
Received September 28, 2018, accepted November 22, 2018, date of publication November 30, 2018,
date of current version December 27, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2883588

Image Manipulation Detection and Localization
Based on the Dual-Domain Convolutional
Neural Networks
ZENAN SHI 1,2, XUANJING SHEN1,2, HUI KANG1,2, AND YINGDA LV3
1College of Computer Science and Technology, Jilin University, Changchun 130012, China
2Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
3Center for Computer Fundamental Education, Jilin University, Changchun 130012, China

Corresponding author: Hui Kang (kanghui@jlu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61672259, Grant 61876070, and
Grant 61602203, and in part by the Natural Science Foundation of Jilin Province under Grant 20170520064JH.

ABSTRACT In multimedia forensics, many efforts have been made to detect whether an image is pris-
tine or manipulated with high enough accuracies based on specially designed features and classifiers in the
past decade. However, the important task for localizing the tampering regions in a fake image still faces more
challenges compared with the manipulation detection and relatively a few algorithms attempt to tackle it.
With this in mind, a technique that utilizes the dual-domain-based convolutional neural networks (D-CNNs)
taking different kinds of input into consideration is proposed in this paper. In the proposed framework, two
sub-networks, named the spatial-domain CNN model (Sub-SCNN) and the frequency-domain-based CNN
model (Sub-FCNN), are designed and trained, respectively. With the well-trained parameters, a transfer
policy is applied to the training process of the D-CNN. While CNNs are capable of learning classification
features directly from data, in their standard form they tend to learn features related to the image’s content.
To overcome this issue in image forensics tasks, a new image pre-processing layer is proposed to jointly
suppress image’s content and adaptively learn manipulation detection and localization features. After
investigating the properties of datasets, two post-processing operations are finally proposed and compared
to obtain the final results of the pixel-wise manipulation region localization. The D-CNNs is trained and
validated using 75 percent of images in the CASIA v2.0 and tested using the remaining images in the CASIA
v2.0, all images in Columbia Uncompressed and Carvalho datasets. The extensive experiments show that the
proposed post-processing operations optimize the final tamper probability map, and our framework with the
combination of Sub-SCNN and Sub-FCNN significantly outperforms the state-of-art techniques with the
best F1 scores on the datasets.

INDEX TERMS Convolutional neural networks, multimedia forensics, post-processing operation, transfer
policy.

I. INTRODUCTION
Multimedia information, such as digital images, is frequently
used in the numerous important settings, such as evidence in
criminal investigations and military scenarios [1]. However,
with the availability and pervasiveness of digital image edit-
ing tools, this information can easily be altered or tampered
leaving no visual traces of any modification [2]. As a result,
image manipulation detection has become a very important
and challenging task due to the strong resemblance of a
forged image to its original one in multimedia forensics.
To determine the authenticity of digital images, most of
the state-of-the-art image manipulation detection methods

exploit the three principal classes of detectors which are based
on the features descriptors or the frequency domain char-
acteristics [3], [4], based on inconsistent shadows or noise
levels [5]–[7] and finally based on double JPEG compres-
sion [8], [9] according to the individuation of image forg-
eries. Although research in image forensics has dramatically
advanced, these approaches still suffer from important draw-
backs that not all images have this individuation.

Recently, deep learning, such as convolutional neural net-
works, has shown its promising performance in a wide variety
of computer vision tasks, including object detection [10],
semantic segmentation [11] and so on. And there have a
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few recent works which exploit the Stacked Autoencoder
model (SAE) [12] and CNN [13], [14] to detect tampered
images. In particular, Zhang et al. [12] used image statis-
tics as input to SAE to obtain the tampered image block
features and localize the tampered regions by a multilayer
perceptron. The extensive use of deep learning in many
areas has motivated and led the multimedia forensics com-
munity to analyze whether it is possible to force a CNN
to learn manipulation detection features and capture pixel
value dependencies induced by image tampering operation.
In standard form, the CNNs provide a promising perfor-
mance of automatically leaning features related to the image’s
content, whereas, the image’s content should be suppressed
in image forensics tasks. If the CNNs are used in their
existing form, this will lead to a classifier that identifies
the objects and scenes as opposed to learn image forensics
classification features. To tackle this problem, a common
method has emerged namely pre-processing layer based deep
learning approach used in steganography. And the main idea
behind [13], [14] is to develop a sort of pre-processing model,
designed to suppress image content before training the CNN
model. Inspired by the powerful steganalytic features called
the spatial-domain rich model (SRM) [15], many methods
have been proposed and applied successfully in the field
of image tamper detection [16]. By simply merging the
detection results of a statistical feature-based detector and a
copy-move detector, the good performance is achieved for
forgery detection [16]. In order to identify the authenticity
and processing history of an image, a new forensic approach
using CNN and newCNN layer, called a constrained convolu-
tional layer, is proposed in [17]. And the experimental results
demonstrate that this model can detect multiple different
editing operations with up to 99.97%. Although the interest of
neural network in image forensics domain is growing, a real
comprehension of what is possible to accomplish with it is
still in an early stage.

Since the use of deep learning approaches for multimedia
security applications is still in its infancy, many of current
detection algorithms only deduce that whether a given image
has been manipulated and do not attempt to localize the tam-
pered regions which require to determine which pixels in an
image have beenmanipulated. However, in order to formulate
the framework, the convolutional layers alongwith long-short
term memory (LSTM) cells are exploited to capture discrim-
inative features in [18]. And the CNN-LSTM model shows
promising results in localizingmanipulated regions. An effec-
tive solution to the splicing localization problem based on
fully convolution network (FCN) is presented in [19]. The
proposed model is based on the FCNVGG-16 network archi-
tecture incorporating several modifications, which outper-
forms some existing splicing localization algorithms.

Since in practical forensics applications, figuring out the
tampered regions compared to forgery detections is more
important and necessary. In this paper, our objective is to
train a network model that, given a to-be-tested image,
is able to reliably localize the possible tampering regions.

Algorithm 1 Training the Proposed D-CNNsModel
Input: the training set of pristine patches Au_set,

the training set of forged patches For_set,
the 14 high-pass filters F, the untrained
D-CNNs D, the paremeters of pre-trained
Sub-SCNN model PS, the paremeters of
pre-trained Sub− FCNN model PF.

1 Preprocess Au_set and For_set with the 18 high-pass
filters F

2 Calculate the statistic features of Au_patch and
For_patch

3 Transfer the parameters and use them directly in D
4 i = 1
5 While i ≤ max_iter do
6 Do feedforward pass
7 Upadete the filter weights of D through Adam

optimizer with Eq.(6) and backpropagate errors
8 i = i+ 1
9 If training accuracy converges then
10 Exist
11 end

Output: a well trained D-CNNs D

To improve the performance of detecting and localizing
manipulated image regions, different kinds of CNNs-based
approaches have been presented to classify the image patch
and pixel-wise segmentation, and different inputs to the net-
work are taking into consideration. We perform end-to-end
training to learn the discriminative features between manipu-
lated and non-manipulated regions through back-propagation
using the ground truth labels and image mask information.
The proposed model shows promising results in patch classi-
fication on validating datasets, as well as in localizing manip-
ulated regions at pixel level on testing datasets. Our main
contributions can be summarized as:
• A dual domain-based CNN architecture is proposed
that takes different kinds of input to the CNN into
consideration. And in the proposed D-CNNs, the two
sub-networks of the Sub-SCNN which is exploited per-
form image manipulation detection and localization
starting from the RGB color images and the Sub-FCNN
which is introduced taking statistical features based on
the 3 level Daubechies-based Discrete Wavelet Trans-
formation (DWT) as input to the net are designed in the
different domain;

• In Sub-FCNN framework, four additional statistical fea-
tures are introduced for each different DWT sub-band
over all three color channels to both further improve the
accuracy of patch classification in the Sub-FCNN and
the D-CNNs models;

• In the proposed framework, two sub-networks of Sub-
SCNN and Sub-FCNN are designed and trained respec-
tively.With the parameters of pre-trained Sub-SCNN and
Sub-FCNN networks, a transfer policy is applied to the
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training process of D-CNNs to achieve higher accuracy
and avoid a long time training process under the normal
learning policy;

• According to the properties of image datasets, two dif-
ferent post-processing operations are applied on dif-
ferent datasets to finalize the pixel-wise manipulation
region localization, which can reduce the false detection
rate and locate the edge contour of tampered regionmore
precisely.

The remainder of this paper is organized as follows.
An overview about CNNs in literature is presented in
Section 2. In Section 3, the algorithm framework is described
and its details are introduced briefly. Section 4 discusses our
main contributions and assesses our proposedD-CNNs archi-
tecture through a set of experiments. Finally, the conclusion
is provided in Section 5.

II. CONVOLUTIONAL NEURAL NETWORKS
Deep learning approaches, such as convolutional neural
networks, can provide the end-to-end analysis. In general,
their architecture, which is the set of learnable parameters
(e.g. weights and biases) and components that we need to
design in a network, is a cascade of alternating four basic
layers: convolutional layers, activation layers, pooling layers
and regulation layers (e.g. BN: batch normalization layers).

— Convolutional layer. In the CNN architecture, the con-
volutional layer is to use k filters to convolve the input
images, generating k new feature maps for subsequent pro-
cessing. Let us denote the jth output feature map in nth layer
by F (n)

j , we have:

F (n)
j =

∑
i

w(n)
ij ∗ F

(n−1)
i + b(n)j (1)

where ∗ denotes a 2d convolution, w(n)
ij and b(n)j represent the

convolutional filter and bias respectively.
— Activation layer. The convolutional layers are also fol-

lowed by an activation layer to transform the input feature
map through nonlinear mapping.

F (n+1)
j = f (Fnj ) (2)

where f () is a point-wise activation function, such as Tanh,
ReLU [20], ELU [21], and leaky ReLU (LReLU) [22], etc.
The activation layer also called the nonlinear mapping layer.
As the name implies, the activation function is introduced to
increase the expressive power of the entire network, that is,
non-linearity. Otherwise, the stack of several linear operation
layers can only play the role of linear mapping and cannot
form complex functions.

— Pooling layer. The set of convolutional layers yields a
large volume of feature maps. To reduce the dimensionality
of input features and make the extracted features compact,
the pooling layer is also added after the convolutional layers
and is defined as:

F (n+1)
j = pool(Fnj ) (3)

where pool () represents the pooling function. Generally,
there are three kinds of pooling function in existing CNN
models: max, average and stochastic pooling. In particular,
the max-pooling layer works as a sliding windowwith a stride
distance which selects the maximum value within the sliding
window.

— Regulation layer. In addition, to enforce the data far
away from saturation regions, the regulation layers such as
dropout layers and Batch Normalization (BN) are preferred
to use in the state-of-the-art CNN models [23]. In particu-
lar, in the BN layer, the two learnable parameters {γ , β}
are introduced to ensure that the feature distribution is not
corrupted. Through them, each data item xi in a mini-batch
B = {x1, x2, . . . , xm} of size m is transformed into yi:

yi = γ x̂i + β (4)

x̂i =
xi − EM (xi)
√
VarM (xi)+ ε

(5)

In (5), EM (xi) and VarM (xi) represent the mean and the vari-
ance of xi in the batch B. The main function of the batch
normalization makes a network converge in a faster speed
than a network without batch normalization.

The non-linear activation, pooling, and regulation oper-
ation are optional in a specific layer. For a classification
problem, on the top of the several cascaded convolutional
layers, there are one or more fully-connected layers followed
by a soft-max classifier that performs classification.

The training of a CNN model is an iterative process that
is completed by alternating between feed-forward and back-
propagation operations. Like many other machine learning
models (support vector machines, etc.), the ultimate aim of
convolutional neural networks is relying on minimizing loss
functions to learn model parameters. In this paper, cross
entropy loss function is employed to calculate the error
between the true class labels and the network outputs. There
are a variety of solvers to minimize average loss. The stochas-
tic gradient descent (SGD) optimizer is considered to train
our networks. The adaptive updating process of weight w(n)

ij
at each iteration of the back-propagation algorithm is shown
as follows:

∇w(n+1)
ij = λ ·

∂L

∂w(n)
ij

− m · ∇w(n)
ij + d · λ · w

(n)
ij (6)

w(n+1)
ij = w(n)

ij −∇w
(n+1)
ij (7)

where∇w(n)
ij denotes the gradient of w(n)

ij and λ is the learning

rate. L is the loss function. The bias b(n)j in (1) also undergo

the above iterative update process like weights w(n)
ij . For fast

convergence as explained by LeCun et al. [24], the weight
decay and momentum are used in this paper and they are
denoted by d and m respectively in (6).
The structural advantages of CNNs make them suitable

for capturing the statistical properties of the lower and
deeper layers of the image. Therefore, the CNN models are
widely used in image-related tasks and achieve excellent
performance.
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FIGURE 1. Architecture of the D-CNNs; The Sub-SCNN marked with red dotted line (in the top row); The Sub-FCNN
marked with blue dotted line (in the bottom row).

III. PROPOSED METHOD
A. NETWORK ARCHITECTURE
Many existing state-of-the-art approaches perform image
manipulation detection proceed by extracting discriminant
features directly from data. However, in order to accurately
localize tampered regions, it is also essential to learn the
inherent characteristics of the tampered regions. Therefore,
theD-CNNs architecture is designed that takes different kinds
of input to the CNN into consideration in this paper. The
overall framework of the proposed D-CNNs method with
details about the size of each layer is shown in Fig 1.

The architecture of D-CNNs consists of two different sub-
networks: Sub-SCNN and Sub-FCNN up to their respec-
tive first fully connected layer and has the ability to learn
the inter-model relations between features extracting from the
R, G, B three channels in the spatial domain and from the
three-level Daubechies-based DWT in the frequency domain.
Then the output of the fully connected layers of the two
nets (256 dimensions each) are joined together is fed to the
classification block which consists of two fully connected
layers, a ReLU layer, and a dropout layer. More specially,
the first fully connected layer with 512 output neurons fol-
lowed by a ReLU layer and a dropout layer generate a vec-
tor of 512 elements. At last, the output of the final fully
connected layer with two neurons is sent to a two-way soft-
max connection, which can produce the probability that the
input patch is classified into tampered class and authentic
class.

As can be seen from Fig 1, the input of our proposed
D-CNNs is a three-channel color image patch sized
64× 64 pixels, and primary part of the proposed architecture
is two sub-networks. In what follows, the overview of each
presented sub-network as well as the different layers are
introduced in detail.

1) SPATIAL DOMAIN-BASED CNN
A CNN-based approach, named spatial-domain CNN
(Sub-SCNN), is proposed in this section, and its architecture
is shown in Fig 1 with the red dotted line. One can notice
from spatial network that the main body of the network
can be divided into three parts: image pre-processing layer,
hierarchical feature extraction and cross learning with 1 × 1
convolution kernel.
• Image pre-processing layer: Different from the research
of semantic segmentation, the image tampering localiza-
tion approach proposed in this paper needs to locate the
tampering areas instead of every object in the image.
By contrast, our approach would like to suppress the
image’s content and adaptively learn the traces left
by image manipulation operations. To accomplish this,
the first convolutional layer of CNN model in [15] is
served as the pre-processing to capture the changes of
local pixel relationships. Up to now, it is observed that
this strategy is adopted in many existing forensics and
steganography algorithms which use all SRM kernels
proposed in [25] to initialize the filters in the first layer.
Based on our extensive experiments, we find that the
detection performance would not increase significantly
with increasing the number of the employed filters. Con-
sidering the trade-off between the model computational
complexity and detection performance, 14 filters which
are formed by five basic filters (in Fig 2) used in the
calculation of the residual maps in SRM and their rota-
tions filters, are selected in our image pre-processing
layer. To capture the differences of adjacent pixels in the
different direction, as for the filter (a), it takes the center
as the origin and is clockwise rotated by 90◦, 180◦, and
270◦ to form three new high pass filters with the first
order. And as for the filter (b), three new high pass filters
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FIGURE 2. The basic filters used in channel expansion layer.

with the second order can be obtained by rotating fil-
ter (b) along the vertical, diagonal, anti-diagonal direc-
tions. The filter (c) also undergoes the above process
like filter (b). As described in SRM, the 14 basic filters
can be divided into 5 residual classes, which include
4 filters in class ‘‘1st,’’ 4 in the class ‘‘2nd,’’ 4 in the
class ‘‘3rd,’’ 1 in class ‘‘SQUARE3× 3’’ and 1 in class
‘‘SQUARE5 × 5.’’ And the 14 filters are formulated as
5 × 5 weight matrices {W1,W2, . . . ,W14} filled with
unused elements with zero.

In our CNN architecture, the three-channel color patches
are the input of the image pre-processing layer. Therefore,
each of the 14 output feature maps corresponds to 3 weight
matrices of size 5 × 5, and 42 weight matrices in total are
needed to be initialized with above-mentioned 14 filters.
To make the tampering traces exposed to a larger extent by
pre-processing layer, the 3 basic filters used for each of output
feature maps should be similar but not identical.

For the jth output feature map, the corresponding weight
kernelWj

=

[
W j

1 W j
2 W j

3

]
is initialized as:

Wj

=
[
W((3∗j−3) mod 14)+1W((3∗j−2) mod 14)+1W((3∗j−1) mod 14)+1

]
(8)

where j equals from 1 to 14. Expect for the image pre-
processing layer, the Gaussian distribution with 0 mean and
standard deviation 0.01 is adopted for the initialization of
weights in other layers.
• Hierarchical feature extraction: To learn higher-level
prediction error features, three regular convolutional lay-
ers, namely ‘‘Conv1’’ with 16 filters of size 5× 5× 14
and a stride equal to 1, ‘‘Conv2’’ with 32 filters of size
5× 5× 16 and stride of 1 and ‘‘Conv3’’ with 64 filters
of size 3× 3× 32 and stride of 1 respectively, are used
and each of them followed by a batch normalization
layer, an activation function layer and a pooling layer.
In the previous section, an ‘‘image pre-processing layer’’
yields the resulting residuals and increases the channel
number of feature maps of the prediction residual from
3 to 14 in this layer. The 14 residual feature maps are
fed as input to the model part of hierarchical feature
extraction. Then the output dimensions of these three
convolutional layers are 64 × 64 × 16, 31 × 31 × 32
and 15× 15× 64. Different sizes of convolution kernels

are used to learn the new representation of different
feature maps. In this part, the max pooling layer with
an overlapping kernel of size 3 × 3 and stride of 2 is
used after each regular convolutional layer. The three
max-pooling layers reduced the dimensions of feature
maps from 64×64×16 to 31×31×16, from 31×31×32
to 15 × 15 × 32 and 15 × 15 × 64 to 7 × 7 × 64.
Therefore, we can see that the pooling operation can
reduce the feature maps dimensions and computational
cost of training process. More specifically, it can retain
the most representative features by calculating the max
value within a local 3×3 sliding window to improve the
accuracy.

• Cross learning with 1× 1 convolution kernel: The hier-
archical features are learned by learning local spatial
association within the different local receptive field in
the same feature maps. Next, the new association is
learned by cross learning with 1× 1 convolution kernel
between these feature maps. For a pixel, a 1 × 1 con-
volution is equivalent to performing a fully connected
calculation on all features in the feature maps, simu-
lating more nonlinear features. This has been demon-
strated to improve the learning ability of CNN in image
steganalysis [26].

This part of cross learning consists of two convolutional
layers, namely ‘‘Conv4’’ and ‘‘Conv5’’ respectively, and each
of them also followed by a batch normalization layer, an acti-
vation function layer and a pooling layer. The ‘‘Conv4’’ layer
with 128 filters of size 1× 1× 64 applied with stride 1 gen-
erates 7× 7× 128 feature maps. After a batch normalization
layer and a ReLU layer, a max-pooling with the kernel size
of 3 × 3 applied with stride 2 produces 3 × 3 × 128 feature
maps. Similarly, the ‘‘Conv5’’ layer with 256 filters of size
1 × 1 × 128 applied with stride 1 generates 3 × 3 × 256
feature maps. After a batch normalization layer and a ReLU
layer, a max-pooling with kernel size of 3 × 3 applied with
stride 2 produces a vector of 256 elements.

After the cross learning, the deepest convolutional features
learned by the previous layers as input are classified primarily
passed to two fully connected layers. The first fully connected
layer with 256 output neurons produces the 256 element
feature vector. And the last fully connected layer with two
output neurons followed by a soft-max layer acts as logistic
regression classifier during the Sub-SCNN training stage. The
classification layer output two classes, a class of tampering
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image and another class that corresponds to the unaltered
image class.

2) FREQUENCY DOMAIN-BASED CNN
In the secondly proposed sub-network, Sub-FCNN, a statis-
tical feature extraction is performed on a given input patch
calculating from the DWT following the idea in [12] as
the input of the sub-network. And the tampering traces and
certain correlation in natural images are captured by DWT,
which transforms an image from spatial to the frequency
space and generates different scale sub-bands [27].

FIGURE 3. The workflow of image patch statistical feature extraction.

As is shown in Fig 3, in detail, a 64 × 64 × 3 raw
image patch is firstly converted into YCbCr color space, and
for each channel, a three-level Daubechies-based DWT is
applied. At each scale, three different sub-bands are gener-
ated including the horizontal, vertical and diagonal orienta-
tions. Then ten sub-band coefficient matrices can be obtained
by the multi-level wavelet decomposition. And a family of
daubechies wavelets is adopted to preserve sufficient cor-
relation of coefficients among multiple vanishing moments.
Therefore, for each channel, fifty sub-bands can be generated
by applying the 3 level Daubechies-based DWT from db1
to db5 (dbi represents Daubechies wavelet with m vanishing
moments) and the jth sub-band of dbi wavelet is denoted
by Subi,j(i ∈ [1, 5], j ∈ [1, 10]). Instead of directly using
all these wavelet sub-band coefficients as the raw input,
three statistics which represent the relationships among the
basic statistic among different sub-bands are selected in [28].
Inspired by the above ideas, four new features are introduced
to form seven features in our paper. As different features
can capture different information regarding the structural
arrangement of surfaces or changes in intensity or color
brightness [29], they together can better describe the inherent
characteristics of image patches. Specifically, for each DWT

sub-band Subij, seven statistics are extracted and given by

f = < µ, σ, ξ,E,Con, Im, Idm > (9)

µ =
1
MN

M∑
i=1

N∑
j=1

p(i, j) (10)

σ =

√√√√√ 1
MN − 1

M∑
i=1

N∑
j=1

|p(i, j)− µ| (11)

ξ =

M∑
i=1

N∑
j=1

p2(i, j) (12)

E = −
M∑
i=1

N∑
j=1

P(i, j) log(p(i, j)) (13)

Con =
M∑
i=1

N∑
j=1

(i− j)2p(i, j) (14)

Im =
M∑
i=1

N∑
j=1

1
|i− j|

p(i, j)(i 6= j) (15)

Idm =
M∑
i=1

N∑
j=1

1
1+ (i− j)2

p(i, j) (16)

where µ is the average of elements in the DWT sub-band
coefficient arrays. σ quantifies the amount of variation of
the DWT coefficients, ξ is the coefficient energy which can
measure the amount of information retained in the considered
sub-bands, E measures the discrepancy of elements in the
DWT sub-band coefficient arrays, Con reflects the sharpness
of the DWT sub-bands, Im measures the degree of changes
in the local coefficient arrays and Idm measures the homo-
geneity whose larger value stands for small differences of
elements in the DWT sub-bands. The formulations to extract
these statistics can be defined as follows where p(i, j) denotes
a DWT sub-band coefficient array to be analysed with the size
of M × N .
In the process of statistical feature extraction, for an input

image patch, the feature vectors extracted in different chan-
nels can be concatenated together into p, which will finally
be expressed as the following vector:

p =< fY (Subi,j), fCb(Subi,j), fCr (Subi,j)|i∈ [1, 5], j∈ [1, 10]>

(17)

where fY (Subij) denotes the 7-D statistical feature extracted in
the jth sub-band of dbi wavelet over the Y channel. By apply-
ing a three-level DWT from m daubechies wavelets to an
image block on a channel, the features that can be generated
are a total of 350 dimensions. Therefore, the 1050-dimension
vector which contains 450-dimension used in [28] is formed
over all three color channels and the overall processing work-
flow is shown in Fig 2.

The 1050-dimension feature vector is then used as input to
train the proposed Sub-FCNN model, in order to distinguish

76442 VOLUME 6, 2018



Z. Shi et al.: Image Manipulation Detection and Localization Based on the Dual-D-CNNs

FIGURE 4. Transfer learning policy: accuracy (a) and loss (b) in each epoch in the training process
of the D-CNNs.

FIGURE 5. Normal learning policy: accuracy (a) and loss (b) in each epoch in the training process of the
D-CNNs.

whether the input image patch is authentic or tampered. The
architecture of Sub-FCNN is illustrated in Fig 1 with blue
dotted line.

One can notice from Sub-FCNN network that the extracted
features are firstly fed to the group1 block which has a 1-D
convolutional layer (Conv), a batch normalization layer (BN)
and aReLU activation layer following by amax pooling layer.
Similarly, the output of the first pooling layer will be sent to
the group2 block with ‘‘Conv+BN+ReLU’’ followed by the
second pooling layer. The first fully connected layer contains
256 neurons and the number of neurons in the output layer
is equal to the number of classes in the considered forensics
task. The output layer is followed by a soft-max activation
function and the class of the input image patch corresponds
to the higher activated neuron in the output layer.

B. NETWORK TRAINING
A transfer learning policy is used during the training pro-
cess of the D-CNNs network. Different from the traditional
parameter initialization, the parameters of pre-trained Sub-
SCNN network and Sub-FCNN network are used directly
in the transfer training policy network. And as described
in Section 3, the parameters of the image pre-processing
layer are fixed and initialized with selected 14 filters. While
in normal training processing, the parameters of Sub-SCNN
and Sub-FCNN networks are initialized with random values
which belong to the normal distribution. Before using the

transfer learning policy, we need to respectively train the Sub-
SCNN and Sub-FCNN networks on the same image dataset.
Until each of sub-network converges, the parameters of layers
that are trained in the different domain networks, such as the
convolutional layer, BN layer, and fully connected layer, are
saved.We separately denote the parameters of Sub-SCNN and
Sub-FCNN model as PS and PF. On the same image dataset,
the whole process to train the proposed D-CNNs model is
illustrated as shown in Algorithm 1.

Two experiments are performed to verify the validity of
the transfer training policy. Under the transfer training pol-
icy, the accuracy and loss in each epoch of the proposed
D-CNNs which is trained on CASIA2 dataset is illustrated
in Fig 4. The accuracy in the training process is defined as the
proportion which is calculated by the number of tampered
or authentic patches being correctly classified divided by the
number of training patches. Since we use the parameters from
pre-trained two sub-networks, the validation accuracy is high
enough at the very beginning of the training process, and it
remains a stable trend after epoch 10. Another experiment is
performed that parameters of convolutional layers, BN lay-
ers and fully-connected layers in the D-CNNs network are
initialized to random values which belong to normal distri-
bution. And the accuracy and soft-max loss of the proposed
D-CNNs with normal training policy are shown in Fig 5.
Compared to the former case, it takes much longer training
time to reach a stable trend around epoch 35. The accuracy of
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transfer learning networks is slightly higher than that of
normal learning networks. Therefore, we use the trained
networks under transfer learning policy for the proposed
D-CNNs training.

C. MANIPULATION REGION LOCALIZATION
Through the description in the previous section, a well-
trainedD-CNNsmodel can be obtained, which can predict the
class of the input image patch. For each image to be detected,
the proposed framework of manipulation region localization
consists of the following two steps.
• Producing the initial tampering possibility map: For
each image to be tested, it is analysed by the sliding
window of the scale as s × s with a stride of st (s = 64
and st = 8 in our paper). The image patch size is
chosen empirically as too small size cannot capture suf-
ficient information while too large size cannot localize
the tampered regions precisely. Then, a source image to
be analysed (denoted by S) with the size of h × w is
divided into hfea × wfea image patches by the sliding
window manner, where hp = floor ((h − s)/st)+1 and
wp = floor ((w − s)/st)+1. Therefore, a tampering
possibility mapMp of size hp × wp where each element
indicates the probability that the corresponding patch
is tampered or authentic. At the same time, a matrix
N of the same size as S is also generated, and each
pixel value in the matrix records the number of patches
containing pixel at this position in the S by conducting
in a sliding window manner. Inevitably, for some pixels
in S, the corresponding value inN is equal to zero, which
means that the number of blocks containing them is zero
and these pixels usually appear around the edges of the
image. In order to get the tampering possibility map M
with the same size of the input, the element mi,j in M is
computed as

mi,j =
mp

ni,j
(ni,j 6= 0) (18)

wheremp is the tampering probability value of the patch
containing pixel Si,j in S, and ni,j denotes the corre-
sponding value in N . When ni,j = 0, we simply set
Mi,j the same probabilities as the nearest pixel whose
ni,j is not equal to 0. To smooth the mosaic artifacts in
the possibility map M , mean filtering is applied on the
M by (19) So that the smoothed possibility map M can
be obtained. Thereafter, given an image, we output an
initial possibility mapM with the same image size of the
input by conducting a block-wise prediction in a sliding
window manner by the well-trained

D-CNNs model.

mi,j =
1

s× s

s
2−1∑
i′=− s

2

s
2∑

j′=− s
2

mi+i′,j+j′ (19)

• Optimize the tampering possibility map to finalize the
pixel-wise manipulation region localization: In order to

reduce the false detection rate and locate the edge con-
tour of the tampered region more precisely, two differ-
ent post-processing operations are applied on different
datasets according to the properties of image datasets in
this paper.

For the CASIA v2.0 dataset, the tampered region has cer-
tain semantics such as an animal, a car and such contextual
information can be referred from the consistency between the
nearby pixels in the spatial domain. And the consistency and
correlation among nearby pixels are used to divide the image
region in some clustering algorithms. Thus, three experiments
based on different classical image segmentation algorithms
are performed to divide the image into different segments. For
each segment s, the final prediction label L is determined by
comparing the average tampering probability value of pixels
(i, j)∈ s with a pre-defined threshold as

L(s) =

1,
1

nums

∑
(i,j)∈sM (i, j) ≥ β

0, otherwise
(20)

where nums calculates the total number of pixels in the given
segment s and M (i, j) represents the tampering probability
value of the pixel (i, j). In this paper, β is set 0.5, which
is a midpoint of the maximal probability. L(s) labeled as
1 represents tampered segment, vice verse.

FIGURE 6. Segmentation results of three images selected from CASIA2.
Starting from the first column: 1: input image, 2: results of SLIC [30],
3: results of image segmentation algorithm [31], 4: results of graph-based
image segmentation algorithm [32].

Fig. 6 shows the segmentation results of three examples.
Instead of manually setting the number of clusters in the
traditional SLIC (Simple Linear Iterative Clustering) seg-
mentation algorithm, the number of clusters of the image is
calculated according to the complexity of the image in [30].
However, as shown in Fig 1, we can see from the segmen-
tation results in the second column that the edges of some
objects in the image are not very accurate, such as the bristles
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FIGURE 7. Three examples to show how the proposed model localizes the tampered region in pixel-level: Starting from the first
column: 1: forged images used in experiments, 2: ground truth, 3: initial tampering possibility map, 4: smoothed tampering
possibility map, 5: binary tampering possibility map, 6: the final integration result (the white regions indicate the area that was
predicted as tampered using the proposed model.).

of the green toothbrush, the mouth of birds, and the head of
goats. Moreover, when the image texture is rich, the super
pixel block is too small to effectively remove the misclassi-
fied areas. When the image contains more smooth regions,
the super pixel block is too large to locate the small tamper
regions precisely.

The segmentation result of the third column shows that the
similar texture regions are all divided into the same portion,
which will cause the regions having similar textures with
the tamper regions to be marked as tamper regions, thereby
reducing the detection rate. As shown in the segmentation
results in the third column, the graph-based image segmen-
tation algorithm [31] not only divides the different image
regions precisely and meticulously, but also similar texture
regions are divided into different segments. Thus, to finalize
the pixel-wise forged region localization, we leverage a seg-
mentation technique [32] is leveraged to perform such image
region division.

Based on the above, three prediction examples are shown
in Fig 7. In order to compare with post-processing operation
based on segmentation, the directly binarized tampering pos-
sibility map marks the pixel in the tampering possibility map
as 1 when its value is greater than or equal to 0.5 and marks
the pixel in the tampering possibility map as 0 when its value
is less than 0.5. The qualitative differences between binarized
post-processing and the segmentation-based post-processing
operation are visualized by our experimental results. By inte-
grating the initial probability map and the selected segmenta-
tion algorithm, it can be seen that the final fusion result can
significantly optimize the tamper probability map and reduce
the regions that are mistakenly classified.

However, considering that the characteristics of the tam-
pering regions in Columbia and Carvalho datasets are dif-
ferent from characteristics of tampering regions in CASIA
v2.0, a simple post-processing with the binary operation is
applied on tampering probability map in Columbia and Car-
valho. The specific theoretical analysis and the comparison
of experimental results are introduced in Section 4.7.

Finally, our proposed image manipulation localization pro-
cess can be summarized as the following steps:

Step 1: Train the Sub-SCNN and Sub-FCNN models sepa-
rately to learn the optimal features for tampered regions.

Step 2: Determine the probability of each image
block being tampered with using D-CNNs by transferring
pre-trained parameters of spatial and frequency domains in a
slide window manner and normalize the accumulated values
to compose an initial tampering probability map with the
same size as the input image.

Step 3: For the test image, obtain its segmentation results
which are a set of segments. For each segment, determine
whether it is tampered using (20).

Step 4: Post-processing operation based on segmentation
is used to refine the initial tampering possibility map and the
final result of image manipulation localization is obtained.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
To assess the performance of our proposed D-CNNs for
performing image manipulation detection and localization,
a set of experiments and analysis are conducted. In these
experiments, the contributions of additionally introduced four
statistical features in Sub-FCNN are first evaluated. Next,
we compare the performance of our proposed architecture
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with different structural design choices, e.g., the choice of
pooling and activation functions. Finally, some experimental
results on different datasets are extrapolated and presented
to provide a qualitative view of the achieved performance
mainly in terms of manipulation localization.

A. DATA COLLECTION
1) IMAGE DATASET
The experiments are conducted on the tampered images of
three public domain benchmark databases: CASIA Tam-
pered Image Detection Evaluation Database Version 2.0
(CASIA v2.0) [33], Columbia Uncompressed [34] and Car-
valho [35], which are open for downloading and widely used
in image manipulation localization. Ground truth masks are
provided for the Columbia Uncompressed and Carvalho. For
a tampered image in the CASIA v2.0 dataset, it involves
human efforts to manually label the forged region using
the provided reference information about its donor and host
images. The number of tampered images in Columbia and
Carvalho are 180 and 100 respectively, and some sample
tampered images on CASIA v2.0 are shown in Fig 1.

2) PATCH SAMPLING
As introduced in subsection 4.2, the input of the training
process of the D-CNNs, the Sub-SCNN and the Sub-FCNN
is labeled patches sample from the training images. And,
the sliding window manner is adopted to get the tampering
possibility map of the investigated image, thus we should
sample patches on the images for training and validation.
Then we extract patches from training images which are
considered as training set. Similarly, the validation set is
also obtained in this process. During the patches generation,
the sliding window with size of 64×64 and the stride st is set
as 2. In order to augment the manipulated patches and reduce
the amount calculation, we first obtain the bounding box
that includes the whole manipulated region and some non-
manipulated region on the tampered images by combing the
corresponding ground truth mask. The sliding window with
a fixed scale slides across the tampered image region in the
box, and the patches tampered with 30% to 90% are labeled
as manipulated. Some sampled manipulated patches contain
some part of the non-manipulated region, which are useful
for the proposed model to learn the transformation from
the manipulated region to non-manipulated region. However,
the proportions of the tampering area to the entire image differ
greatly. In some images, more than ten thousand patches can
be generated, while in some images, several or dozens of
patches can be generated with stride of st = 2. To prevent
overfitting caused by the imbalance of patches distribution
in the training procedures, we set upper threshold T for
patch sampling. While more than T patches are sampled,
we randomly select T patches, and T is set 500 in our paper.
After the manipulated patches are generated, the pristine
patches without any tampered pixels are sampled in the same
tampered images with a stride of st = 10, and its number is

TABLE 1. The numbers of sampled patches on three datasets.

not higher the T = 500. And the numbers of training and
testing images are shown in Table 1.

Before training on the CASIA v2.0 dataset, we first split
the whole tampered images in every dataset into three subsets
– training (65%), validation (10%) and testing (25%), and
these subsets are randomly selected. Through the method of
patch sampling mentioned above, the pristine and manipu-
lated patches of the training subset and validation subset are
respectively collected, then the training set of pristine patches
Au_set and the training set of forged patches For_set are
formed. With these newly generated patches, the whole net-
work is trained end-to-end. Specifically, in our experiments
on the CASIA v2.0 dataset, the training, validation and test
data is randomly divided three times and the average results
are reported in the following section.

B. IMPLEMENTATION DETAILS
To train the proposed model, TensorFlow [36] is used to
define different layers of the network. All the experiments are
conducted on a machine with Intel (R) Core (TM) i7-7800X
CPU@ 4GHz, 64GB RAM and two NVIDIA GeForce GTX
1080 Ti GPUs. In our experiments, the momentum m is
fixed to 0.9 and L2 regularization is used. The corresponding
weight decay d is 0.0005. All weights are initialized by
random numbers generated from the Gaussian distribution
with 0 mean and standard deviation of 0.01, and all the biases
are initialized with 0. We shuffled the training set between
epochs.

Besides, the step decay of learning rate is used in our
experiments. The learning rate is initialized 0.001 and sched-
uled to decrease 10% when the validation accuracy stopped
improving, and we stop the training after reducing the learn-
ing rate three times. In training process of proposedD-CNNs,
it is decreased for every 10000 iterations. And with the well-
trained D-CNNs, the probability of pristine or manipulated is
obtained for each input patch.

C. EVALUATION METRICS
With the well-trained D-CNNs, for each test image, a binary
mask indicating the tampered and pristine regions can be
generated. In this paper, by regarding the spliced pixels as
positive samples and the authentic pixels as negative ones,
the precision, recall, fallout, accuracy, F1-Measure, MCC
(Mattews Correlation Coefficient) which are per-pixel local-
ization metrics are utilized to evaluate the performance of the
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proposed methods, and they are defined as follows:

Precison =
TP

(TP+ FP)
(21)

Recall =
TP

(TP+ FN )
(22)

Accuracy =
(TP+ TN )

(TP+ FP+ TN + FN )
(23)

F1 =
2TP

(2TP+ FP+ FN )
= 2 ∗

Precision ∗ Recall
Precision+ Recall

(24)

MCC =
TP ∗ TN − FP ∗ FN

√
(TP+ FP)(TP+ FN )(TN + FP)(TN + FN )

(25)

where TP (True Positive) is the number of tampered pixels
classified as tampered; FP (False Positive) is the number of
authentic pixels classified as tampered; TN (True Negative) is
the number of authentic pixels classified as authentic; and FN
(False Negative) is the number of tampered pixels classified
as authentic.

D. CONTRIBUTIONS OF ADDITIONALLY INTRODUCED
FOUR STATISTICAL FEATURES IN SUB-FCNN
As introduced in subsection 4.1.2, for each different DWT
sub-band, four additional statistical features are introduced
based on three features. Therefore, the 1050-dimension vec-
tor which contains the basic 450-dimension used in [28]
is formed over all three color channels. In our first exper-
iment, the effect of four additional features which are
extracted from different sub-bands over three channels to
form 600-dimension vector is examined when performing
patch classification for the validate set from CASIA 2.0.
To conduct the experiment, 65% of tampered images are
selected randomly, and their corresponding sampled forged
and pristine patches are used as input for training the pro-
posed three networks, and the 10% of tampered images are
selected and their corresponding sampled forged and pristine
patches as the validate set to evaluate the contributions. And
results are shown in Table 2 and Table 3. Note that the accu-
racy metric reported in Table 2 and Table 3 is the proportion
of all patches in the validate set that are correctly classi-
fied. In other words, it is per-patch classification evaluation
indicator.

TABLE 2. Results of patch classification for CASIA 2.0 in validate set.

Table 2 and Table 3 show the accuracy of Sub-SCNN
is 98.54%. We compare the results of the Sub-FCNN with
450-D feature vector as the input to our proposed the

TABLE 3. Results of patch classification for CASIA 2.0 in validate set.

Sub-FCNN trained on 1050-D vector in the two Tables. It is
obvious that the accuracy of patch classification achieved by
the 1050-D features as the input in the Sub-FCNN model
is 1.57% higher than one achieved by 450-D features. The
results also show that additional introduced features in Sub-
FCNN can make the accuracy of D-CNNs with well-trained
parameters increase from 98.89% to 99.25%. These results
demonstrate that demonstrated that the additionally intro-
duced statistical features are able to both improve the accu-
racy of patch classification in the Sub-FCNN and theD-CNNs
model.

E. DESIGN CHOICES OF IMAGE PRE-PROCESSING LAYER
An important one of several design choices is the design
of the image pre-processing layer, which can suppress the
image’s content and extract prediction error features in our
network. In order to evaluate the advantage of using image
pre-processing, the proposed Sub-SCNNmodel is trained and
evaluated using three different choices for the pre-processing
layer: (1) using the proposed image pre-processing layer,
(2) without using the image pre-processing layer and using
a standard convolutional layer as the beginning of the Sub-
SCNN, (3) replacing 14 filters in the image preprocess-
ing layer with a fixed high-pass filter which is commonly
employed in the forensics and steganalysis.

To assess the performance gains achieved by the image
pre-processing layer, both the training and validate datasets
described in subsection 4.4 are also used in this subsection.
And we report the patch classification accuracy that Sub-
SCNN achieves using each choice of the filter as its beginning
in Table 4. Additionally, the RER (Relative Error Reduc-
tion) is also reported achieved by the image pre-processing
layer instead of each alternative and its formula is shown
as follows:

RER = (E1 − E2)/E1 (26)

TABLE 4. Results of the Sub-SCNN with different setting in the image
pre-processing layer.

where E1 is the error achieved by the lower performing
method and E2 corresponds to the error achieved by the
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higher performing method. From the Table 4, one can notice
that when Sub-SCNN network is trained without the image
pre-processing layer, its performance decreased by 2.8%.
This corresponds to the RER of 65.72% achieved by using
the image pre-processing layer. Additionally, using the image
pre-processing layer achieves the accuracy of 1.41% higher
than when a fixed high-pass filter is used. This corresponds
to RER of 49.12% over a fixed high-pass filter. These results
demonstrate the advantage of using the image pre-processing
layer.

F. ARCHITECTURE DESIGN CHOICE OF SUB-SCNN
There is no systematic way of determining the necessary
depth in a CNN architecture and one has to empirically
choose the appropriate number of convolutional layers,
specific pooling functions and activation functions in the
network. The overall performance of our proposed D-CNNs
mainly depends on the design of the two different sub-
networks: Sub-SCNN and Sub-FCNN.

Therefore, to assess the performance of our proposed
D-CNNs for performing image manipulation detection and
localization, a set of experiments and analysis are conducted.
The phenomenon that for the Sub-FCNNwith 1050-D feature
vector as input, the changes in the number of 1-D convo-
lutional layer, pooling function, and activation function will
not have a great impact on the accuracy of the validate set.
And as shown by the patch classification accuracy of two sub-
networks on the validating set in Table 3, it can be found that
the Sub-SCNN plays a more important role in the results of
the proposed D-CNNs model.
In order to determine the optimal architecture of the Sub-

SCNNmodel, three sets of experiments, namely (1) the choice
of different number of convolutional layer, (2) the choice of
the pooling layer, and (3) the choice of the activation function.
To accomplish this, the fixed architecture of the Sub-SCNN
is defined in Fig 1 with the red dotted line. Then the one
architectural design choice is changed in each experiment
such as the choice of the different number of the convolutional
layer or pooling layer. And the same training and validating
datasets that described in previous subsection are used to
examine the influence of several different design choices and
their results are shown respectively in the following four
subsections.

1) THE NUMBER OF CONVOLUTIONAL LAYER
Three experiments are conducted to investigate the impact of
the number of convolutional layers on the performance of
the Sub-SCNN. In the experiments, the optimal number of
convolutional layers used in the Sub-SCNN is identified by
letting the number of layers vary from 1 to 3 and the patch
classification accuracy in the validate set achieved by our
proposed Sub-SCNN under each scenario can be evaluated.
The results of our experiments show that our choice of
‘‘Conv_3’’ which represents that the number of convolutional
layers is 3 with 98.54% accuracy rate outperforms the other
choices of layer numbers. More specifically, with ‘‘Conv_1’’

FIGURE 8. Sub-SCNN validating accuracy v.s. training epochs,
blue: Conv_3 (the number of convolutional layers is equal to 3), red:
Conv_2, green: Conv_1.

TABLE 5. Results of Sub-SCNN with different number of convolutional
layers.

Sub-SCNN can achieve 96.61% accuracy and 97.70% accu-
racy when applying two convolutional layers. Fig 8 depicts
the validating accuracy versus the training epochs curves for
three choices about the number of selected convolutional
layers. One can observe from this that ‘‘Conv_3’’ network
converges slightly quicker to a higher accuracy.

2) POOLING OPERATIONS
To evaluate the impact on our Sub-SCNN’s performance
using different types of pooling layers, i.e., average-pooling,
max-pooling and max-pooling with average pooling after
the ‘‘Conv5’’ layer, three CNN models are trained using the
architecture described in Fig 1 with the red dotted line. The
1 × 1 convolutional filters in the ‘‘Conv5’’ are applied to
learn the association between feature maps. Because of this,
the choice of pooling before the fully-connected layers that
perform classification is very important. Table 6 summa-
rizes best patch classification accuracy achieved by different
choices of pooling function. And the choice of max-pooling
with avg-pooling after ‘‘Conv5’’ layer maximizes the perfor-
mance of Sub-SCNN model with an accuracy of 98.54% and
outperforms the choice of average-pooling and max-pooling

TABLE 6. Results of Sub-SCNN with different pooling operations.
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FIGURE 9. Sub-SCNN validating accuracy v.s. training epochs,
blue: max-pooling with avg-pooling after the ‘‘Conv5’’ layer,
red: max-pooling, green: avg-pooling.

by 3.32%, 1.88% respectively. From Fig.9, we can observe
that proposed Sub-SCNN with the choice of max-pooling
layers converges slower to its overall accuracy than the other
two alternatives.

3) ACTIVATION FUCTION
Finally, four kinds of activation functions, i.e., TanH, ReLU,
ELU, and LReLU, are selected to evaluate the impact on our
Sub-SCNN’s performance. As shown in Table 7, the perfor-
mance of Sub-SCNN model with TanH activation function is
0.54% better than the model with ReLU, 0.58% better than
the model with ELU and 1.04% better than the model with
LReLU. Fig.10 describes the validating accuracy versus the
training accuracy curves for the four choices of the activation
function. And we find that the TanH and ReLU networks
converge slightly quicker to a higher accuracy and the TanH
network achieves the best accuracy of 98.54%.

TABLE 7. Results of Sub-SCNN with different activation functions.

G. EXPERIMENTAL RESULTS AND COMPARISON
To comprehensively evaluate the localization performance of
our trained D-CNNs model, a set of comparison experiments
using the same testing images in CASIA v2.0, Columbia and
Carvalho describe in Table 1. We first compare the proposed
model with two state-of-the-art methods, the first of which
using the CFA features to detect the forged region (denoted
by the features they extracted as CFA) [37] and the sec-
ond propose a new camera-based technique for tampering
localization (denoted by the technique they utilized as CBT).
And the implementation of the first algorithm is provided
in an available Matlab toolbox by the author. The second

FIGURE 10. Sub-SCNN validating accuracy v.s. training epochs, red: TanH,
green: ReLU, blue: ELU, magenta: LReLU.

method is re-implemented by strictly following their instruc-
tions in this paper [38]. The model denoted as D-CNNs-seg
represents that the post-processing operation of graph-based
image segmentation is selected on the smoothed tampering
possibility map. However, the model denoted as D-CNNs-bi
utilizes binary post-processing operation on the smoothed
tampering possibility map and its output probability map is
a binary image where the tampered regions (marked as 1)
are defined as areas with values greater than 0.5 and pristine
region (marked as 0) are defined as areas with values less
than 0.5. Note that the probability map generated by the two
comparison methods does not use post-processing operations
but only performs simple binarization.

Table 8 shows a comparison between the proposed model
and other methods testing images from the CASIA v2.0.
From the results, we can find that the D-CNNs-seg robustly
performs the best over all criteria. In the CASIA v2.0, it can
be seen that the utilizing of post-processing increases the four
evaluation indicators by 0.1, 0.11, 0.06 and 0.13. On average,
our F1 of the model D-CNNs-seg is 0.59, and 3.93 times,
3.28 times the baselines in CAF and CBT respectively. These
results show the proposedmodel workswell for imagemanip-
ulation localization.

Then a set of experiments are conducted on Columbia
and Carvalho to evaluate our trained D-CNNs model which
is trained using training datasets from CASIA v2.0. In the
experiments, the post-processing of graph-Based image seg-
mentation and simple binarization are also used separately
on the smoothed tampering possibility map generated by our
D-CNNs. The average performance of our model with dif-
ferent post-processing operations on Columbia and Carvalho
are shown in Table 9. One can notice that all the metrics of
Proposed-bi model is better than the metrics of D-CNNs-seg.
It is evident that our D-CNNs model with post-processing
based on segment algorithm doesn’t give satisfactory accu-
racy as well as with binary post-processing. However, these
results also demonstrate that our proposed model is able to
better locate the tampering regions, and achieve the F1 value
of 0.69 F1 on Columbia and 0.58 F1 on Carvalho.
To analyze the phenomenon caused by different post-

processing operations, we select the two images on each of
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TABLE 8. Experimental results of comparison on CASIA v2.0.

TABLE 9. Experiment results of different post-processing operations on columbia and carvalho.

TABLE 10. Experimental results of different post-processing operations on columbia and carvalho.

TABLE 11. Average F1 and MCC scores of the comparison between the proposed and other algorithm on the columbia and carvalho datasets.

datasets of Columbia and Carvalho are selected respectively,
and their results are displayed in Table 10. In order to have an
intuitive comparison, four examples are illustrated in Fig 11.
An obvious advantage when using no post-processing based
on image segmentation can be observed on Table 10. Com-
pared to the post-processing operation, only binarizing the
image will increase the accuracy of the model tampering

region, and this phenomenon is more obvious on the Carvalho
dataset.

The regions in initial tampering possibility map and
smoothed tampering possibility map which are more likely
to be tampered with are in white color. As is shown in Fig 11,
from each result of two images in the Columbia dataset,
we observe that: 1) our results with binary operation match

76450 VOLUME 6, 2018



Z. Shi et al.: Image Manipulation Detection and Localization Based on the Dual-D-CNNs

FIGURE 11. Output result of proposed model with two choice of post-processing on the Columbia and Carvalho datasets.
Starting from the first column: 1: forged images used in experiments ((a1) and (a2) are selected from the Columbia. (a3) and (a4)
are selected from the Carvalho.), 2: results of graph-Based image segmentation algorithm [32], 3: ground truth, 4: initial
tampering possibility map, 5: smoothed tampering possibility map, 6: tampering possibility map with post-processing [32],
7: the final binary tampering possibility map.

the ground truth well. Using the post-processing operation
based on tampering possibility map can actually match well
with some objects in the input images. e.g., in example a1,
the duck region is detected in image localization result f1; in
example a2, the contour of tampering region is detected in
result f2. 2) However, the empty areas that are not detected
can’t be well filled in result f2, and it is prone to include
more false positives as we can see many other small white
regions in f1 and f2. 3) Compared with the tampering regions
in CASIA v2.0, the each of tampering region in Columbia
is not a specific semantic object and is an area randomly
divided from a donor image. And the segmentation algorithm
divided the image tampering region into many small regions.
Therefore, the regions which are not detected on the initial
tampering probability map can’t be filled by the post-segment
processing based on segment, and the true positive is reduced.

It is known that the images in the Carvalho dataset are
all images of people and each image has at least two peo-
ples’ heads. For each result of two images in the Carvalho
dataset, we observe that: 1) the segmentation algorithm used
in the post-processing operation clusters the black-skinned
woman’s cheek and image backgrounds in b3 to fail to sep-
arately identify them, and it is prone to include more false
positives as we can see the contours of other pristine areas

containing other persons in result f3 and f4. 2) as shown in
b4, each person’s cheek is not accurately segmented and the
facial texture features of different people are clustered into a
same segment by the segmentation algorithm. 3) our method
with the binary operation is able to locate the tampering areas,
although the results of g3 and g4 exist the phenomenon of
misclassification.

Therefore, both theoretical analysis and experimental
results show that binary post-processing is more suitable for
the Columbia and Carvalho datasets.

Finally, the comparative experiments between the pro-
posed D-CNNsmodel and some recent state-of-the-art image
manipulation localization algorithms are also conducted
on the Columbia and Carvalho datasets by training on
CASIA v2.0. The methods proposed in [37, 9, 39, 40, 19]
are denoted by the features they extracted as CFA, ADQ1,
BLK, NOI2, and E-MFCN respectively. As noted in [19],
the implementation of these existing algorithms is provided
in a publicly available Matlab toolbox in [39]. And the listed
comparison results are just as reported in [19]. For each
method, the averageF1 andMCC scores across the dataset are
computed, and the results are shown in Table 11. We can see
that the D-CNNs model outperforms the benchmarking algo-
rithms on all two datasets, in terms of bothF1 andMCC score.
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V. CONCLUSIONS AND FUTURE WORK
In this paper, we present a unified framework based on the
convolutional neural network to locate the doctored regions
at the pixel level. And in the proposed method, two sub-
networks, referred to as Sub-SCNN and Sub-FCNN, are
jointed to localize manipulated regions where a transfer pol-
icy is applied. We attempt to conduct a study on two post-
processing operations which are selected to utilize on initial
probability map output by the proposed D-CNNs model to
finalize the pixel-wise manipulation region localization in
the different image databases. The design principle of our
D-CNNs model is elaborated and its rationality is system-
atically validated by running a number of experiments. The
proposed method is evaluated on manipulated images from
the CASIA v2.0, Columbia and Carvalho datasets. Experi-
mental results suggest that the Sub-SCNN model can be used
directly and, when combined with Sub-FCNN model, can
lead to superior performance. The detail results show that our
approach can efficiently locate the tampering regions and out-
perform existing imagemanipulation localizationmethods on
these datasets, with the D-CNNs performing the best.
Our future work will focus on designing a more effec-

tive network architecture which is robustness against typical
post-processing operations and searching for some high-level
cues for better detecting image manipulation and locating the
forged regions.
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