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ABSTRACT Dimension reduction (DR) is an essential preprocessing for hyperspectral image (HSI)
classification. Recently, nonnegative matrix factorization (NMF) has been shown as an effective tool for
the DR of hyperspectral data given the fact that it provides interpretable results. However, the basic NMF
ignores the geometric structure information of the HSI data, thus limiting its performance. To this end,
a novel regularized NMF method, termed NMF with adaptive graph regularizer (NMFAGR), is proposed
for the spectral-spatial dimension reduction of hyperspectral data in this paper. Specifically, to enhance the
preservation ability of the geometric structure information, the NMFAGR performs the dimension reduction
and graph learning simultaneously. Regarding the mutual correlation between these two tasks, a graph
regularizer is added as an interaction. Moreover, to effectively utilize complementary information among
spectral-spatial features, the NMFAGR allocates feature weight factors automatically without requiring any
additional parameters. An efficient algorithm is utilized to solve the optimization problem. The effectiveness
of the proposedmethod is demonstrated on three benchmark hyperspectral data sets through experimentation.

INDEX TERMS Hyperspectral images, feature extraction, pattern recognition.

I. INTRODUCTION
Hyperspectral images (HSIs) are widely used in earth mon-
itoring, agriculture research, and mineral detection [1]–[3].
These applications often need the classification of each pixel
in the image. Due to the fact that there are hundreds of
spectral bands for sampling, HSI data is high-dimensional
and contains rich spectral and spatial information for
accurate classification of various materials in the observed
scene. The performance of classifiers deteriorates as the
dimension increases because of a lack of training samples
(Hughes phenomenon [4]). Meanwhile, high-dimensional
data always result in high computation costs and huge storage
capacity [5]. Thus, to obtain a more accurate classification
performance, a dimension reduction (DR) procedure is often
taken as a preprocessing step.

As a preprocessing technique for classification, DR aims to
find a low-dimensional representation for high-dimensional
data without losing desirable information relative to the orig-
inal data. DR contributes to alleviate the small-sample-size
problem and to improve the performance of the

classifier [6]–[11]. The widely used unsupervised DR meth-
ods include: principal component analysis (PCA) [12], inde-
pendent component analysis (ICA) [13], and non-negative
matrix factorization (NMF). PCA seeks an orthogonal pro-
jection to maximize the global data variance. ICA assumes
that the sources are statistically independent and recovers
them from the observed signals. Both PCA and ICA cannot
ensure that the data in the low-dimensional representa-
tion space are all non-negative [14]. In contrast, nonneg-
ative matrix factorization (NMF) [15]–[19] can preserve
nonnegativity by imposing the nonnegative constraint on
the low-dimensional representation. The negative values
lack any physical meaning since HSI data are nonnegative
[14], [20], [21]. More importantly, NMF yields additive
combinations. The additivity has a close relationship to HSI.
This is because each pixel measurement is often modeled
as a positive mixing of reflectance values of the materials
in the scene measured by the pixel. From a geometric view,
NMF aims to determine a convex cone that ‘‘well describes’’
the data. Based on this view, many geometric-based NMF
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method for the analysis of HSI have been proposed in the last
decade [17], [22], [23].

Recently, various researchers have shown that high-
dimensional data in the Euclidean space cannot be uniformly
filled up by the HSIs. These image data can be regarded
as sampled data from or near a submanifold of an ambient
space [24]–[27]. To increase the learning performance by
considering the underlying manifold structure of HSI data,
many graph-based DR methods have been proposed for HSI
processing [28]–[30]. These methods mainly employ two
consecutive independent steps: the first step encodes theman-
ifold structure information by constructing a neighborhood
weights (similarities) graph matrix from the given HSI data,
and the second step performsDR on the HSI data based on the
generated graph matrix. Although the performance of these
graph-based DR approaches is prominent in HSI processing,
its efficiencies can be improved since the performance of DR
methods is mostly governed by how effective the graph is
constructed. At the same time, these methods utilize fixed
graphs without a learning mechanism which is proved to be
powerful and widely utilized in machine learning areas [31].

The above DR methods are spectral-based methods. They
use the spectral information to represent each pixel. In fact,
for HSIs, the observed pixels in the images are spatially
related. In terms of the classification of HSIs, nearby pixels in
HSIs aremeasured from spatially closed area, very likelywith
the same labels [32]. The low-dimensional representation
based on only the spectral information may be insufficient
and can lead to under-classification [1].

Many methods that adopt spectral-spatial-based DR have
been developed in recent years [32]–[35]. Among such meth-
ods, Zhou et al. proposed a spatial and spectral regular-
ized local discriminant embedding (SSRLDE) method for
the dimension reduction process of hyperspectral data [5].
Zhang et al. proposed the multiple-features-combining
(MFC) approach [33], and the multiple-features t-distributed
stochastic neighbor embedding (MSNE) [34]. Both incorpo-
rated spectral feature and spatial features (such as spectral,
shape, texture and morphological features) into the dimen-
sion reduction process. Wen et al. devised an orthogonal
NMF-based method which can not only achieve a non-
negative factorization but also exploit the complementary
information that arises among heterogeneous features [35].
However, most of the above mentioned spectral-spatial based
methods requires learning an additional parameter to thor-
oughly explore the complementary properties of multiple
HSI features.

In this paper, we propose a novel regularized NMF model
called NMF with Adaptive Graph Regularizer (NMFAGR)
for spectral-spatial dimension reduction of HSI data. It is
different from most of the existing graph-based DR methods
for HSI data in two significant aspects. The first one is
that NMFAGR performs dimension reduction and learns
a shared graph weights matrix for spectral-spatial features
simultaneously. The second is NMFAGR learns optimal
weights for spectral-spatial features automatically without

requiring an additional parameter. Specifically, NMFAGR
extends the standard NMF by integrating an adaptive graph
regularizer into the basic NMF model. The proposed method
improves the neighborhood preserving property of the low-
dimensional representation matrix. Therefore, the classifiers
obtain better performance when taking such optimal repre-
sentation as input.

The following parts of this paper will be organized as
follows. In Section 2, a brief review of the basic NMF and
the graph regularizer is made. Section 3 introduces Auto-
weighted Graph Learning for Multi-feature Learning and our
proposed NMFAGR algorithm, followed by its optimization
algorithm. Section 4 provides the results of the experimen-
tation on three hyperspectral data sets that are publicly
available. Finally, we provide some concluding remarks in
Section 5.

II. NMF AND GRAPH REGULARIZER
Dimension reduction is made by finding a low-dimensional
representation V. Specifically, given a data matrix X =

[x1, · · · , xn] ∈ Rm×n
+ , in which m is the feature dimension

and n denotes the number of samples. NMF seeks a nonneg-
ative basis U ∈ Rm×d

+ and an encoding matrix V ∈ Rn×d
+ ,

whose product can approximate well the original matrix X.
As d � m and d � n, NMF yields low-dimensional
representation of the original data. V can be regarded as the
new representation of the input data. The optimal value of
U and V can be found by solving the following optimization
problem:

OF = ||X− UVT
||
2
F , s.t. U ≥ 0, V ≥ 0. (1)

where || · ||F is Frobenius norm.
Due to the existing manifold structure of HSI data,

manifold-based dimension reduction methods have been suc-
cessfully used for remote sensing [24]. The goal of these
methods is to find the low-dimensional representation with
respect to the manifold structure of HSI data. To this end,
a graph regularizer is added into the objective function
of dimension reduction. This regularizer is described in
[36] and [37] as follows:

O =
∑
i,j=1

∥∥∥VT
i. − VT

j.

∥∥∥2
F
Wij (2)

= Tr(VTDV)− Tr(VTWV)

= Tr(VTLV).

where Tr(·) denotes the trace of a matrix and VT
j. =

(vj1, vj2, . . . , vjr )T. W is the graph weights matrix and D is
a diagonal matrix whose entries are column sums of W,
Djj =

∑
jWij. L = D−W, which is a graph Laplacian

matrix. Please see [24] for the details of constructing the
graph weights matrix.

By minimizingO, we expect that if two pixels xi and xj are
close (i.e., Wij is big), then Vi. and Vj., the low-dimensional
embedded vectors of these two data samples are also close to
each other.
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III. PROPOSED APPROACH
Consider that we obtain S types of spectral-spatial features
(e.g., texture, spectral, and morphological features, S = 3),
the sth feature matrix is represented as X(s) ∈ Rms×n,
(s = 1, 2, . . . ,S), in which s denotes a specific feature within
S features in total, ms is the dimension of the sth feature,
and n represents the number of samples. After stacking all
the feature vectors, we have the multiple-feature data set
as Xm×n, in which

∑S
s=1 ms = m.

Most of existing graph-based DR methods for HSI data
find low-dimensional representations based on a fixed graph
matrix. The corresponding drawbacks are: (1) the quality of
such representations is sensitive to that of the graph construc-
tion as it lacks a learning mechanism; (2) there is no inter-
action between the low-dimensional representation learning
process and that of the graph construction. (3) Regarding the
complementary information among spectral-spatial features,
an extra weight parameter is required to learn which may be
impractical.

To address the above-mentioned limitations, we proposed
a novel regularized NMF model for dimension reduction
of HSI data. The proposed method finds an optimal low-
dimensional feature representation of the high-dimensional
multiple-feature data set X with respect to the geometrical
structure of HSI data. Specifically, the process of graph
learning is combined with that of the dimension reduction
for better capturing the geometrical information of HSI data.
Moreover, to differentiate the importance among spectral-
spatial features, a novel strategy is adopted to learn feature
weights during the process of graph learning. It is nearly
parameter-free so that be more practical. Following this,
we will first introduce the auto-weighted graph learning
method from [38]. Afterwards, the optimization strategy of
the proposed algorithm will be introduced in detail.

A. AUTO-WEIGHTED GRAPH LEARNING FOR
MULTI-FEATURE LEARNING (AGL)
The aim of AGL [38] is to learn a common weights matrix
shared by different types of features. In addition, this model
can automatically assign an ideal weight for each feature
without additional weight and penalty parameters. The opti-
mal graph weights matrix can be learned by solving the
following optimization problem:

min
W

∑
s

θs
∑
i,j

‖xsi − x
s
j ‖

2
2 wij + γ ‖W‖

2
F ,

s.t. wT
i 1 = 1, 0 ≤ wij ≤ 1. (3)

where

θs = 1
/
2
√∑

i,j

‖xsi − x
s
j ‖

2
2wij, (4)

xsi is the sth feature of the sample i, and γ is used to keep the
weights distribution smooth. W denotes the learned weight
matrix shared by each feature.

As θs is dependent on the target variable W, that is
to say the value of θs can be updated correspondingly.

If feature s is optimal, then
∑

i,j ‖x
s
i − xsj ‖

2
2 wij should be

small, and thus the learned weight for feature s is large
according to the definition of θs and vice versa. This method
optimizes the weights meaningfully and can obtain better
results than the classical combination approach which assigns
equal weights to all the features [33]–[35].

B. NMFAGR
To better preserve the geometric structure information,
we performs the dimension reduction and the graph learn-
ing simultaneously. Specifically, we incorporate the AGL as
a regularizer into the basic NMF model. Considering the
mutual correlation between the low-dimensional represen-
tations and the learned graph, a graph regularizer is used
as an interaction. The obtained objective function can be
considered as:

min f (U,V,W) = ||X− UVT
||
2
+ αTr(VTLV)

+

∑
s

θs
∑
i,j

||xsi − x
s
j ||

2
2wij + γ ||W||

2
F ,

s.t. U ≥ 0, V ≥ 0,VTV = I,wT
i = 1, 0 ≤ wij ≤ 1. (5)

where the first term is used to learn the low-dimensional rep-
resentation. The second term can be regarded as an interaction
between the low-dimensional representation and the learned
graph. The third and fourth terms are used to learn the graph
matrix.

C. OPTIMIZATION FOR NMFAGR
Recently the Optimal Gradient Method (OGM) method has
been applied to solve the sub-problems of NMF and its
variants [39]–[41]. Here we extend this idea to NMFAGR.
For notational simplicity, we have f (U,V,W) as f1(U) when
V andW are fixed, and f2(V) when U and W are fixed.
1) FixV andW, and solve forU. The optimization reduces

to

min f1(U) = ||X− UVT
||
2
F , s.t. U ≥ 0. (6)

The OGM algorithm can be used to resolve the above
constrained optimization problem.

2) Fix U and W, and solve for V. The orthogonal con-
straint can be reformulated as [41]:∑

i 6=j

vTi vj = Tr(VQVT), Q = 1− I (7)

where 1 represents the matrix whose elements are all
one and I is the identity matrix. Then, (5) can be
reformulated to:

min f2(V) = ||X− UVT
||
2
F + αTr(V

TLV)

+βTr(VQVT). (8)

To extend the OGM algorithm to solve the above con-
strained problem (8), we have the following lemma.
Lemma 1: The cost function f2(V) in (8) is convex with
respect to V on the convex set V ∈ Rn×d

+ .
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Proof: As the function f2(V) is continuous, twice
differentiable, it is convex with respect to V ∈ Rn×d

+ if
the Hessian matrix

∇
2
Vf = (UTU+ βQ)⊗ In + Id ⊗ αL

is semidefinite on the convex set Rn×d
+ , which is

quite obvious since ∇2
Vf is nonnegative, implying that

vec(V)T(∇2
Vf )vec(V) ≥ 0 for any V ∈ Rn×d

+ , where
vec(V) is the vectorization of V ∈ Rn×d

+ . As a result,
once the matrix U is fixed, the minima of f2(V) will
always exist and any local minimum of f2(V) is also a
global one. �
Lemma 2: The gradient of f2(V) is Lipschitz contin-
uous and the Lipschitz constant is Lv =

∥∥UTU
∥∥
2 +

‖αL‖2 + ‖βQ‖2.
Proof: The gradient of f2(V) is: ∇V f2(V) =

αLV + V(UTU + βQ) − XTU. Since (8) is a linear
combination of f (U,V) = ||X − UVT

||
2
F , µ1(V) =

tr(VTLV), and µ2(V) = tr(VQVT). The Lipschitz
constant of ∇V f2(V) can be calculated as a linear com-
bination of the Lipschitz constants of the ∇f (U,V),
∇µ1(V), and ∇µ2(V), wherein ∇f (U,V), ∇µ1(V),
and ∇µ2(V) are the gradient of f (U,V), µ1(V), and
µ2(V), respectively. According to [39], the Lipschitz
constant of ∇f (U,V) and ∇µ1(V) are

∥∥UTU
∥∥
2 and

α ‖L‖2, respectively.
Then, for any two matrices V1,V2 ∈ Rn×k

+ , one can
derive that

‖∇µ2(V1)−∇µ2(V2)‖2F
= ‖(V1 − V2)(βQ)‖2F

= tr
(
(P6PT(V1 − V2))T(P6PT(V1 − V2))

)
(9)

where P6PT is the singular value decomposition of
βQ, and tr denotes trace. Let the largest singular value
be δ. It can be derived from (9) that

‖∇µ2(V1)−∇µ2(V2)‖2F

= tr
(
PT(V1 − V2)(V1 − V2)TP62

)
≤ δ2tr

(
PT(V1 − V2)(V1 − V2)TP

)
= δ2 ‖V1 − V2‖

2
F (10)

where the remaining two equations come be derived
from the fact that PTP and PPT are identity matrices.
From (10), we can find a constant Lq (e.g., Lq = δ),
such that

‖∇Vf2(V1)−∇Vf2(V2)‖F ≤ Lq ‖V1 − V2‖F .

Therefore, ∇Vf2(V) is Lipschitz continuous and the
Lipschitz constant is the largest singular value of
UTU + αL + βQ, i.e., Lc = UTU + αL + βQ. This
completes the proof. �
By replacing Lc and ∇V f2(V) with the step size
(e.g., Lu) and gradient (e.g., ∇Uf1(U)), respectively,
we can obtain the optimal solution of U.

3) FixU andV, and solve forW. Denote dxij =
∑

s θs‖x
s
i−

xsj ‖
2
2, which represents the weighted distance between

data points xi and xj. Then, the problem (5) is reformu-
lated as:

min
W

∑
i,j

(dxijwij + γw
2
ij)+ α

∑
i,j

‖vi − vj‖22 wij

s.t. wT
i 1 = 1, 0 ≤ wij ≤ 1. (11)

Denote dvij = ‖vi − vj‖
2
2, the optimal solution for W in

problem (11) can be obtained by an efficient iterative
algorithm proposed in [38]:

wij =
η − dij
γ

for j = 1, 2, . . . k

wij = 0 for j = k + 1, . . . n (12)

where dij = dxij + αd
v
ij, η = ((γ +

∑k
j=1 dij)/k), and

k = {j|η − dij > 0, j = 1, 2, . . . , n}.

Algorithm 1 summarizes the proposed method.

Algorithm 1 The Framework of NMFAGR for HSI
Dimension Reduction
Input:

A hyperspectral remote-sensing image;
Output:

The low-dimensional representation of the input hyper-
spectral remote-sensing image;

1: Construct spectral-spatial feature data set X = {X(s) ∈

Rms×n}Ss=1 by extracting spectral-spatial features from
the input hyperspectral remote-sensing image;

2: Randomly select a subset of samples from X for learning
projection matrix U;

3: Initialize θs = 1/S, Ut ,Vt ,Y0 = Ut ,Z0 = Vt , δ0 = 1,
Lu =

∥∥UTU
∥∥
2, t = 0;

4: Update U, V;
1) Update Ut = P+(Yt −

1
Lu
∇Uf1(Yt )), where P+

represents the non-negative projection;

2) Update δt+1 =
1+
√

4δ2t +1
2 ;

3) Update Yt+1 = Ut +
δt−1
δt+1

(Ut − Ut−1);
4) t ← t + 1;
5) Repeat steps 1) – 4) until the convergence criterion

is met;
6) UpdateV by replacingYt ,Lu and∇Uf1(U) withZt ,

the step size (e.g., Lv) and gradient (e.g., ∇Vf2(V)),
respectively;

7) Update the graph matrix W by solving prob-
lem (11);

5: For test data, the low-dimensional feature representation
is obtained by D = U†X, where U† represents the
pseudo-inverse of U.

6: return The new representation of the input hyperspectral
remote-sensing image in low-dimensional subspace;
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TABLE 1. Class–specific accuracies in percentages on Indian Pines.

TABLE 2. Class–specific accuracies in percentages on the University of Pavia.

TABLE 3. Class–specific accuracies in percentages on the Pavia Centre.

IV. EXPERIMENTS AND DISCUSSION
In this section two public hyperspectral data sets are used
to conducted experiments. The task of classification is uti-
lized to evaluate the performance of the proposed method.
In our experiments, we first apply dimension reduction meth-
ods on the spectral and spatial features to find their low
dimensional representation, and then employed the SVM
classifier for classifying the test samples in that new feature
representation [42].

A. DATA SETS
Indian Pines Data Set: The data set was collected by
using the AVIRIS sensor over the Indian Pines region,

northwest Indiana, USA, in 1992. The image scene consists
of 145 × 145 pixels. The total number of spectral bands
for sampling is 220. In experiments, 20 spectral bands were
discarded because of noise and the water-absorption phenom-
ena. There are 16 classes and 10,249 samples in total, with
varying from 20 to 2,455 in each class.

University of Pavia Data Set: This data set was acquired
by using the Reflective Optics System Imaging Spectrometer
sensor (ROSIS) during a flight campaign in 2003 over the
urban area of Pavia University, northern Italy. The collected
image contains 610× 340 pixels. The total number of spectral
bands for sampling is 103. The data used for experiments has
nine classes with a total of 42,776 samples.
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FIGURE 1. Classification maps for Indian Pines: (a) PCA features with SVM classifier, (b) LPP features with SVM classifier, (c) NPE features with SVM
classifier, (d) MFC features with SVM classifier, (e) MONMF features with SVM classifier, (f) NMFAGR features with SVM classifier, (g) Color map of ground
truth, and (h) the class legends for the Indian Pines data set.

Pavia Center Data Set: This data set was also acquired
by the ROSIS sensor during a flight campaign over the
city center of Pavia, Italy. The number of spectral bands in
the acquired image is 102, and the geometric resolution is
1.3 meters. The data used for experiments has nine classes
with a total of 7456 samples. This data was used in the
2008 IEEE Geoscience and Remote Sensing Data Fusion
Technical Committee contest.

B. SPECTRAL AND SPATIAL FEATURES
In our experiments, we employed three types of features,
i.e., spectral feature, texture feature, and morphological fea-
ture, as the raw representation of the input HSI data.

1) The spectral feature: The reflectance value in every
spectral band is used to represent the spectral feature
of a pixel.

Xspectral = [x1, x2, . . . , xe]T (13)

where xi is the reflectance value of the pixel in spectral
channel i.

2) The texture feature: The gray-level co-occurrence
matrix (GLCM) is employed to collect the texture
feature. We firstly use the PCA transformation to
obtain the principal component images from the raw
image [43]. After that, the GLCM is employed to
these images. In our experiments, three nonnegative
values: energy, contrast, and homogeneity were used
as measures with which to obtain the texture feature.
The texture feature of a pixel is obtained by:

Xtexture = [xene, xcon, xhom]T (14)

These three measurements are measured by employing
an inter-pixel distance in four directions (0◦, 45◦, 90◦,
and 135◦); Then, we averaged these obtained mea-
surements over the four directions. Following [35],
the moving window size and the quantitative level are
set to be 27 and 64, respectively.

3) The morphological feature: An extended attribute
profile (EAP) is employed to describe other spatial
attributes of the image [44], [45]. EAP is extended
based on the attribute profiles (APs). APs are collected
by employing a sequence of morphological attribute
filters (AFs) to a scalar image. Given a sequence of
ordered criteria {B} = {B1,B1,B1, . . . ,Bc}, an AP is
extracted by using a sequence of attribute−thinning
and attribute−thickening transformations to the input
image f

APf = {φb(f ), . . . , φ1, f , r1(f ), . . . , rb(f )} (15)

where φi and ri denote the thickening and thinning
operation with respect to criterion Bi, respectively. The
EAP is collected by obtaining an AP on each of the
first q features (Fi) calculated employing a feature
extraction technique on the hyperspectral image

EAP = {AP(F1),AP(F2), . . . ,AP(Fq)}. (16)

Following [35], the area attribute is employed to build
an EAP. We also perform PCA on the hyperspectral
image to obtain the first few principal component (PC)
images prior to extracting the morphological features
by employing EAP on these images.
Nevertheless, it must be pointed out that our pro-
posed dimension reductionmethod is actually a general
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FIGURE 2. Classification maps for the University of Pavia: (a) PCA features with SVM classifier, (b) LPP features with SVM classifier, (c) NPE features with
SVM classifier, (d) MFC features with SVM classifier, (e) MONMF features with SVM classifier, (f) NMFAGR features with SVM classifier, (g) Color map of
ground truth, and (h) the class legends for the University of Pavia data set.

framework that is capable of dealing with any types of
spectral-spatial features as input.

C. EXPERIMENTAL DESIGN
In order to validate the effectiveness of our proposed method,
we compared it with several state-of-the-art dimension reduc-
tion methods. In our experiments, all of these methods were
performed on long vectors, which were concatenations of
spectral and spatial features. Moreover, we addressed two
state-of-the-art multiple-feature learning methods, i.e., the
MFC [33], and the MONMF [35]. The comparison methods
were listed as follows:

1) Traditional dimension reduction method PCA;
2) Graph-based dimension reduction NPE;
3) Graph-based dimension reduction LPP;
4) Spectral-spatial dimension reduction method

MFC [33];

5) Spectral-spatial dimension reduction method
MONMF [35];

6) Proposed method NMFAGR.
Each HSI data set was randomly split into training and

test sets. Ten samples per class were selected for train-
ing and the remaining for testing. The implementations of
PCA, NPE, and LPP are publicly available.1 The MFC and
MONMF implementations were provided courtesy of their
authors. For fairly comparison, we adopted cross-validation
to obtain the optimal parameters of each method. The reg-
ularization parameter setting of MFONMF was the same as
the original paper [35]. There are three parameters in the pro-
posed method. The analysis of parameters will be introduced
later.

1http://www.cad.zju.edu.cn/home/dengcai/
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FIGURE 3. Classification maps for the Pavia centre: (a) PCA features with SVM classifier, (b) LPP features with SVM classifier, (c) NPE features with SVM
classifier, (d) MFC features with SVM classifier, (e) MONMF features with SVM classifier, (f) NMFAGR features with SVM classifier, (g) Color map of ground
truth, and (h) the class legends for the Pavia Center data set.

D. EXPERIMENTAL RESULTS
Table 1, Table 2, and Table 3 show the class-specific accura-
cies, the overall accuracies (OAs), and kappa coefficients (κ)
in percentages. The number in each bracket represents the
optimal dimension of the reduced features. The six dimension
reduction-based classification maps of these three data sets
are presented in Fig. 1, Fig. 2 and Fig. 3. From the results,
NMFAGR outperforms other methods in terms of OA and
kappa coefficient. On the India Pines data set, the proposed
method achieved a 2.04% and a 2.97% improvement in terms
of OA and kappa coefficient, compared with the second best
result. On the Pavia University data set, the proposed method
produced a 4.18% and a 5.48% improvement in terms of
OA and kappa coefficient, when measured with the second
highest result. On the Pavia center data set, the proposed
method achieved a 2.60% and a 3.66% improvement in terms

of OA and kappa coefficient, compared with the second best
result.

Compared with the traditional dimension reduction
method (e.g., PCA), the proposedmethodNMFAGR achieves
an improvement. This is because NMFAGR can effectively
and efficiently make use of the geometric information of
HSI data to guide the dimension reduction process. When
evaluated with graph-based methods (e.g., LPP and NPE),
the proposed method NMFAGR obtains a better perfor-
mance. This could be attributed to NMFAGR performing
dimension reduction and graph learning simultaneously.
Compared with multi-feature learning methods (e.g., MFC
and MFONMF), NMFAGR obtains better performance. This
is because NMFAGR learns the weight factors automatically
such that it effectively make use of complementary informa-
tion among different types of features.
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FIGURE 4. The changing proportions of training samples with respect to OA for data sets (a) Indian Pines, (b) and University of Pavia.

FIGURE 5. Parameter sensitivity of Indian Pines and University of Pavia data sets. (a) Regularization parameter α with respect to OA. (b) Parameter β with
respect to OA.

Fig. 4 illustrates the OA of all methods on the Indian Pines,
and PaviaU data sets with varying proportions of training
samples. The proposed method NMFAGR is superior to other
five methods in all cases. Graph-based dimension reduced
methods perform better than traditional dimension reduced
method PCA.

For the proposed method, there are three parameters, e.g.,
two regularization parameters α, and the number of subspace
dimension d . In the experiment, α and β are chosen from
1 to 10, where the interval is 1. Then classification OA with
respect to these two parameters is reported in Fig. 5. From
the results, we can see that the proposed method is stable with
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FIGURE 6. The reduced dimension d with respect to OA for datasets (a) Indian Pines and (b) University of Pavia.

TABLE 4. Computational cost of different dimension reduction methods (in seconds).

respect to α. In addition, NMFAGR is stable when the β is set
to be bigger than 6. For the India Pines dataset, the reduced
dimension d is selected from 5 to 35. For the University of
Pavia, d is chosen from 5 to 50. The corresponding results
are shown in Fig. 6. We can see that the inflection point from
the classification results is around the dimension of 25 for the
India Pines and 30 for the University of Pavia.

Table 4 shows the computation time for the various algo-
rithms on the three data sets. Only the computational time in
the process of dimension reduction is recorded. Each method
is implemented using MATLAB R2017a installed in a per-
sonal computer with Intel i7–6700 Quad Core Processor and
16 GB of RAM, and the Microsoft Windows 7 operational
system. From Table 4, We observed that PCA is the fastest
while MONMF is the slowest. This is because the MONMF
method requires many iterations to guarantee convergence.
In contrast, the proposedmethod is much faster since it adopts
the optimal gradient method to accelerate the convergence
speed.

V. CONCLUSIONS
We proposed a new graph-based NMF method in this
paper known as NMFAGR by incorporating an AGL

regularization constraint into the NMF model. A major
advantage of this method is that NMFAGR learns both
the low-dimensional representation and an optimal graph
simultaneously. To improve the locality preservation of
the encoding matrix, NMFAGR establishes an interaction
between the obtained low-dimensional representation and
the learned graph. Moreover, to effectively differentiate the
importance of spatial-spectral features, we used a novel way
to lean feature weight factors without adding any param-
eter. Experimentation on three hyperspetral imagery data
sets show the superiority of our algorithm as a dimension
reduction method.
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