch normalization is only applied to the hidden
layer. In LSTM, the normalization is applied to the outputs
of LSTM cells which are used as inputs to the final output
layer. To reduce errors according to difference of statistics
between training and test set, we linearly interpolated batch-
normalized and original activations with a rate parameter and
decayed the parameter from 0.99 to near 107 in training.

In fact, our focus is not on finding the best hyper parameter
settings and topologies for environmental time series, but on
evaluating the difference of impact balancing of neural net-
works. For this reason, fine-tuning of settings is out of interest
of this paper and we selected reasonably good-working and
ordinary settings. Therefore, many recently proposed tech-
niques to train deep networks can consistenly improve overall
performance of the used networks as using many stacks of
layers, rectified linear units, pre-training of layers, group
normalization, better initialization, drop-out, and so on.

TABLE 1. Selected input and output variables in this paper (5: change,
«: three values at K-indea sea level pressures of 500, 700, 850 hpa).

problem |z input variables @4
water quality 17 conductivity
(WQ) alkalinity
[7], [27] turbidity
Secchi depth
silica
DO saturation
phosphate
dam discharge (four sites)
flow rate
rainfall
water temperature
pH
nitrate
air pollution 7 Temperature CcO
(AP) Benzene
[28], [29] Total Nitrogen Oxides
Nitrogen Dioxide
Relative Humidity
Absolute Humidity
Non-Metanic Hydrocarbons
ozone alarm 72 temperature (T) per hour
(0A) max, average, total T
[30], [31] wind speed (WS) per hour
max, average, total WS
T>:<
OT*
East to west WS*
6 East to west WS*
Relative Humidity*
ORelative Humidity*
North to south WS*
6North to south WS*
Geopotential Height*
dGeopotential Height*

output v
chlorophyll-a

danger or not

B. AIR POLLUTION

To evaluate the performance of networks in forecasting air
pollution, we used the data released by Center for Machine
Learning and Intelligent Systems, University of California,
Irvine.> We selected input variables and output variables as
shown in Table 1. The variables are base setting and are
adjusted for various empirical analyses in in Section V.

2https:// archive.ics.uci.edu/ml/datasets/Air+quality
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The output function for this problem is a scaled sigmoid
function defined as

V= a x sigm(ys41). 4

where y;; is the raw output value generated by linear com-
bination of the latest hidden vector. This function is used
for restricting the range of prediction values to (0, «). This
objective function is designed for the purpose of forecasting
whether the risk of pollution is sufficiently high or not, rather
than the exact metric values. For this reason, We empirically
tuned % to be located at sigm(0) where neural networks most
sensitively react. The constant « for air pollution is set by 24.
The cost function is defined as follows.

(v —7)?
L

(Ix,v)eD

cost(D) = 5)

This cost is a root mean squared error normalized by correct
output value v. As the reason of deciding the constant for
output scaling, we selected this normalization to train neural
networks more sensitive to the value of extremely high peaks,
but an intermediate value working as a criterion to decide
dangerous pollution.

This data is collected from sensors to observe the amount
of pollution materials and time interval between samples is
regularly one hour. To evaluate performance in varying data
set, we created cross validation sets for time-series. Each set is
composed of a training and a test set which covers sequential
time steps by their size N, and N. All cross-validation
sets are disjoint and sequetially located in total time-series
data. Given the fixed amount of time-series data, we adjusted
Ny and Ny, to the sufficiently large numbers for representing
most phenomena of the problem. The validation set to select
the best trained model is generated by random selection from
the training set. Detailed data statistics of this cross-validation
set is shown in Table 2.

TABLE 2. Statistics of cross validation data set (WQ: water quality,
AP: air pollution, OA: ozone alarm, a random seed is used for each run in
cross-validation).

problem  sets cases per set input astep total
train  valid  test  steps unit  steps

wQ 12 188 20 52 8  week 832
AP 10 2790 310 620 10 hour 9300
OA 4 365 365 365 30 day 2190

C. WATER QUALITY

For forecasting water quality, we used observed ecologi-
cal time-series data for 16 years from Nakdong river in
South Korea [7], [27]. The interval of observation is inconsis-
tent because of difficulty of human observation, but roughly
one week. We linearly interpolated this data to generate
weekly time-series. For brevity, we skip the description of all
detailed measuring methods and conditions for each material,
and the map of the river with its study sites, which are
all shown in the paper [7], [27] Selected input and output
variables are shown in Table 1. As air pollution data, we built
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cross-validation sets as shown in Table 2. Output and loss
function have the equal forms to air pollution problem, but
the scale constant « is set to 400.

D. OZONE ALARM

For ozone alarm problem, we used the daily data released
by the equal center of releasing the data for air pollution
problem.? In this problem, we set input and output variables
as Table 1 and generated cross-validation data as Table 2.
To generate missed values, we used linear interpolation.

TABLE 3. Summary of model setting (SD: standard deviation,
nRMSE: normalized root mean squared error, CE: cross-entropy).

parameter LSTM RNN MLP
common setting between problems
input
normalization  mean, SD mean, SD mean, SD
hidden layer
number 1 1 1
dimension 128 128 128
activation sigmoid sigmoid sigmoid
output
dimension 1 1 1
function scaled sigmoid  scaled sigmoid  softmax
scale 400 24 -
cost nRMSE nRMSE CE
optimizer AdaDelta AdaDelta AdaDelta
regularization batch-norm batch-norm batch-norm
WQ specific setting
input dimension 17 17 127
input time steps 8 8 1
AP specific setting
input dimension 8 8 80
input time steps 10 10 1
OA specific setting
input dimension 72 72 2160
input time steps 30 30 1

Because this problem is a binary classification, cost func-
tion is set to softmax differently to the scaled sigmoid of the
other regression problems.

e(YHrl)V
Zw e(ytJrl)W

which is a vector composed of probabilities to select a correct
class v. Then, its cost function is defined as cross entropy
between the probability distribution of correct classes and
estimated classes.

cost(D) = Z —logp(v) @)

(I;,v)eD

p(v) = (6)

Parameters of models for each problem are summarized
in Table 3. In the topology setting, 1 hidden layer is used for
all networks in all problems. This setting is the most basic but
potential to represent all complex relations between input and
outputs unless the hidden layer is too small. Then, we empir-
ically selected 128 nodes to give sufficient expression power
to the networks and used a recently developed effective regu-
larization method as batch normalization to avoid overfitting.

3 http://archive.ics.uci.edu/ml/datasets/Ozone+Level+Detection
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V. EXPERIMENT SETTING
We performed following tests to evaluate robustness of the
impact balancing of LSTM in the configuration of networks.
« long-term forecasting
« autoregressive long-term forecasting
 input noise
« missing value imputation

TABLE 4. Experiment conditions for test in unstable environment
(WQ: water quality, AP: air pollution, OA: ozone alarm, SD: standard
deviation).

condition wQ AP OA
time lag {1,2,3,4,5,6,7,8} {1,6,12,18,24} {1,3,5,7,9}
missing rate ~ {0.0, 0.1,---,0.9} {0.0,0.1,- - -,0.9} -
noise rate
SD=0.1 {0.0,0.1,---,0.9}  {0.0,0.1,---,0.9} -
SD=1.0 {0.0,0.1,---,09}  {0.0,0.1,---,0.9} -

A. LONG-TERM FORECASTING

We evaluated performance in longterm forecasting varying
time lag between output and the last input. Table 4 shows
intervals of the lag change in each application. To obtain sta-
tistically meaningful results, we applied the cross validation
set. Increasing time lag reduces the total time-series length,
but the composition of data is retained by using slightly
smaller time-series.

B. AUTOREGRESSIVE LONG-TERM FORECASTING

We performed the test in autoregressive modeling problems
which can be more accustumed to long-term forecasting.
In autoregressive modeling, the output variable to forecast
uses its observed value at previous time step, and therefore
the differential relation between outputs are trained rather
than the relation between other inputs. In this test, we only
added the output variable as an input variable to the setting
for long-term forecasting test.

C. FORECASTING WITH NOISY INPUT

Noise of observation is common phenomenon in environmen-
tal problems. To evaluate the effect of the impact balancing
with noisy inputs, we generated gaussian noise to original
input data whose input and output delay is 1 time step.
In detail, the Gaussian noise is generated for stochastically
selected variables with a given standard deviation, denoted
as noise-level in this paper. The exact equation for noise
generation is as follows.

x'=x-(14+N(,0)) ®)

where x is original value and x’ is the noise-imputed value
and N is the gaussian distribution. The rate of selected time
steps varies from 10% to 90% for each noise level which is
setto 0.1 or 1.

D. FORECASTING WITH MISSING VALUE
Missing observation is also easy to occur in problems relying
on human observation. As the noise test, we imputed missing
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FIGURE 5. Test errors in various time lags between final input step and output step for water quality and air pollution forecasting. (a) Water
quality mean. (b) Water quality SD. (c) Air pollution mean. (d) Air pollution SD.

values to stochastically selected time steps with varying prob-
abilities from 10% to 90%. When observed values at a time
step are missed, we imputed mean vector of all parameters
over the full training set. Therefore, the missing value test
is supposed to show effects in more generalized sampling
environment than the noise test and the amount error may be
stronger than the noise test. Detailed configuration values are
shown in Table 4.

VI. RESULTS
A. LONG-TERM FORECASTING PERFORMANCE

The results of performance test for three environmental prob-
lems are shown in Fig. 5 and Fig. 9. We evaluated mean and
standard deviation of root mean squared error widely used in
general regression evaluation. This measure is different to the
cost function used in training.

In the water quality problem, average errors slowly
increased in all networks by the increase of time lag between
input and output with small fluctuation. Standard deviation
also increased by the time with higher rate than the mean
values. Compared to MLP and RNN, the errors of LSTM
increases slowly. LSTM is the most accurate in forecasting
the closest step. These phenomena also appeared in air pollu-
tion forecasting. The phenomena are similar in air pollution
problem.

In ozone alarm
( 2 x precision x recall

precision+-recall

test, we evaluated F1-measure
), which is a widely used evaluation metric
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for binary classification. In this problem, F1 values of net-
works decreased by longer time lags, which implies the
increase of accuracy. In average, LSTM shows the highest
values compared to RNN and MLP. At the longest lag,
LSTM maintained higher values compared to RNN and MLP
critically dropping the errors. In case of MLP, the accuracy
decrease is relatively small, but overall accuracy is lower than
the other recurrent models. The accuracy of RNN was higher
than LSTM at the shortest time lag, but it rapidly decreases
to a worse point than LSTM at the longest lag.

B. LONG-TERM FORECASTING WITH

AUTOREGRESSIVE MODEL

We only performed autoregressive modeling only for air pol-
lution problem because of restriction on computational costs.
in the results shown in Fig. 10, the errors increased only in the
MLP result. Compared to nonautoregressive modeling, MLP
was more accurate. Standard deviation showed the similar
pattern of increasing errors by time lags as the slow increase
of errors in LSTM and rapid increase of MLP.

C. MISSING VALUE IMPUTATION

The results of missing value imputation is shown in Fig. 8.
We performed this test for regression problems. In the
graph (a), increasing missing rate induced more errors to all
models. Increasing rate of RNN is the highest and ends up to
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FIGURE 6. Test errors in various rates and strengths of generating noise for water quality forecasting. (a) Water quality mean.
(b) Water quality SD. (c) Water quality mean. (d) Water quality SD.
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FIGURE 7. Test errors in various rates and strengths of generating noise for water quality forecasting. (a) Air pollution mean.

(b) Air pollution SD. (c) Air pollution mean. (d) Air pollution SD.

generating the largest error when most observation is missing.
LSTM and MLP shows similar level of errors, but base errors
of LSTM is less than MLP by about 4.86 for overall time lags.

In air pollution forecasting, MLP largely increased errors by
time lags compared to RNN and LSTM. In comparison of
RNN and LSTM, errors were smaller in RNN than LSTM
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at the starting point, but LSTM increased with larger rate
and then generates higher error than RNN at the longest
lags. Standard deviation had similar pattern to water quality
forecasting, but RNN decreased the standard deviation by
time lags.

D. NOISE IMPUTATION

In noise imputation test of water quality shown in Fig. 6,
observed results were similar to the missing value test. RNN
had the highest increase rate and LSTM showed the lowest
mean and standard deviation of errors. MLP showed signif-
icantly higher errors. Increasing noise level from 0.1 to 1.0,
increase rate were amplified in all models. RNN is especially
affected by the noise level, showing rapid increase of mean
and standard deviation of errors by time.

In air pollution forecasting shown in Fig. 7, MLP shows the
highest errors and standard deviation at overall noise rates.
Compared to LSTM, RNN slowly increased errors by noise
rates, but LSTM showed the lowest errors and variances.
In the large noise-level setting, MLP still showed the highest
errors. LSTM in this case showed a higher increase rate
than RNN, but standard deviation was similar.

VIl. DISCUSSION
In the long-term forecasting test, we could confirm that
LSTM shows the most accurate results compared to MLP
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FIGURE 9. Test errors in various time lags between final input step and
output step for ozone alarm forecasting.

and RNN. In the autoregressive modeling, this superiority is
maintained. It is notable that the lowest standard deviation
across different time lags in all long-term test results. This
finding is strong empirical evidence to support our hypothesis
that the impact of inputs is balanced over time steps in LSTM.
We reason it that the low standard deviation is deemed as low
probability to cause sudden drop of accuracy given the same
level of information loss.

In the missing value and noise injection test, the lowest
standard deviation of LSTM implies high stability of the
performance under the unstable observation environments.
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Mean errors of LSTM is the lowest in water quality problems,
but RNN slightly exceeds the LSTM performance in air
pollution. This lower error reversely implies that temporal
dependency to represent in a model is so short that RNN
can have high accuracy. If the dependency length is small,
then, most noise values generated at the longer inputs are
ignored and therefore errors by noise values can be less
than LSTM.

In overall results, the LSTM shows the best accuracy in
almost all experiments. This observation is not surprising,
because the accuracy gain of using LSTM is well-known
in many other forecasting problems from time series and
sequential data. The key feature of the results is that LSTM
consistently shows significantly low variances compared to
the other types of neural networks. The low variance implies
that errors at some input time steps do not cause sufficient
change in the output. The cause of this small change is not
prematured convergence of training, because LSTM shows
the best accuracy in almost all experiments. Therefore, we can
derive a conclusion from the implications that the remaining
correct input data strongly maintain the correct output value
even if some errors are introduced. Why can LSTM stick to
the correct output values in unstable environments? The main
reason is because all input time steps of LSTM sufficiently
contribute to generate the output values not relying on a few
dominating time steps.
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VIil. CONCLUSION

In this paper, we evaluated stability of deep neural network
in environmental time-series regression and classification
problems. In many scientific applications, deep networks are
difficult to improve performance of existing machine learning
techniques, because of its high standard for the amount of
training data. However, they may need to be reconsidered to
use, because they are more robust to longterm forecasting,
noisy, and missing value imputation by balanced distribution
of impact to forecasting over times.

IX. IMPLEMENTATION ENVIRONMENT

This section describes the system and development environ-
ments for implementing the neural networks and setting the
experiments.

o OS: Unbuntu 16.04

« virtual environment manager: Anaconda 2.0

o Python: 2.7

« Python GPU Library: Theano 0.9

o Cuda Library: cuda 8.0

o computing power: 4 cluster nodes

« cluster node: single Xeon quad-core CPU, 128GB RAM,
two GTX1080Ti cards
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