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ABSTRACT Posted road speed limits contribute to the safety of driving, yet when certain driving conditions
occur, such as fog or severe darkness, they become lessmeaningful to the drivers. To overcome this limitation,
there is a need for adaptive speed limits system to improve road safety under varying driving conditions.
In that vein, a visibility range estimation algorithm for real-time adaptive speed limits control in intelligent
transportation systems is proposed in this paper. The information required to specify the speed limit is
captured via a road side unit that collects environmental data and captures road images, which are then
analyzed locally or on the cloud. The proposed analysis is performed using two image processing algorithms,
namely, the improved dark channel prior (DCP) and weighted image entropy (WIE), and the support vector
machine (SVM) classifier is used to produce a visibility indicator in real-time. Results obtained from the
analysis of various parts of highways in Canada, provided by the Ministry of Transportation of Ontario,
show that the proposed technique can generate credible visibility indicators to motorists. The analytical
results corroborated by extensive field measurements confirmed the advantage of the proposed system when
compared to other visibility estimation methods such as the conventional DCP andWIE, where the proposed
system results exhibit about 25% accuracy enhancement over the other considered techniques. Moreover,
the proposed DCP is about 26% faster than the conventional DCP. The obtained promising results potentiate
the integration of the proposed technique in real-life scenarios.

INDEX TERMS Visibility, machine learning, image processing, intelligent transportation system, smart
cities, dark channel prior, entropy, SVM.

I. INTRODUCTION
A. PRELIMINARIES AND LITERATURE SURVEY
Transition from a city to a ‘smart city’ potentiates enhanced
quality, performance and interactivity of urban services, in an
effort to improve the quality of life in dense cities. Being
a central part of smart cities, Intelligent Transportation Sys-
tems (ITSs) have been applied to numerous areas, including
relieving traffic congestion, reducing traffic accidents, fuel
consumption and pollution [1]– [4]. An ITS often collects
data from a variety of sources including sensors and cameras,
and analyses them to provide users with useful information.

Car accidents is a pressing issue in themodern society, with
a large number of collisions occurring annually. Speeding is
a dangerous driving behavior, especially on the highways,

easily leading to serious accidents [5]. As such, speed limit
control is a key element in ITSs, which is used to reduce the
probability of making accidents by setting the speed limit to
values that suit the road conditions. However, 73% of fatal
accidents occur at low speeds of less than 55km/h [6], which
is due to the fact that posted speed limits are optimized to the
road conditions, but they often ignore the variable weather
conditions. In order to improve road safety, speed limits
should be based on both the road and weather conditions, and
should be updated in real-time. Therefore, drivers become
aware of the safe speed that they should travel at and could
maintain an appropriate safety distance between cars [7].
Speed adjustment and safety distance maintenance can pre-
vent traffic collisions and stop-and-go traffic behavior, which
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may also reduce the emission of carbon dioxide and other
global-warming gases [8].Moreover, assigning the speed lim-
its while considering the driving conditions enables tracking
and estimating the driver’s behaviormore accurately [9], [10].

Two of the main factors that have a direct impact on
driving speed are visibility and traffic congestion [11]. In lim-
ited visibility conditions, car accidents occur often because
motorists cannot see objects at a sufficient distance that
enables them to stop or slow based on the behavior of other
leading vehicles [12]. A safe driving speed can be computed
if we can monitor the visibility on the roads in real-time or
quasi-real-time [13]. Thus, traffic accidents can be avoided if
poor visibility alerts and safe driving speeds are conveyed to
motorists in a timely manner.

Extreme weather conditions such as rain, snow, fog, dust,
sand, smog or any combination of them make it difficult for
the drivers to clearly see the road ahead of them [12]. Each
of the weather conditions affects the visibility by a different
level, and for a different time period. For example, snowy
weather often results in poor visibility, especially during
snowstorms [14]. Foggy weather conditions is a common
trigger for lower visibility, therefore, intelligent fog detection
and visibility estimation based on fog have been considered
widely in the literature [15]– [17]. Darkness is another main
source for limited visibility that is mostly faced during night-
time driving, particularly for roads with few or even no street
lighting [17].

Generally speaking, measuring visibility accurately is dif-
ficult due to two main reasons [12]. First, the visibility can
be affected by many parameters such as light sources and
absorption, and hence, human-perceived visibility is diffi-
cult to estimate accurately. Second, visibility can be rep-
resented by a value only when the atmosphere is uniform,
which seldom happens because weather conditions often
change rapidly. Images and videos are typically the main
sources to judge visibility, so cameras mounted on Road Side
Units (RSU) and in-vehicle devices have been used to collect
data tomeasure visibility as described in [16] and [18]. Huang
[19] use on-board camera to collect images and estimate
visibility. Furthermore, vehicle-to-infrastructure (V2I) com-
munication can be used to connect the devices and perform
analysis [20].

In the literature, image processing algorithms are often
used to estimate visibility. Measuring the brightness and
contrast of a target against a background are used to
estimate the visibility as reported in [21]. In [14], gray
scale levels are exacted from images to indicate visibility
because they can reflect some information about visibility.
High-pass filters including Gaussian high-pass filter and
homomorphic filter are also used to measure atmospheric
visibility [22]. Machine learning algorithms are used to
estimate visibility as well, for example, Giyenko et al. [15]
use a neural network approach for estimating visibility dis-
tances. Varjo and Hannuksela [23] propose support vector
machine (SVM) approach to classify images and estimate
the visibility. However, the accuracy of the aforementioned

techniques is limited because of the wide range of conditions
where visibility measurements are typically performed.

Haze removal algorithms are typically used to enhance
the clarity of digital images [24]– [34]. In most of these
algorithms, the thickness of the haze, or the fog density, can
be obtained and used to indicate the visibility level in the
image. However, fog density does not meticulously reflect
the visibility in several cases such as the nighttime, and thus,
such techniques cannot accurately detect the visibility level
in various conditions [35].

B. MOTIVATION AND KEY CONTRIBUTIONS
Consequently, accurate image-based visibility estimation in
general weather and time conditions requires extracting, ana-
lyzing and combining all visibility-related features that can
be extracted from a particular image. Therefore, in this paper
we capitalize on our work [36] and [37], and propose a
new visibility algorithm for integration with the portable,
low-power and low-cost Scalable Enhanced Road Side Units
(SERSUs). The proposed visibility estimator is designed
to extract and combine visibility indicators obtained using
three main algorithms from image processing and machine
learning. In particular, a fast version of the dark channel
prior (DCP) algorithm [35], [38] is used to detect and cal-
culate the current fog density from foggy images. The fog
density is a very useful indicator for the visibility during the
day time, and the fast implementation is desired for real-time
systems with limited computational capabilities. Weighted
Image Entropy (WIE) [39], [40] is further utilized to extract
the gray scale distribution information in an image, which is
then used to calculate the visibility level. TheWIE can be effi-
ciently used to identify day and night images, but it might be
difficult to use it for identifying images with different levels
of darkness. A second visibility indicator is obtained using a
Support Vector Machine (SVM) classifier [23], [41], which
is mostly designed based on human perception. The SVM
performance depends on the number and type of training
images, and hence, the results obtained using the SVMmight
be different from the true visibility perceived by humans.
To overcome the limitations of the WIE and SVMwhen used
individually, an enhanced visibility estimator is proposed by
combining theWIE and SVMwhile the fog density is invoked
to optimize the combining process. Extensive experiments
were conducted to calibrate and validate the developed algo-
rithm, and the results obtained show that the proposed algo-
rithm outperforms other well established algorithms. Once
the final visibility level is estimated, it can be used to adjust
the speed limit for the current road accordingly.

C. PAPER ORGANIZATION
The rest of this paper is organized as follows. Section II
describes some background information about the DCP, WIE
and SVM. Section III presents the fast DCP and fog density
estimation. Section IV describes the proposedWIE, SVMand
the comprehensive visibility indicator based on real highway
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images. Section V presents the experimental and numerical
results, and finally the conclusion is presented in Section VI.

II. BACKGROUND
A. DARK CHANNEL PRIOR (DCP)
DCP can be effectively used for single image defogging as
reported in [35]. In computer vision and computer graphics,
the foggy image formation model can be described as [35],

I(x) = J(x)t(x)+ A(1− t(x)) (1)

where I(x) represents the foggy image that needs to be
defogged, J(x) is the intrinsic non-foggy image, A is the
global atmospheric light composition parameter, and t(x) is
the transmittance which describes the ratio of the light that
reaches the camera to the whole light reflected from the
object. In (1), I(x) is known and the goal is to find the original
non-foggy image J(x). Therefore, A and t(x) should to be
determined according to (1) to compute J(x).
DCP is based on extensive observation and summarization

on the non-sky region of foggy outdoor images. In most non-
sky regions of images, some pixels always have very low
values, at least in one color channel. Therefore,

Jdark (x) = min
y∈�(x)

(
min
c
J c(y)

)
≈ 0 (2)

where, c ∈ {R,G,B}, and {R,G,B} correspond to red, green
and blue color channels, respectively. J c and I c are the color
channels of J and I, respectively. Assuming that �(x) is a
local patch centered at x, also called the neighborhood area
of the pixel x, and the initial transmittance t(x) in each patch
�(x) is a constant, denoted as t̃(x), after formula conver-
sion [35], then,

t̃(x) = 1− min
y∈�(x)

(
min
c

I c(y)
Ac

)
(3)

Consequently, t̃(x) in (3) is an estimate of the transmittance.
According to DCP theory, in the dense fog area of a

foggy image I , the gray scale value of its dark channel
image Jdark significantly increases. Each pixel Jdark (x, y) in
the dark channel image is the minimum pixel value in the
neighborhood area of pixel (x, y) in the original image. As a
consequence, the gray scale value can be used to indicate the
fog density.

In the above-mentioned inferences, it is assumed that the
value of global atmospheric light A is known. In practice,
the value ofA can be obtained from the foggy image bymeans
of its dark channel image. The specific steps are [35]:

1) Extract the area represented by 0.1% of the brightest
pixels from the dark channel image.

2) Find the value of the pixel with the maximum bright-
ness in the area of 1), and use the pixel value on the
corresponding position in the original foggy image I as
the estimated value of A, denoted as Â.

Since the DCP uses a segmentation method in image
processing, the initial transmission graph has some obvious
blobs, resulting in poor preservation of the edges of the

image. Therefore, He et al. [35] use the soft matting process
proposed in [42] to obtain the optimal transmission graph
t̃(x). It is worth noting that when the value of the transmission
graph t̃(x) is very small, it makes the value of J(x) too large,
and hence, the image is excessively transferred to the white
field. Therefore, it is useful to set a minimum threshold value
t0 for t̃(x). If the value of t̃(x) is less than t0, then t̃(x) = t0.
The image after defogging can be derived by:

J̃ =
I(x)− Â

max(t̃(x), t0)
+ Â (4)

where, J̃ is the image after defogging, I is the foggy image
and t0 is a constant coefficient to reduce the image noise.

In the solving process of DCP algorithm, the neighborhood
minimum value of each pixel of the image is needed, and
the computational complexity increases non-linearly with the
neighborhood area size. In addition, the soft matting process
needs to construct the Matting Laplacian matrix whose size
is the height of the image multiplied by its width. Therefore,
the spatial and time complexity of the algorithm increases
drastically, as the number of pixels in the image increases.
The algorithm is time-consuming and has high computational
complexity, which makes it difficult to be used in real-life
applications. These issues are addressed in the proposed
improvements described in Section III-A.

B. WEIGHTED IMAGE ENTROPY (WIE)
The image entropy is expressed as the average number of bits
in the gray scale sets of the image [39], and its unit is bit/pixel,
which reflects the average amount of information in the
image. The one-dimensional entropy of an image represents
the amount of information contained in the aggregate feature
of the gray scale distribution in the image. LetPi represent the
proportion of pixels with the gray scale value i in the whole
image. Then,

Pi =
N (i)
h× w

(5)

whereN (i) represents the number of pixels with the gray scale
value i, h and w are the height and width of the image in
pixels, respectively. As a result, Pi is also the probability that
a specific gray scale value appears in the image and can be
obtained from a gray scale histogram. Therefore, the image
entropy for a 256 levels gray scale image can be calculated as

S = −
255∑
i=0

Pi ln (Pi). (6)

In the extreme case where the image is completely dark, then
P0 = 1, Pi = 0 ∀ i > 0, and S = 0. For the other extreme
case where the image is completely white (very foggy), then
P255 = 1, Pi = 0 ∀ i < 255, and S = 0. The upper
bound on S can be achieved in the unlikely case where Pi =
1/256 ∀ i, which results in the maximum possible entropy
of S = 5.5452. Furthermore, if the importance of different
pixel values is taken into consideration, then the information
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entropy can be replaced by the weighted entropy SW [39],
which can be written as

SW = −
255∑
i=0

ωiPi ln (Pi) (7)

where ωi is the weight assigned to the ith pixel value.

C. SUPPORT VECTOR MACHINE (SVM)
Support Vector Machine [41] technique is a supervised learn-
ing model related to learning algorithms, which can ana-
lyze data, identify patterns, classify and perform regression
analysis.

SVMs are based on linear separation, but not all data can be
linearly separated. For instance, two sets of points in a two-
dimensional space may require a curve instead of a straight
line to separate their boundaries. The principle of SVM is
to map the points from low-dimensional space into high-
dimensional space, making them linearly separable; and then
use the principle of linear division to judge the classification
boundary.

The linearly separable binary classification problem is
to separate the original data by a straight line if the data
points are only in a two dimensional or a hyperplane for
multidimensional space. The largest interval method is used
in SVM technique and it aims at finding the classification
plane that results in largest classification boundary interval.
The classification boundary is the value that shifts from the
classification plane towards the points in two categories until
the first data point is encountered. The distance between the
classification boundaries of two categories is the classifica-
tion interval.

The classification plane is expressed as (w · x) + b = 0,
where w is a normal vector that serves as the slope and b is
the intercept. Note that x is a multidimensional vector and (·)
represents the dot product of two vectors. The reciprocal of
the sorting interval is 0.5‖w‖2, so the optimization problem
is expressed as{

minw,b 1
2‖w‖

2

s.t. yi((w · xi)+ b+ 1)) ≥ 1, i = 1, . . . , l
(8)

where, ‖.‖ is the 2-norm of a vector and there are l points in
total. The constraint in (8) is that the distance between each
data point (xi, yi) and the classification plane is greater than
or equal to 1. Among them, yi is the classification of data.

Based on the above theory, a linear support vector classifier
is proposed in [41], which after formula simplification can be
expressed as,

w∗ =
∑l

i=1 yia
∗
i xi,

b∗ = 1
j

j∑
i=1

b∗j , b∗j = yj −
l∑
i=1

yiαi(xi · xj).
(9)

SVM is typically used for two-class classification problems,
but the most common are the multi-classification problems.
To apply SVM to multi-class classification, the one-versus-
rest approach proposed in [43] is used in this work. The

principle is to establish a SVM that separates one class from
all other classes. For example, if there are M classes of
training data, then we need to establish M support vector
machines. When identifying x classification, we select the
largest category of gc(x),

f c (x) = sgn (gc (x)), c ∈ [1,M ]

gc (x) =
l∑
i=1

aci yi K (x, xi)+ bc
(10)

where,K (·, ·) is the kernel function, which is used to define
the mapping to transfer the low-dimensional problem into
the high-dimensional problem, or calculate the difference
between the two largest g as the confidence interval. If1g >
0, then select the largest class of g to be the solution class c;
otherwise, refuse to classify.

III. FOG DENSITY VISIBILITY INDICATOR BASED ON
IMPROVED DARK CHANNEL PRIOR
As it can be noted from [35], the most time-consuming part
of DCP algorithm is the dark channel image acquisition and
soft matting process. Therefore, the key to improve the DCP
algorithm and implement a fast DCP (fDCP) algorithm is
to optimize these two parts. Towards this end, a new fast
dark channel image acquisition and soft matting processes are
proposed.

A. FAST DCP (FDCP)
1) FAST DARK CHANNEL IMAGE ACQUISITION ALGORITHM
BASED ON BI-DIRECTIONAL TRAVERSAL
For each pixel (x, y) of the foggy image I, find the pixel with
minimum value in its neighborhood within a radius value r .
Then, the dark channel image D is generated after traversing
all pixels. This process is represented by

D (x0, y0) = min
x0−r≤x≤x0+r
y0−r≤y≤y0+r

I (x, y) . (11)

As can be seen from (11), for each pixel of the foggy image I
, it is necessary to traverse each pixel of its r neighborhood.
For a m × n image, after ignoring the regions near the edge,
a process of finding the dark channel image needs to traverse
about P1 pixels, where

P1 = (2r + 1)2 × m× n. (12)

Therefore, the number of traversals P1 increases by increas-
ing r . In practical applications, if the neighborhood radius
r = 10 [35], then there are r pixel values and 21 × 21 pixel
blocks around each pixel, and thus, P1 = 441×m×n. Conse-
quently, the algorithm has a high computational complexity
of O(m× n).
The proposed fDCP image acquisition algorithm is based

on bidirectional traversal, which significantly reduces the
redundancy of the traditional algorithm. This algorithm tra-
verses the foggy image both, horizontally and vertically.
In the horizontal traversal, for a certain pixel (x0 − 1, y0), let
the minimum pixel value of its horizontal r neighborhood be
DX (x0−1, y0). Therefore, for the pixel (x0, y0), the minimum
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pixel value of its horizontal r neighborhood DX (x0, y0) is
determined by whetherDX (x0−1, y0) equals I (x0−r−1, y0):
Case 1: If DX (x0− 1, y0) < I (x0− r − 1, y0), the range of

the position of the minimum value is x0−r ≤ x ≤ x0+r−1,
so for pixel (x0, y0), it is only necessary to compare DX (x0 −
1, y0) with I (x0 + r, y0).
Case 2: IfDX (x0−1, y0) = I (x0−r−1, y0), the algorithm

needs to re-traverse the interval x0 − r ≤ x ≤ x0 + r . The
formula to compute DX (x0, y0) is given in (13) at the bottom
of the next page, where, DX is the horizontal dark channel
image and I is a foggy image. Traverse the image I, using
(13) to get the horizontal traversal image DX .
Next, the horizontal traversal image DX is traversed verti-

cally in a similar way, so the minimum pixel valueDY (x0, y0)
of the vertical r neighborhood of a pixel (x0, y0) is given by
(14) at the bottom of the next page where,DY is also the final
dark channel image D after the horizontal and vertical traver-
sals. If the edge regions are ignored, the fast dark channel
image algorithm based on bidirectional traversal only needs
to traverse the image at least P2 times:

P2 = 4× m× n. (15)

Moreover, the amount of calculation of P2 is independent
of r . In practical applications, if r = 10, the amount of
calculations for P2 is only 0.9% of P1, and the calculation
speed of this part is increased by at most 100 times, which
reduces the overall execution time.

2) FAST SOFT MATTING USING THE INTEGRATION DIAGRAM
The soft matting algorithm requires a procedure which con-
tains 10 times the operations to find the mean image and
this procedure needs to be executed repeatedly, so the total
number of operations would be large. The number 10 is
determined according to our code, which shows that the
function is invoked 10 times in each iteration, and this is
the main time-consuming part of the soft matting algorithm.
The conventional mean image is obtained by performing the
following operations on each pixel (x, y) of the fog image I,

E (x, y) =
1

(2r + 1)2

x0+r∑
x=x0−r

y0+r∑
y=y0−r

I (x, y) (16)

where, E(·) denotes the mean value. Therefore, for an image
that hasm×n pixels, the process of mean calculation requires
(2r + 1)2 × m × n addition operations and m × n division
operations. For a soft matting algorithm procedure involving
10 times mean image calculations, (2r + 1)2 × m × n × 10
addition operations and m × n × 10 division operations will
be required.

In this paper, the algorithm of integration diagram [44]
is used to optimize the soft matting algorithm. First, this
algorithm calculates the horizontal integration diagram of
image I. For a pixel (x, y), the integration diagram of the
image I can be performed as,

C (x, y)= I (x, y)+C(x−1, y)+C(x, y−1)−C(x−1, y−1).

(17)

Through the integration diagram C, the mean image can
easily be obtained by,

E (x, y)

=
1

(2r + 1)2
(C(x + r, y+ r)+ C(x − r − 1, y− r − 1)

−C(x − r − 1, y+ r)− C(x + r, y− r − 1)). (18)

The method of using the integration diagram to compute
the mean image requires approximately 6 × m × n addi-
tion or subtraction operations and m × n division opera-
tions. Since each division operation uses the same constant
(2r + 1)2, on one hand we can use the multiplication oper-
ations to save time; on the other hand, we can combine the
10 times mean calculations in the soft matting algorithm and
only perform m × n multiplication operations on the final
result. Therefore, an operation of fast soft matting algorithm
requires only 60 × m × n addition or subtraction operations
and m × n multiplication operations, which greatly reduces
the computational complexity of the algorithm.

B. FAST DEFOG ALGORITHM IMPLEMENTATION
Using the algorithms proposed in Sections II-A and III-A,
the final fast defog algorithm can be described as follows:

1) Load the original image, an example is given in Fig. 1a.
2) Use the fast dark channel image acquisition algorithm

based on bidirectional traversal to obtain the dark chan-
nel image Jdark , Fig. 1b.

3) Obtain the atmospheric light composition: Get the
0.1% lightest pixels from the dark channel image, then
find the pixel with the greatest brightness level among
these pixels in the original foggy image as the value of
Â, which has three components, AR, AG, and AB.

4) Generate the transmission graph using (3), Fig. 1c.
5) Use the fast soft matting method by the integration

diagram to obtain a more accurate transmittance graph,
Fig. 1d.

6) Adjust the original image according to the transmit-
tance diagram and (3), and generate the defogged
image, Fig. 2.

C. FOG DENSITY CALCULATION
By analyzing the more accurate transmittance graph
in Fig. 1d, it can be noted that the brighter the area,
the smaller the fog density. On the contrary, the darker the
area, the greater the fog density. As a result, the fog density
is inversely proportional to transmittance t(x) and it can be
estimated from the transmittance graph. In addition, the pixel
values difference between the original and the defogged
image is proportional to the fog density. By traversing each
pixel of the original image and the transmittance graph,
the difference can be represented by,

1ij = max
(∣∣∣Ri,j − R′i,j∣∣∣, ∣∣∣Gi,j − G′i,j∣∣∣, ∣∣∣Bi,j − B′i,j∣∣∣) (19)

where (Ri,j, Gi,j, Bi,j) and (R′i,j, G
′
i,j, B

′
i,j) are the R, G, B

components of pixel (i, j) in the original foggy and defogged
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images, respectively. Then, the fog density Hi,j of the pixel
(i, j) can be determined as,

Hi,j =

(
1
ti,j
− 1

)
1i,j (20)

where ti,j is the transmittance value of pixel (i, j) in the
transmittance graph, an example is given in Fig. 1d, and 1i,j
is the pixel value difference between the original and the
defogged image (20). Eventually, the fog density of the image
is the average of the fog density of all effective pixels,

FD = H̄ = E
(
Hi,j

)
. (21)

By noting that in most cases 0 . FD . 0.5, the normalized
FD can be defined as F̄D = 2 × 102, and visibility using F̄D
can be defined as

V1 =
(
100− F̄D

)
5(0, 100) (22)

where 5(a, b) , [8(a)−8(b)], and 8(·) is the unit step
function.

Although FD might be used to estimate the visibility,
it does not generally produce accurate results because the
DCP algorithm does not consider the visibility in other driv-
ing conditions such as night time. For example, the value
of FD for night images without fog will be relatively
low, indicating good visibility. However, the visibility at
night is actually limited due to the impact of darkness.
Consequently, it is necessary to use more accurate tech-
niques to analyze the visibility such that all conditions are
covered.

IV. PROPOSED VISIBILITY METHODOLOGY
This section describes the proposed visibility estimation pro-
cess where two initial visibility indicators are obtained using
the WIE and SVM algorithms. Then, the results of the two
algorithms are combined with the aid of the fog density
estimated using the fDCP. The obtained visibility results are
calibrated to span the range [0, 100], where the lower limit
corresponds to the worst possible visibility. The visibility
range can be converted to levels and distance in meters has
hinted in Section V.

FIGURE 1. The images of DCP algorithm. (a) The original image. (b) The
dark channel image. (c) The transmittance graph. (d) The more accurate
transmittance graph.

FIGURE 2. The defogged image.

A. IMAGE-BASED VISIBILITY ESTIMATION USING THE
WEIGHTED ENTROPY
As described in II-B, the image entropy reflects the richness
of the information in the image as well as the clarity of
the image. For example, histogram analysis is shown on the
right-hand side of Fig. 3 for daytime, evening, midnight, and
foggy images, respectively. The horizontal axis represents
the pixel values ranging from 0 to 255 and the vertical axis
represents the pixels’ frequencies. Analyzing the histogram
in Fig. 3a, which corresponds to a clear daytime image with
high visibility, shows that a large number of pixels are located

DX (x0, y0) =


min (DX (x0 − 1, y0), I (x0 + r, y0)), DX (x0 − 1, y0) < I (x0 − r − 1, y0)

min
x0−r≤x≤x0+r

I (x0, y0), DX (x0 − 1, y0) = I (x0 − r − 1, y0)
(13)

DY (x0, y0) =


min (DY (x0, y0 − 1),DX (x0, y0 + r)), DY (x0, y0 − 1) < DX (x0, y0 − r − 1)

min
y0−r≤y≤y0+r

DX (x0, y0), DY (x0, y0 − 1) = DX (x0, y0 − r − 1)
(14)
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FIGURE 3. The grayscale histograms of images in different visibility
conditions (daytime, evening, midnight, foggy).

at the center of the histogram while the remaining pixels are
relatively uniformly distributed. As the darkness reduces the
probability of high value pixels, the histograms of the evening
andmidnight images given in Fig. 3b and Fig. 3c respectively,
show that their peaks are gradually shifted to the left, and they
become more concentrated. On the contrary, the histogram
of the foggy image with poor visibility shown in Fig. 3d has
the pixels mainly clustered on the right side of the histogram,
and are also very dense. Therefore, entropy-based image
histogram analysis can be used to estimate the visibility level
in a given image. However, additional processing is required
to convert the entropy into a reliable visibility measure.

To develop a visibility indicator based on images’ his-
tograms, the concept of image entropy can be used where
absolutely dark and foggy images give S = 0, and extremely
clear images should give S = 5.545.However, these are ideal

FIGURE 4. The weighting function graph.

scenarios that do not occur frequently in practical scenarios.
For example, the entropies of Fig. 3a, 3b, 3c and 3d are 5.12,
4.84, 4.85 and 5.08, respectively. Therefore, it can be noted
that the entropies of all images are relatively close to each
other, which is due to the fact that S actually depends only on
Pi rather than the pixel value itself, i.e., the entropy depends
on the distribution of Pi rather than the order. Therefore,
using weighted entropy (7) can give significant change in
the entropies for different scenarios. For the dark images
in Fig. 3b and Fig. 3c, the large number of pixels with low
values correspond to low visibility conditions, and hence
should be suppressed by assigning lowweights to such pixels.
Extensive experimental evaluation showed that the following
weighting function gives good performance,

ωi = 10−4i (200− i), 0 ≤ i ≤ 100. (23)

As can be noted from (23), ω0 = 0 and ω100 = 1.
In the case of high pixel values, the problem is different

because foggy and clear daytime images have significant part
of their pixels at upper range of the histogram, and thus,
the weighting factors for such pixels are set to unity,

ωi = 1, 100 < i < 255. (24)

Consequently, other approaches should be used to esti-
mate the visibility in such scenarios. The weighting func-
tion is depicted in Fig. 4, and the weighted entropies of
Fig. 3a, 3b, 3c and 3d are 4.27, 1.25, 1.16, and 4.54, respec-
tively. Therefore, it is apparent that the weighting process
managed to give very low SW values for the low visibility
images.Moreover, it is more convenient to express the visibil-
ity using a normalized [0, 100] scale. Although theoretically
SW ≤ 5.545, testing a large number of images show that
practically SW . 5, which is due to the correlation of adjacent
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pixels of any image. Therefore, the normalized SW can be
defined as S̄W = 20SW5(a, b) .

As can be noted from SW values, daytime foggy images can
be misleading for the weighted entropy approach. Therefore,
it is critical to use additional information from the image to
tune SW such that it provides more accurate results. As such,
the fog density indicator FD is a key tool that can be used to
identify foggy daytime images. In this work, if F̄D ≤ 40, then
the image corresponds to daytime without or with little fog,
otherwise it is a foggy image. Consequently, the value of S̄W
can be modified according to F̄D. Algorithm 1 summarizes
the computation of the visibility using the weighted entropy
and fog density information, which is denoted as V2.

Algorithm 1 Visibility Estimation Using Weighted Entropy
1: Convert colored image into gray scale
2: Compute FD and F̄D
3: Calculate the gray scale histogram H
4: Compute SW using (7), (23) and (24)
5: Compute S̄W
6: If S̄W < 50
7: V2 = S̄W
8: Elseif

[
S̄W ≥ 50

]
&
[
F̄D ≤ 40

]
9: V2 = S̄W

(
1+

(
F̄D
S̄W

)2)
10: Elseif

[
S̄W ≥ 50

]
&
[
F̄D > 40

]
11: V2 = S̄W

(
1−

(
F̄D
S̄W

)2)
12: End
13: END

It is worth noting that the ranges of F̄D and the formulae
used to calculate V2 are optimized empirically based on a
large set of images that correspond to different weather and
lighting conditions.

Although WIE is an effective method to characterize the
visibility, which is reflected clearly by the gray scale his-
togram as depicted in Fig. 3, there are several foggy images
that produce quasi-uniform histograms, which couldn’t be
distinguished by the WIE. Consequently, the visibility esti-
mates may not be accurate. In order to optimize the results,
machine learning is invoked to perform image classification,
where Support Vector Machines (SVM) is used, as described
in the next subsection.

B. ESTIMATION OF IMAGE VISIBILITY BASED ON
SVM ALGORITHM
Estimation of image visibility based on SVM can be con-
sidered as an image classification problem, where an image
classifier is obtained through training with SVM algorithm to
classify the images according to their visibility level. Accord-
ing to the theoretical analysis outlined in Section II-C, linear
support vector classifier with the method One-Versus-Rest
and (10) are used for multi-class classification. To train the
SVM classifier, 1000 ground truth images are used, which are
divided into six categories such that category 1 corresponds

FIGURE 5. Examples of training image classification, from the upper left
to lower right, in Z-pattern, they are from category 1, 2, 3, 4, 5,
6 respectively.

to low visibility conditions, midnight and thick fog images,
while category 6 corresponds to daytime non-foggy images
with high visibility. Six sample images each of which from
different category are shown in Fig. 5. The image labeling
process was performed with the help of three assessors, who
were trained using a set of reference images from all cate-
gories. The reference images were classified based on the
practical measurement procedure described in Section V. The
final decisions for each image is made using the majority
voting rule. Due to the relatively small number of images in
the library, the training time was about four seconds using
a 2.5 GHz Cote i7 processor with 8 GB RAM. The features
vector applied to the classifier is the gray scale histogram H,
and the training algorithm is presented as Algorithm 2. The
classification result is denoted as � ∈ {1, 2, ..., 6} .

Algorithm 2 SVM Training
1: Establish the initial image library.

a) Collect the training images.
b) Manually divide the images into six categories.

2: Extract the feature vectors (gray scale histogram H).
3. Set the kernel function type (linear kernel (9)).
4: Generate the multi-classifier C.
5: Evaluate the classifier by cross-validation.
6: END

The visibility using SVM (V3) can be computed using the
classifier output �, where V3 = � × 100/6. Therefore,
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Algorithm 3 Visibility Estimation using SVM
1: Generate the gray scale histogram H.
2: Using multi-classifier C to find �.
3: Compute visibility V3 = 100× �

6 .

4: END

V3 is a quantized value with a quantization step of ∼ 16.66.
Reducing the quantization step can be achieved by increasing
the number of categories, however, the accuracy of V3 may
remain unchanged as the classification error may increase
as well. Moreover, labeling the images with high degree of
similarity might be inaccurate. The procedure for computing
V3 is given in Algorithm 3.

It is worth noting that V3 might be different from the
true visibility VT perceived by human eyes or measured by
instruments, which indicates that there is a lack of similar
samples in the training sample library. Thus, new training
images need to be added to the correct category in the library
and the system needs to be re-trained.

C. COMPREHENSIVE VISIBILITY INDICATOR
Image visibility estimation using the weighted entropy and
SVM can generate generally satisfactory results. However,
the results of both techniques do not necessarily match, and
there would be a difference between them. Therefore, a new
method is presented to combine the results of the twomethods
to generate the final image visibility. The combined method
will be denoted as the comprehensive visibility indicator V .
The direct approach for integration is to combine the

two visibility values from two different techniques. If the
weighted entropy result V2 and SVM result V3 are relatively
close, the two results are considered credible and the average
value of the two results is considered as the final visibility
indicator. On the other hand, if the weighted entropy V2
and SVM result V3 differs significantly, then it is required
to determine which one is likely to be the correct result
according to the fog density parameter V1, and the two results
V2 and V3 are combined with different weights. The proposed
algorithm is called Comprehensive Visibility Indicator (CVI)
Algorithm, which is detailed in Algorithm 4. Moreover,
the parameters and formulae used to generate V in Algo-
rithm 4 are obtained experimentally using 1000 images. The
visibility estimates V2 and V3 are considered different when
1 , |V2−V3|

max(V2,V3)
> 0.3. In addition, an image is considered

foggy when the fog density indicator F̄D > 40. Initial results
for V show that for most daytime images V > 50, and
for most night time images V ≤ 30, regardless of the fog
density. Therefore, a second iteration is required to scale
the results of the first iteration while taking the fog density
into consideration. In particular, the visibility of images for
daytime with fog and night time without fog.

In step 11 ofAlgorithm 4, the condition is used to identify
daytime image with fog, and then reduce V by subtracting
a weighted F̄D. The condition in step 13 is used to identify

Algorithm 4 Comprehensive Visibility Indicator

1: Inputs: V2, V3, F̄D
2: Compute 1, Vav = 1

2 (V2 + V3)
3: If 1 < 0.3
4: V = Vav
5: Go to 15
6: If F̄D > 40
7: V (1)

=
max(V2,V3)

Vav
min (V2,V3)

8: Else
9: V (1)

=
1

2Vav

(
(min (V2,V3))2 + (max (V2,V3))2

)
10: End
11: If

[
V (1) > 50

]
&
[
F̄D > 40

]
12: V = V (1)

(
1−

(
F̄D
V (1)

)2)
13: Elseif

[
V (1)
≤ 30

]
and

[
F̄D < 20

]
14: V = V (1)

(
1+

(
F̄D
V (1)

)2)
15: End
16: END

TABLE 1. Visibility evaluation criteria.

night time image without fog, and then improve V by adding
the weighted F̄D.

V. RESULTS
This section presents the results obtained using the proposed
visibility algorithm. The images are real road images col-
lected from various parts of highways in Canada and are pro-
vided by the Ministry of Transportation of Ontario (MTO).
In the experiments, more than 1000 images are chosen under
various driving conditions, including daytime images with
good visibility, foggy, rainy, snowy and dark images with
limited visibility. In order to associate the visibility indi-
cator with real-life measured visibility, the visibility levels
(VL) are defined in Table 1. Visibility distance is divided
into 4 levels based on the criteria proposed in [38], because
drivers observe the difference when visibility changes from
good→normal, normal−→bad, and bad→ terrible. The first
column in Table 1 corresponds to the normalized visibility
range (NVR), which is the visibility on a scale of [0, 100]. In
this paper, four values are presented for each image based on
the method used to derive the visibility, namely, fog density
(V1), entropy (V2), SVM (V3), and CVI (V ).
To evaluate the efficiency of the proposed fDCP, the execu-

tion time of fDCP module is compared with the conventional
DCP (cDCP) [35]. The two algorithms are used to process
200 images and their running time is calculated and displayed
in Fig. 6. The top green line represents the execution time for
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FIGURE 6. The comparison of execution time of conventional DCP and
fast DCP.

cDCP and the bottom blue line represents the execution time
for fDCP. It can be seen that for most images, the processing
time by cDCP is higher than fDCP, with differences ranging
from 5 ms to 163 ms. In addition, the average execution time
of cDCP and fDCP is about 179 ms and 141 ms, respectively.
Therefore, the average improvement in the execution time by
the fDCP is about 26%.

To evaluate the accuracy of the fDCP visibility estimates,
the fDCP results are comparedwith human perception results,
where 40 images that represent various visibility conditions
were applied to the fDCP algorithm, and then V1 is calcu-
lated. The same 40 images were classified by 10 people, and
the final level is computed as the average of the 10 human
estimates rounded to the nearest integer. The obtained results
show that the fDCP matches the human perception in about
42.5% of the images. Moreover, the level values using the
fDCP are generally higher than the human perception, which
is due to the fact that dark images are typically given high
level values by the fDCP.

The SVM classifier was trained using 1000 images and
tested using 5-fold cross validation. The images were chosen
such that each of the six categories has roughly the same
number of images. The results of the cross-validation testing
process in terms of average accuracy (Avg. Acc.) are shown
in Table 2. The results are presented for each of the 5 tests
performed on each fold, and for each of the 4 levels. As can
be noted from Table 2, L4 has the highest accuracy, while L1
has the lowest. Moreover, the overall classifier accuracy is
83.5%.

The results of six representative sample images from
Fig. 5 are outlined in Table 3. By analyzing the obtained
results in Table 3, it can be noted that V1 is always high even
in dark images. Such a result is expected because V1 solely
depends on the fog density, while all subfigures in Fig. 5 are

TABLE 2. SVM testing accuracy results using 5-fold cross-validation.

TABLE 3. Visibility results and the corresponding visibility levels for the
images in Fig. 5.

not foggy. The visibility results obtained using V2 and V3
are more accurate, yet they have large difference, 1 > 0.3,
in 3 out of the 6 considered cases, which are gray shaded
in Table 3. Therefore, the final visibility V for images in Fig.
5a, 5b and 5c has to be computed iteratively with the aide
of the fog density, while in the other three subfigures the
final visibility is just the average of V1 and V2. Moreover,
the Table shows that there is noticeable discrepancy in the
visibility levels computed based on the four considered tech-
niques. In particular, the levels generated using V1 do not
match the levels obtained using the other three approaches in
4 out of the six analyzed figures. Comparing V2 and V3 shows
that they have two differences where V2 estimated levels are
less than V3. For the case of V , it can be noted that it does
not match V2 for Fig. 5b, and does not match V3 for Fig. 5c,
which to a certain extent agrees with the human perception of
these figures.

To verify the theoretical results obtained using the CVI
and other methods, several experiments were performed,
where some images were collected under extreme weather
conditions. For each image collected, the visibility distance
(VD) was measured experimentally to allow fair compari-
son between the theoretical computations and measurements.
In the experiments, the visibility distance is defined follow-
ing [45] which defines the visibility as the greatest distance at
which a black object of suitable dimensions, situated near the
ground, can be seen and recognized when observed against a
bright background. In the experiments, the object considered
is a human body. During the experiments, two persons are
involved, the first person remains in a fixed location while
the second person moves straight on the road until he is not
visible to the stationary person. Once the moving person is
declared invisible, the first person captures the image, and
the visibility distance between them is calculated using their
GPS positions.

The experimental measurements of a sample of the cap-
tured foggy images shown in Fig. 7 are compared with their
theoretical results in Table 4. The methods compared with
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FIGURE 7. Sample of the captured foggy images for the practical visibility
distance measurements, their measured visibility distances are 38 m,
64 m, 73 m, 168 m, 296 m and 358 m, respectively.

TABLE 4. Visibility results of poor visibility images.

the proposed method includes the conventional DCP [38],
entropy [39] and artificial neural networks (ANN) [15].

In Table 4, the theoretical results that disagree with the
experimental measurements are gray shaded. As can be noted
from the results, the entropy method [39] has poor results
while the DCP method [38] shows better performance, which
can be noted from the difference between the visibility levels
for the two cases. This can be explained by the fact that
these images are foggy images and the DCP method calcu-
lates the visibility value based on fog density. Nevertheless,
the entropy method could have better performance for other
types of images like night images. The proposed system is
also compared with another deep learning method [15], how-
ever, the results proved to be not convergent. We concluded
that the amount of training data was not enough to get a good
neural network convergence. On the other hand, SVMmethod
shows good accuracy because SVM may produce reliable
results even with small size training sample. As for the pro-
posed CVI algorithm, because it combines DCP, entropy and
SVM, it offers the best performance.

In order to evaluate the proposed CVI algorithmmore com-
prehensively, the experimental results are judged by calculat-

TABLE 5. Visibility estimation accuracy using different methods
compared with measure visbility.

ing the mean absolute error (MAE) [38], which is defined as

MAE =
1
N

N∑
i=1

∣∣∣L̂i − Li∣∣∣ (25)

where L̂i is the estimated level, Li is the measured level,
{L̂i,Li} ∈ {1, 2, 3, 4}, and N is the number of samples used,
i.e., 1000. The relationship between the visibility levels and
visibility values is shown in Table 1. The final experimental
results are shown in Table 5. The results in Table 5 show
that the proposed CVI algorithm has better accuracy and
is more effective than the methods presented in [15], [38],
and [39]. Specifically, the CVI outperforms [15], [38], and
[39] by about 25.3%, 28.9% and 28.5%, respectively. Since
some of the experimental images were images captured under
various road conditions (daytime, dark, foggy, snowy and
rainy conditions), the results show that the CVI algorithm
has high accuracy in almost all conditions. In addition, all
experiments show that the CVI method still provides good
performance when the scale of data increases, or when the
images are captured by cameras or with low-pixel resolution.
Such performance can be justified by noting that the CVI
is based on the pixel distribution rather than the number of
pixels per image.

The visibility estimated using the images captured on
various highways can be used to adjust the speed limit of
the highways. However, optimum speed limit adjustment
based on visibility measurement is generally difficult because
there are other driving conditions that affect the speed limit.
However, it is still very beneficial for the drivers to utilize
visibility measurements to notify the drivers of the current
visibility conditions and inform them with an advisory speed
limits. Consequently, using more than 1000 images with
more than 100 real driving situations, the proposed speed
limit adjustments as presented in Table 6, which are in-line
with the suggested speed limit adjustments in [46] and [47].
Finally, the visibility indicator and the suggested speed limit
of each road are sent to the drivers and the speed limit control
system takes effect. Furthermore, the proposed approach can
be implemented on portable devices to provide access to
meteorological visibility in real-time.

Although the obtained results confirm the efficiency of the
proposed CVI under various weather and time conditions,
validating the results using standard image databases is typi-
cally desirable. Towards this goal, the FROSI image database
is used to test the fDCP, WIE, SVM and the CVI. The SVM
was tested using 5-fold cross validation using 3500 images,
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TABLE 6. Suggested speed limit adjustment by visibility.

and the remaining algorithms are tested using 700 images.
The obtained results show that the average accuracy of the
considered algorithms is 85.1%, 76.9%, 97.7%, and 98.0%
for the fDCP, WIE, SVM and CVI, respectively. As it can
be noted from the results, the accuracy of all algorithms has
significantly improved because all FROSI images represent
simple daytime foggy scenarios.

VI. CONCLUSION
This work presented a new comprehensive visibility indicator
algorithm for an ITS with adaptive speed control limits as its
main functionality. The proposed visibility indicator utilizes
the dark channel prior, weighted image entropy and support
vector machine to generate accurate visibility estimates. The
three algorithms are combined through a comprehensive deci-
sion making algorithm to produce more realistic and precise
visibility indicator denoted as CVI.More than 1000 real high-
way images were captured and used to evaluate the reliability
of the proposed system. The SVM algorithm is used to create
an image library to help the system determine the visibility
levels of new images. The SVM is trained using six visibility
classes using images from MTO and our SVM classifier
with manually created library classifies new images with an
average accuracy of 83.5%. The experimental results indi-
cated that CVI calculated by the proposed method has a high
average accuracy of 88.2% for estimating visibility, which
is much higher than other popular visibility measurement
methods. Moreover, unlike the other considered techniques,
which can only show good performance when detecting
foggy visibility conditions, the proposedmethod canmeasure
visibility under various driving conditions including foggy,
snowy, dark conditions, etc.
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