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ABSTRACT A genetic algorithm (GA) combines the restriction enzyme mining core of single nucleotide
polymorphism (SNP) restriction fragment length polymorphism (RFLP) to design polymerase chain reaction
(PCR)-RFLP primer pairs for SNP-based genotyping with feasible estimated GA parameters. However,
this GA method is easily trapped into local optima. An improved design of PCR-RFLP assay primers for
SNP genotyping is needed. A memetic algorithm (MA) was used to design more robust primers for the
PCR-RFLP assay to enable SNP genotyping. The novel restriction enzymes hunting (REHUNT) package
was embedded into the MA method to provide available restriction enzymes. A formula to calculate more
accurate thermodynamic primer melting temperatures was also introduced. Using the criteria of the GA
method, in silico simulations for the MAmethod under different parameter settings were performed with the
SNPs of SLC6A4, and results were compared. AppropriateMAparameter settingswere superior in providing
robust PCR-RFLP primers to achieve SNP genotyping compared with the GA method. Improvements
included an accurate thermodynamic SantaLucia’s formula for the calculation of melting temperature, use
of the novel REHUNT for restriction enzymes mining, and selection of primers that better conformed to
the primer constraints. The appropriate parameter settings for the proposed MA method were identified and
carefully evaluated to design robust PCR-RFLP primers for SNP genotyping. Compared with the former GA
method, the MA method is more feasible for PCR-RFLP SNP genotyping.

INDEX TERMS Genetic algorithm, memetic algorithm, polymerase chain reaction-restriction fragment
length polymorphism, single nucleotide polymorphism genotyping.

I. INTRODUCTION
Polymerase chain reaction-restriction fragment length poly-
morphism (PCR-RFLP) is an established, inexpensive, and
accurate laboratory technology to study the origins and vari-
ations in genetic mutations, as well as complex genetic dis-
eases [1], [2]. In many genetic variations, single nucleotide
polymorphisms (SNPs) are used as biological markers,
and are the most common markers in humans. SNPs
have been used for diverse applications, including foren-
sics [3], personalized medicine [4], evolutionary studies [5],

pharmacogenetic analysis [6], [7], preventive medicine [8],
[9], and malignancy studies [10], [11]. To measure these
genetic variations, SNP genotyping uses PCR-RFLP to deter-
mine the genotype included in the experimental sequence.
Before performing PCR-RFLP it is absolutely necessary
to identify the available restriction enzymes and practical
primers.

There are several PCR-RFLP assay systems for SNP
genotyping, which include V-MitoSNP [12], SNP-RFLPing
[13]–[15], SNP Cutter [1], Methyl-Typing [16], and
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Prim-SNPing [17]. These are useful for specific functions, but
are limited in the ability to design PCR-RFLP assay primers
to enable SNP genotyping [18]–[22]. In 2013, a valid method
that implemented a genetic algorithm (GA) with the updated
restriction enzymes mining core of SNP-RFLPing [13]–[15]
was proposed as an effective means of designing PCR-RFLP
assay primers for SNP genotyping. Pivotal parameters of the
GA method have been measured with the goal of obtaining
more feasible results. However, the GA method is fatally
flawed because it is easily trapped into local optima. Thus,
the design of PCR-RFLP assay primers for SNP genotyping
needs to be improved.

A local search mechanism can effectively avoid the prob-
lem. A memetic algorithm (MA) that implies a local search
mechanism was previously introduced to enable the design of
PCR primers [23]. The method has been discussed and areas
of refinement have been identified [24], [25], which inspired
us to enhance and improve the method.

In this study, the previously reported novel restriction
enzymes hunting (REHUNT) package [26] was applied.
Many accessible primer evaluation criteria are avail-
able [20], [23], [27]–[30]. Furthermore, the calculation of
a more accurate thermodynamic primer melting tempera-
ture [31] was considered for inclusion. Using the criteria
of the GA method, the different parameter settings of the
MA method were evaluated in silico and the results were
compared with the GA method using SNPs of SLC6A4.
Finally, the appropriate MA parameter settings were deter-
mined, which enables the feasible designing of PCR-RFLP
assay primers for SNP genotyping.

II. MATERIALS AND METHODS
A. ABBREVIATIONS AND ACRONYMS DEFINITION OF
THE PROBLEM OF PCR-RFLP ASSAY PRIMERS FOR
SNP GENOTYPING
A target SNP is included in a DNA template sequence, TD.
The objective of SNP genotyping is to identify available
restriction enzymes that can recognize the genotype of the
target SNP, and to design feasible PCR-RFLP assay primers.
The equation for the formulation of TD is:

TD={Bi|i is the index of DNA sequence, ∃!Bi ∈ target SNP}

(1)

where Bi represents the ‘A,’ ‘T’, ‘C’, and ‘G’ nucleotides or
SNP. SNP is identified according to the SNP IUPAC code
(‘M’, ‘R’, ‘W’, ‘S’, ‘Y’, ‘K’, ‘V’, ‘H’, ‘D’, ‘B’ or ‘N’) or
the dNTP format ([dNTP1/dNTP2]). The symbol ∃! denotes
existence and uniqueness. For the general design, this study
only focused on true SNPs as described in dbSNP [32] of
the National Center for Biotechnology Information as the
target SNP. The presented method is not considered for dele-
tion/insertion polymorphisms (DIPs) and multi-nucleotide
polymorphisms (MNPs).

Firstly, a pair of sub-sequences of corresponding
constraints from TD and one restriction enzyme that can

recognize the genotype of the target SNP must be identified.
The pair of sub-sequences, designated the forward primer
(Pf ) and reverse primer (Pr ) are presented as in equation (2)
and (3), respectively.

Pf = {Bi|∀Bi ∈ {‘A’, ‘T’, ‘C’, ‘G’},

Fs ≤ i ≤ Fe, i is the index of TD} (2)

Pr = {Bi|∀Bi ∈ {‘A’, ‘T’, ‘C’, ‘G’},

Rs ≤ i ≤ Re, i is the index of TD} (3)

where Fs and Fe indicate the start index and the end index
of Pf in TD, respectively; Rs and Re indicate the start
index and the end index of Pr in TD, respectively; and
{Bi} is the anti-sense sequence of Bi. For example, for
the sequence CATCGAATCTGCGTCTTATGCC, the com-
plementary sequence is GTAGCTTAGACGCAGAATACGG,
based on the established A-T and C-G nucleotide comple-
mentary pairings, while the anti-sense sequence is the reverse
of the complementary sequence, i.e., GGCATAAGACGCA-
GATTCGATG.

B. OTHER RECOMMENDATIONS PROPOSED
ENVIRONARY COMPUTATION METHOD FOR DESIGN
OF PCR-RFLP ASSAY PRIMERS
In the proposed evolutionary computation methods, a chro-
mosome encoding vector Pv (termed ‘‘individual’’ inMA and
GA) involves four elements—Fs, Fl , Pl, and Rl (as shown
in Figure 1)—to derive feasible PCR-RFLP assay primers.

FIGURE 1. Illustration of parameters for PCR-RFLP primer design.

The chromosome encoding vector is expressed by:

Pv = (Fs,Fl,Pl,Rl,E) (4)

The start position, Rs, of the reverse primer can be
calculated by the chromosome encoding vector Pv:

Rs = Fs + Pl − Rl (5)

From the known five variables of Fs, Fl , Pl , Rs, and Rl ,
the forward primer and the reverse primer can be immediately
derived. Therefore, Pv is the main vector applied to perform
the evolutionary computations in designing the PCR-RFLP
assay primers.

The proposed method involves seven separate steps.
In order, the steps are: 1) mining for available restriction
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enzymes from the restriction enzyme database (REBASE),
2) evaluation of availability for the design of PCR-RFLP
assay primers, 3) generation of a random initial population,
4) evaluation of fitness, 5) local search, 6) judging termina-
tion criteria, and 7) evolutionary operations. These steps are
detailed subsequently and outlined in the flowchart shown in
Figure 2.

FIGURE 2. Work flowchart for the PCR-RFLP primer design using the MA
method.

1) MINING FOR AVAILABLE RESTRICTION ENZYMES
FROM REBASE
It is essential to provide the available restriction enzymes to
recognize the genotype of the target SNP. This is achieved
using REBASE [33]. The database is updated periodically.
The proposed method also used the novel REHUNT [26],
which provides reliable and effective means to mine available
restriction enzymes from REBASE.

2) EVALUATION OF AVAILABILITY FOR THE DESIGN OF
PCR-RFLP ASSAY PRIMERS
All restriction enzymes in REBASE [33] are evaluated in
turn to discover the available restriction enzymes. If no avail-
able restriction enzymes are discovered, the design of the
PCR-RFLP assay primers will be insignificant. Therefore,

the proposed method terminates directly when no available
restriction enzymes are discovered. Otherwise, the following
steps are performed in sequence.

3) GENERATION OF RANDOM INITIAL POPULATION
The initial population is the incipient solution provided in the
proposed evolutionary computationmethods. A fixed number
of unduplicated individuals (Pv) are generated randomly as an
initial population. In Pv, Fs is generated randomly between 1
and (LTD − Pmin + 1), in which the range is Fs_range as
shown in Figure 1. Fl is generated randomly between the
minimum and the maximum primer lengths. In this study,
theminimum andmaximum primer lengths were set to 16 and
28 nt, respectively. The method also randomly generates Pl
between Pmin and Pmax (i.e., the range, Prange, as shown
in Figure 1) to limit the PCR product length. In this study,
Pmin was set to 100 bps and Pmax is set to 300 bps. Eventually,
Rl is generated randomly, as for Fl .

4) EVALUATION OF FITNESS
Theminimized fitness value is used to determine the designed
result between good and bad in the proposed method.
An experienced fitness function is designed consistent with
the universal primer constraints for evaluating the fitness
value of each individual in the population. More details for
the fitness function have been previously provided [19], [22].
In GA method, the melting temperature, Tm, was calculated
by the Wallace’s formula [34] (Eq. 6), which is simple and
considered suitable for approximate nearest-neighbor ther-
modynamic calculations [35]. However, many researchers
consider the Wallace’s formula to be inaccurate and do not
support its use in primer design. Therefore, the nearest-
neighbor thermodynamic calculation is applied to improve
the evaluation of Tm. The improved Tm is calculated by
SantaLucia’s formula (Eq. 7) [31].

Tmwallace(P)

= (#G+ #C)× 4+ (#A+ #T )× 2 (6)

Tmsantalucia(P)

=
1H◦(predicted)× 1000

(1S◦(salt_correction)+ R× ln(CT /4))
− 273.15

(7)

where1H◦(predicted) is the enthalpy;1S◦(salt_correction)
is the entropy correction; R is the gas constant
(1.987 cal/Kmol) and CT is the DNA concentration.
The 1H◦(predicted) is calculated by

1H◦(predicted)

= 1H◦(AA)+1H◦(AC)+1H◦(AG)+1H◦(AT )

+1H◦(CA)+1H◦(CC)+1H◦(CG)+1H◦(CT )

+1H◦(GA)+1H◦(GC)+1H◦(GG)+1H◦(GT )

+1H◦(TA)+1H◦(TC)+1H◦(TG)+1H◦(TT )

+1H◦(init.w/term. GC)+1H◦(init.w/term. AT ) (8)
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The 1S◦(predicted) is calculated by

1S◦(predicted)

= 1S◦(AA)+1S◦(AC)+1S◦(AG)+1S◦(AT )

+1S◦(CA)+1S◦(CC)+1S◦(CG)+1S◦(CT )

+1S◦(GA)+1S◦(GC)+1S◦(GG)+1S◦(GT )

+1S◦(TA)+1S◦(TC)+1S◦(TG)+1S◦(TT )

+1S◦(init.w/term. GC)+1S◦(init.w/term. AT ) (9)

5) LOCAL SEARCH
A local search mechanism exploits a preset limited area
based on current individuals to provide other outstanding
individuals. Local optima can be obtained by the local search
operation to improve the experiences of individuals in the
population. The proposed method firstly performs the local
search operation in an initial iteration to provide an improved
initial population. Furthermore, the local search operation is
also applied to the new offspring after crossover or muta-
tion operation to further improve the offspring. Iteration-by-
iteration, the global optimum is eventually achieved. The
pseudo-code of the local search operation in the proposed
MA method for the design of PCR-RFLP assay primers is
determined in the following sequence of operations:

1 Begin;
2 Select an incremental value d = a∗Rand();
3 For a given individual i ∈ Population: calculate fitness

(i);
4 For j = 1 to the number of variables of individual i;
5 value(j) = value(j)+ d ;
6 If the fitness of the individual does not be improved

then
7 value(j) = value(j)-d ;
8 else if the fitness of the individual is improved then
9 retain value(j);
10 Next j;
11 End;
In the above pseudo-code, d is an incremental value that

is used to assist an individual in exploiting neighboring indi-
viduals. Constant a is a preset value set to limit the range of
local search. To appropriately set the constant a, the variables
of Fl and Rl are selected to determine the constant a based
on a maximum permitted range for a chromosome vector, Pv.
Therefore, the constant a is determined by the difference of
the maximum primer length and the minimum primer length
(here a was obtained to 12 bps).

6) JUDGING TERMINATION CRITERIA
The proposed method implements two termination criteria:
in first, the fitness value of zero is discovered for one indi-
vidual; in second, a preset iteration is completed. Continuing
iterations will increase the computation time and waste the
computation resources. In addition, the preset iteration set-
tings are sensitive for the result of primer design, and hence
must be set carefully.

7) EVOLUTIONARY OPERATIONS
Both MA and a GA have evolutionary operations, including
selection, crossover, mutation, and replacement. Two indi-
viduals are selected randomly from the population during
the selection operation. In particular, alternative of crossover
and mutation are used in the proposed method. As long
as a performed probability meets the preset crossover rate,
the two selected individuals will apply the uniform crossover
operation to generate two new offspring. When a performed
probability meets the preset mutation rate, one of the selected
two individuals will be selected randomly and apply one point
mutation to generate a new offspring. More details for the
operations are provided elsewhere [19].

III. RESULTS AND DISCUSSION
Many small- and medium-sized laboratories utilize the easy-
to-use PCR-RFLP assay for SNP genotyping. However,
the design of the assay primers limits its use to only a few
methods and systems. An improved method for providing
PCR-RFLP assay primers is proposed in this study to facili-
tate PCR-RFLP assay for SNP genotyping. The method was
assessed by using different parameter settings, including pop-
ulation size, crossover rate, and mutation rate. Better param-
eter settings were selected for PCR-RFLP primer design in
a data set with 288 SNPs in SLC6A4 and the results were
compared with the GA method. Simultaneously, the San-
taLucia’s thermodynamic formula was used to measure the
method.

A. DATA SET AND COMPUTATIONAL ENVIRONMENT
The same 288 SNP SLC6A4 data set used in the GA
method was used for the comparison of the MA and GA
methods. DIPs and MNPs were excluded from the 288
SNPs. SNP-Flankplus [36] retrieved a total length of 500 bp
flanking sequences for every SNP to evaluate the proposed
method; these DNA templates have been described [19].
As done in this previous study, the method was presently also
run on the same computational environment with an Intel(R)
Core 2 CPU of 1.86 GHz and 1 GB RAM with the Microsoft
Windows XP SP3 and JAVA 6.0 platforms.

B. PARAMETER SETTINGS
The method set common primer constraints [23], [28] that
included primer length between 16 and 28 nt, GC% between
40 and 60%, primer Tm between 45 and 62◦C, primer Tm
differencewithin 5◦C, PCR product length larger than 100 bp,
and PCR product length ratio 1:2:3. As with the GA, the num-
ber of iterations, population size, crossover rate, and muta-
tion rate were set as 1000, 50, 0.6, and 0.001, respectively.
We first applies the parameter settings based on the DeJong
and Spears measure [37] to evaluate the proposed method,
followed by different population sizes, crossover rates, and
mutation rates to evaluate the proposed method. The evalua-
tions provided better parameter settings.
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TABLE 1. Computer simulation results for 251 SLC6A4 SNPs based on DeJong and Spears parameters.

TABLE 2. Computer simulation results in different population sizes for 251 SNPS of SLC6A4.

C. IN SILICO SIMULATION RESULTS
In the 288 SLC6A4SNPs, 251 SNPs with available restric-
tion enzymes were identified from the REBASE version
906 updated on 29 May 2009, and 251 feasible primer pairs
were designed. When the REBASE version 402 updated
on 30 January 2014 was used, 181 SNPs with available
restriction enzymes were identified, and 181 feasible primer
pairs were designed. The results of the GA method are
provided in a supplemental file that can be downloaded from
https://sites.google.com/site/yhcheng1981/downloads/ma-
ga-pcr-rflp-assay-primers.

1) RESULTS OF THE DEJONG AND SPEARS PARAMETER
SETTINGS IN THE WALLACE’S FORMULA
The computer simulation results based on the DeJong and
Spears parameter settings are shown in Table 1.

When the method used the same Wallace’s formula to
calculate Tm, the accuracy of the MA method was 1.59%
higher than the GA method in terms of primer length dif-
ference. The accuracy of the MA method was 4.58% and
31.07% higher than the GA method in terms of GC% and
GC clamp, respectively. The accuracy of the MA and GA
methods were equivalent in terms of Tm. The accuracy of
the MA method was 2.39% higher than the GA method in
terms of Tm difference. The accuracy of the MA method in
achieving perfect PCR product length was 0.13% higher than
the GA method. The MA and GA methods were 100% in
terms of dimmers. The accuracy of the MAmethod was 0.4%
lower than that the GA method in terms of hairpin. Finally,

the MA and GA methods displayed 100% specificity. These
evaluations indicated the superiority of the MA method com-
pared to theGAmethod. TheMAandGAmethods had and an
average fitness of 1.17 and 4.74, respectively, for 251 SNPs.
Therefore, the design of PCR-RFLP assay primers using the
MA method was more suitable for designing primers that
conformed to the primer constraints than the GA method
based on the DeJong and Spears parameter settings in the
Wallace’s formula.

2) RESULTS OF DIFFERENT POPULATION SIZES
The population size provides the permitted solutions for
PCR-RFLP primers. To estimate the influences of the popu-
lation size, the population size was set to 100, 200, 300, 400,
500, 600, 700, 800, 900, and 1000. These results are shown
in Table 2.

A better average fitness value of 0.43 was evident in the
population sizes of 800 and 1000. All primer constraints in the
mean and standard deviation (SD) were satisfactory (means
>90%, SDs <0.4%, excluding the GC clamp, which was
1.49%), except GC% (mean, 90.52%; SD, 4.54%). Further-
more, the average fitness seemed to improve gradually with
increased population size. The population size of 1000 dis-
played a better average fitness value of 0.43, which was better
than that of GA (0.82) (Please see the supplemental file).

3) RESULTS OF DIFFERENT CROSSOVER RATES
The crossover operation helps individuals to exchange
information to attain a more feasible solution than before
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TABLE 3. Computer simulation results in different crossover rates for 251 SNPS of SLC6A4.

TABLE 4. Computer simulation results in different mutation rates for 251 SNPS of SLC6A4.

exchange. Therefore, estimating the influences of crossover
rates is useful for the design of PCR-RFLP assay primers. The
results of the crossover rates of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, and 1.0 in this study are shown in Table 3.

The crossover rate of 1.0 yielded a better average fitness
of 0.81. All primer constraints in the mean and SD pro-
duced satisfactory results, except GC% (means >97%, SDs
<0.8%, excluding the GC clamp and Tm, which were 2.00%
and 1.24%, respectively). Furthermore, the average fitness
improved gradually with increased crossover rate. When the
crossover rate was set to the highest value of 1.0, the average
fitness value with the best result was also obtained. The
crossover rate of 1.0 produced a better average fitness value of
0.81 for theMAmethod, which was obviously better than that
of the 3.49 for the GA method (Please see the supplemental
file).

4) RESULTS OF DIFFERENT MUTATION RATES
Mutation is used to generate a diverse solution to avoid
solutions falling into the local optimum. The mutation rate
was set to 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09,
and 0.10 to perform the MA method to design PCR-RFLP
assay primers. The results are shown in Table 4.

The mutation rate of 0.09 yielded a better average fitness
value of 0.54. All primer constraints in the mean displayed
satisfactory results (means >86%), except for GC% and Tm
difference (both <80%). However, the primer constraints
in SD were not ideal, and only dimer and specificity were
preferable at <2%. The mutation rate of 0.09 in the MA
method produced an average fitness value of 0.54 that was
obviously better than that of the GA method, which, with the
mutation rate set to 0.02, displayed a better average fitness
value of 4.37 (Please see the supplemental file).

5) RESULTS OF THE BETTER PARAMETER SETTINGS
After the evaluations for the population sizes, crossover rates,
and mutation rates, the better parameter settings among these
parameters are used to evaluate the design of PCR-RFLP
assay primers. The results are shown in Table 5.

In the table, the population sizes were set to 800 and 1000,
crossover rate was set to 1.0, and mutation rate was set to
0.09. The average fitness was 0.42 and 0.45 for the population
size of 800 and 1000, respectively. The results for average
fitness are similar to those in Table 2 when the population size
was set to 800 and 1000. Therefore, the population sizes may
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TABLE 5. Computer simulation results based on better parameter settings and crossover rate set to 1.0, and mutation rate set to 0.09 for the 251 SNPs of
SLC6A4.

TABLE 6. Computer simulation results based on better parameter
settings and crossover rate set to 1.0, and mutation rate set to 0.09 for
the 251 SNPs of SLC6A4.

be the main parameter influencing the design of PCR-RFLP
assay primers.

6) RESULTS OF THE DEJONG AND SPEARS PARAMETER
SETTINGS IN THE SANTALUCIA THERMODYNAMIC FORMULA
When the method used the SantaLucia’s thermodynamic
formula to calculate Tm, all results were better than those
obtained using the Wallace’s formula for the MAmethod and
the GA method (see Table 1). Most of the designed primers
displayed 100% conformance to the preset primer constraints,
excepting GC% (89.78%) and GC clamp (99.72%). Accord-
ingly, the design of PCR-RFLP assay primers using the MA
method with the SantaLucia’s thermodynamic formula was
more suitable for designing primers that conformed to the
primer constraints.

D. COMPARISON OF THE METHOD WITH
THE FORMER GA
The former GA method is the first evolutionary computation
method for PCR-RFLP primer design for SNP genotyping. Its
abilities have been proven [19]. In this study, the MAmethod
was applied to improve the PCR-RFLP primer design for SNP
genotyping. The characteristics of the GA and MA methods
were compared. The results are summarized in Table 4.

The best and worst average fitness values were computed
based on the evaluation in the data set for 288 SNPs of
SLC6A4. In the melting temperature formula calculation,
the MA method retained the Wallace’s formula and provided

an accurate SantaLucia’s formula. However, the GA method
only used the Wallace’s formula. In restriction enzymes min-
ing, the MA method uses the REBASE version 402 updated
on 30 January 2014, but the GA method used the older
REBASE version 906 updated on 29May 2009. In the primer
constraints evaluation, the primers designed using the MA
method conformed to the preset primer constraint criteria bet-
ter than those prepared using the GAmethod. Finally, theMA
method obtained the best average fitness value and the worst
average fitness value of 0.42 and 1.64, respectively, while
the GA method obtained the best average fitness value and
the worst average fitness value of 0.49 and 5.92, respectively
(Please see the supplemental file).

Furthermore, the time complexity analysis of the GA and
MA methods were also analyzed. In the GA primer design
method, the iteration number and the population size are the
important factors that primarily affects the time complexity.
Since the crossover andmutation operations in the GA primer
design method are computed by constant time, we can ignore
them in the time complexity analysis. To consider n is the
iteration number and p is the population size, we can get the
worst case complexity T (n) = n × p. Therefore, the time
complexity of the GA primer design is O(n× p).
In the MA primer design method, in addition to the itera-

tion number and the population size, the local search mecha-
nism is another extra important factor that must be considered
affecting the time complexity. The crossover and mutation
operations in the MA primer design method are also can be
ignored in the time complexity analysis due to their constant
time. To consider n is the iteration number, p is the population
size and v is the length of chromosome encoding vector, we
can get the worst case complexity T (n) = n × p + n × v =
n × (p + v). The computed time of n × v is for the firstly
performs the local search operation in an initial iteration to
provide an improved initial population. The time for the local
search applied to the new offspring after crossover or muta-
tion operation can be ignored due to only two new offsprings
with the constant time. Therefore, the time complexity of the
MA primer design is O(n× (p+ v)).
Finally, the new parts proposed compared to the former GA

method is listed below to show the innovation:

(1) The accurate thermodynamic SantaLucia’s formula for
calculation of melting temperature is employed in the
MA method.

(2) The novel reliable and open source REHUNT is inte-
grated into the MA method for efficiently restriction
enzymes mining.
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(3) The distinctive local search mechanism implemented
in the MA method assists the selection of primers that
better conformed to the primer constraints.

(4) More robust PCR-RFLP primers for SNP genotyping
are designed by the MA method than the former GA
method.

IV. CONCLUSION
Providing effective and available PCR-RFLP primers is
extremely important for small-scale basic research studies
of complex genetic diseases associated with SNPs. The MA
method is considered capable of designing more feasible
PCR-RFLP assay primers to achieve SNP genotyping. The
present improvements to the method included an accurate
thermodynamic SantaLucia’s formula for melting temper-
ature calculation, use of the novel REHUNT package for
mining of available restriction enzymes, and the design of
primers that better conformed to the preset primer constraints.
The appropriate parameter settings for the MA method have
been carefully evaluated for the design of PCR-RFLP assay
primers for SNP genotyping. In contrast to the GA method,
the proposed MA method is more feasible for achieving
PCR-RFLP SNP genotyping.
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