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ABSTRACT In this paper, we study the metric dimension of barycentric subdivision of Möbius ladders
and the metric dimension of generalized Petersen multigraphs. We prove that the generalized Petersen
multigraphs denoted by P(2n, n) have metric dimension 3 when n is even and 4 otherwise. We also study the
exchange property for resolving sets of barycentric subdivisions of Möbius ladders and generalized Petersen
multigraphs and prove that the exchange property of the bases in a vector space does not hold for minimal
resolving sets of these graphs.

INDEX TERMS Metric dimension, basis, resolving set, barycentric subdivision, Möbius ladders,
generalized Petersen graphs.

I. INTRODUCTION AND PRELIMINARY RESULTS
In a connected graph G, the distance d(u, v) between two
vertices u, v ∈ V (G) is the length of a shortest path
between them. For an ordered set W = {w1,w2, . . . ,wk} ⊆
V (G) and a vertex v ∈ V (G), the representation r(v|W )
of v with respect to W is the k-tuple (d(v,w1), d(v,w2),
d(v,w3), . . . , d(v,wk )). If every vertex ofG is uniquely iden-
tified by its distances from the vertices ofW , or equivalently,
if every two distinct vertices of G have distinct representa-
tions with respect to the ordered set W , then W is called
a resolving set [5] or locating set [20]. A resolving set of
minimum cardinality is called a basis for G and this cardi-
nality is referred as the metric dimension or location number
of G, denoted by β(G) [3]. The concept of resolving sets and
metric dimension have appeared previously in the literature.
For more details, see [9], [10], [12]–[14], [16], [19], [23].

For a given ordered set of vertices W = {w1,w2, . . . ,wk}
of a graph G, the i-th component of r(v|W ) is 0 if and only if
v = wi. Thus, to show that W is a resolving set it suffices to
verify that r(x|W ) 6= r(y|W ) for each pair of distinct vertices
x, y ∈ V (G)\W .

Tomescu and Imran [22] determined a useful property to
find β(G) in the following lemma:
Lemma 1: Let W be a resolving set for a connected

graphG and u, v ∈ V (G). If d(u,w) = d(v,w) for all vertices
w ∈ V (G) \ {u, v}, then {u, v} ∩W 6= ∅.

Let F be an infinite family of connected graphs. If each
graph in the family has bounded metric dimension, then we
say that F has bounded metric dimension; otherwise F has
unbounded metric dimension.

If all graphs in F have the same metric dimension then
F is called a family with constant metric dimension [15].
A connected graph G has β(G) = 1 if and only if G is
a path [5]; cycles Cn have metric dimension 2 for every
n ≥ 3. Also generalized Petersen graphs P(n, 2),
antiprisms An and circulant graphs C2

n are families of graphs
with constant metric dimension [15].

In [3], if Wn denotes a wheel with n spokes and J2n the
graph deduced from the wheel W2n by alternately deleting n
spokes, then β(Wn) = b 2n+25 c for every n ≥ 7 and in [24] if
n ≥ 4 then β(J2n) = b 2n3 c.

An example of a family which has bounded metric dimen-
sion is the family of prisms. In [4], for any n ≥ 3 it was proved
that

β(Pm × Cn) =

{
2, if n is odd;
3, otherwise.

Prisms Dn are the cubic plane graphs obtained by the carte-
sian product of a path P2 with a cycleCn, so prisms constitute
a family of cubic graphs with bounded metric dimension.
The generalized Petersen graphs P(n, 3) have bounded metric
dimension [11].
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Let u, v ∈ V (G) and e = uv be an edge of G. Subdividing
the edge e means that a new vertex w is added to V (G), and
that edge e = uv is replaced in E(G) by an edge e′ = uw and
an edge e′′ = wv.

By an inverse operation we mean the replacement of two
edges that meet at a vertex of degree two by a single edge
that join their end points and this inverse operation is called
smoothing away a vertex. Subdividing a graph G means
performing a sequence of edge-subdivision operations. The
resulting graph is called a subdivision of the graph G. The
operation of subdivision can be used to convert a general
graph into a simple graph. The barycentric subdivision of a
graphG is the subdivision in which one new vertex is inserted
in the interior of each edge.

The barycentric subdivision of a graph G is bipartite and
loopless, and if G itself is loopless, then its barycentric sub-
division is simple (see [7]).

A graph G is planar if it can be drawn in the plane without
edge crossings. Subdivisions of graphs play a very important
role in the characterization of planar graphs. A graph G is
planar if and only if every subdivision of G is planar. Two
graphs are said to be homeomorphic if they are subdivisions
of same graphG. Gross and Yellen [7] give a characterization
of planar graphs and proved the following theorem.
Theorem 1: A graph is planar if and only if it does not

contain a subgraph homeomorphic to K5 or K3,3.
Note that the problem of determining whether β(G) < k is

an NP-complete problem [6].
In this paper, we study the metric dimension of the

subdivision of Möbius ladders and use this construction
to study the metric dimension of generalized Petersen
multigraphs P(2n, n).

We prove that the generalized Petersen graphs P(2n, n)
which aremultigraphs havemetric dimension equal to 3when
n is even and equal to 4 otherwise.We also study the exchange
property for resolving sets of subdivisions of Möbius ladders.
We prove that the exchange property of the bases in a vector
space does not hold for minimal resolving sets of barycentric
subdivisions of Möbius ladders and also does not hold for
minimal resolving sets of generalized Petersen multigraphs
P(2n, n) when n is even.

II. APPLICATIONS OF METRIC DIMENSION
• Application in robot navigation
The idea of metric dimension comes initially from the
systems networking. Persuaded by the issue of deciding
particularly the area of an interloper in a given sys-
tem, the idea of metric dimension was presented by
Slater [20] and independent by Harary andMelter in [8].
Uses of this invariant to the route of robots in systems are
examined in [17] while applications to issue of example
acknowledgment and picture handling, some of which
include the utilization of progressive information struc-
tures are given in [18].
Route can be considered in a diagram organized struc-
ture in which the route operator (which we will accept

to be a point robot) moves from hub to hub of a graph
space. The robot can find itself by the nearness of unmis-
takably named landmark hubs in the graph space. For a
robot exploring in Euclidean space, visual recognition of
a particular milestone gives data about the course to the
milestone, and enables the robot to decide its situation by
triangulation. On a graph, in any case, there is neither the
idea of heading nor that of perceivability. Rather, we will
accept that a robot exploring on a diagram can detect the
separations to an arrangement of tourist spots.

• Application in chemistry
A fundamental issue in chemistry is to give numerical
portrayals to an arrangement of chemical mixes in a way
that gives unmistakable portrayals to particular mixes.
As portrayed in [5], the structure of a substance com-
pound can be spoken to by a marked diagram whose
vertex and edge names determine the iota and bond
composes, individually. Therefore, a graph theoretic
understanding of this issue is to give portrayals to the
vertices of a diagram so that unmistakable vertices have
particular portrayals. This is the subject of papers [3],
[18], [20], and [21].

III. METRIC DIMENSION OF BARYCENTRIC
SUBDIVISION OF MöBIUS LADDERS
The barycentric subdivision of Möbius ladders denoted by
SMn is obtained by subdividing the edges of Möbius ladders
by putting a vertex of degree two on each edge. It has 5n

2
vertices and 3n edges. There are n vertices of degree 3 and
3n
2 vertices are of degree 2. Two different views of SM12
are shown in Figure 1. Also, view SMn as a barycentric
subdivision of the prism Dn (the cartesian product of the path
on two vertices with a cycle Cn) with one cross edge.
We denote vertices {v0, v1, . . . , v2n−1} ⊂ V (SMn) that

numbered clockwise, induce the cycle of length 2n. Moreover
{v2i+1 : 0 ≤ i ≤ n − 1} and {v2i : 0 ≤ i ≤ n − 1} are the
vertices of degree 2 and 3 respectively. The set of vertices
{ui : 0 ≤ i ≤ n

2 − 1} ⊂ V (SMn) are internal vertices of
v2i − v2i+n paths, where 0 ≤ i ≤ n

2 − 1 and each ui is a
vertex of degree 2. So we have V (SMn) = {vi : 0 ≤ i ≤
2n−1}∪{ui : 0 ≤ i ≤ n

2−1}. Also, the subscripts of vertices
vi are taken modulo 2n and the subscripts of vertices ui are
taken modulo n

2 .
The metric dimension of Möbius ladders has been studied

in [1] where it was proved that Möbius ladders constitute
a family of cubic graphs with constant metric dimension 3
except when n ≡ 2 (mod 8). In the next theorem, we extend
this study to the metric dimension of barycentric subdivisions
of Möbius ladders denoted by SMn. Note that the choice of
appropriate basis vertices is the core of the problem.
Theorem 2: If n ≥ 8 and SMn denote the barycentric

subdivisions of a Möbius ladder, then β(SMn) = 3.
Proof: The proof of this theorem follows directly from

the proofs of Lemmas 2 to 6. �
In the proofs of Lemmas 2 (as well as 3 - 6) each entry in the

code-tables is the distance between the vertices of column 1
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FIGURE 1. Two different views of SM12

TABLE 1. (a) Codes for the outer vertices of SMn. (b) Codes for the outer
vertices of SMn.

TABLE 2. Codes for the inner vertices of SMn.

and the vertices of row 1. Each row represents the code of a
vertex, with respect to row 1, lying in column 1 of that row.
Lemma 2: If n ≡ 0 (mod 8) and SMn is the barycentric

subdivision of a Möbius ladder, then β(SMn) ≤ 3.
Proof: We can write n = 8k where k ≥ 1.Wewill prove

that for a chosen index i such that 0 ≤ i ≤ 2n−1, the setW =
{vi, vi+n−1, ui+2k−1} is a resolving set for SMn. The codes of
the vertices in V (SMn) \ W with respect to W are the fol-
lowing: r(vi+n+4k−1|W ) = (4k + 1, 4k, 2), r(vi+2n−1|W ) =
(1, 4, 4k) and in tables 1(a), 1(b) and table 2.

Since all the vertices lying in the first column of above two
tables have distinct codes with respect to W , it implies that
β(SMn) ≤ 3 when n ≡ 0 (mod 8). �
Lemma 3: If n ≡ 2 (mod 8) and SMn is the barycentric

subdivision of a Möbius ladder, then β(SMn) ≤ 3.
Proof: We can write n = 8k + 2 where k ≥ 1. We will

prove that for a chosen index i such that 0 ≤ i ≤ 2n − 1,

TABLE 3. (a) Codes for the outer vertices of SMn. (b) Codes for the outer
vertices of SMn.

TABLE 4. (a) Codes for the inner vertices of SMn. (b) Codes for the inner
vertices of SMn.

W = {vi, vi+n−1, ui+2k+1} is a resolving set for
V (SMn) where k =

n−2
8 . The codes of the vertices

in V (SMn) \ W with respect to W are: r(vi+n|W ) =
(2, 1, 4k + 1), r(vi+n+4k+1|W ) = (4k + 1, 4k + 2, 2),
r(vi+2n−1|W ) = (1, 4, 4k), r(ui|W ) = (1, 2, 4k + 2) and in
tables 3(a), 3(b) and tables 4(a), 4(b).

It can be seen that all the vertices lying in the first col-
umn of tables 3(a), 3(b) and tables 4(a), 4(b) have dis-
tinct codes with respect to W implying that β(SMn) ≤ 3
when n ≡ 2 (mod 8). �
Lemma 4: If n ≡ 4 (mod 8) and SMn is the barycentric

subdivision of a Möbius ladder, then β(SMn) ≤ 3.
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TABLE 5. (a) Codes for the outer vertices of SMn. (b) Codes for the outer
vertices of SMn.

TABLE 6. (a) Codes for the inner vertices of SMn. (b) Codes for the inner
vertices of SMn.

Proof: We can write n = 8k + 4 where k ≥ 1. We will
show that for a chosen index i such that 0 ≤ i ≤ 2n−1,W =
{vi, vi+n−1, ui+2k} is a resolving set for SMn, where k = n−4

8 .
The codes of the vertices in V (SMn) \ W with respect to W
are: r(vi+n+4k+1|W ) = (4k + 3, 4k + 2, 2), r(vi+2n−1|W ) =
(1, 4, 4k + 2) and in tables 5(a), 5(b) and tables 6(a), 6(b).

It can be seen that no two vertices of SMn lying in column 1
of tables 5(a), 5(b) and tables 6(a), 6(b) have the same code
with respect to W , which yields that W is a resolving set
for V (SMn). Hence β(SMn) ≤ 3 when n ≡ 4 (mod 8). �
Lemma 5: If n ≡ 6 (mod 8) and SMn is the barycentric

subdivision of a Möbius ladder, then β(SMn) ≤ 3.
Proof: We can write n = 8k + 6 where k ≥ 1. We will

show that for a chosen index i such that 0 ≤ i ≤ 2n−1,W =
{vi, vi+n−1, ui+2k+2} is a resolving set forV (SMn), where k =
n−6
8 . The codes of the vertices in V (SMn) \ W with respect

to W are: r(vi+n|W ) = (2, 1, 4k + 3), r(vi+n+4k+3|W ) =
(4k+3, 4k+4, 2), r(vi+2n−1|W ) = (1, 4, 4k+2), r(ui|W ) =
(1, 2, 4k + 4) and in tables 7(a), 7(b) and tables 8(a), 8(b).

It can be seen that all the vertices lying in the first col-
umn of tables 7(a), 7(b) and tables 8(a), 8(b) have distinct
codes with respect to W implying that β(SMn) ≤ 3 when
n ≡ 6 (mod 8). �
Lemma 6: If n is even and SMn is the barycentric subdi-

vision of a Möbius ladder, then β(SMn) ≥ 3.
Proof: Suppose that β(SMn) = 2, then the following

three possibilities arise.

TABLE 7. (a) Codes for the outer vertices of SMn. (b) Codes for the outer
vertices of SMn.

TABLE 8. (a) Codes for the inner vertices of SMn. (b) Codes for the inner
vertices of SMn.

(1). Both vertices belong to the set {vi : 0 ≤ i ≤ 2n − 1}.
Without loss of generality, we can suppose thatW = {vi, vi+j}
is a resolving set where 1 ≤ j ≤ 2n− 1. But then we get

• If 1 ≤ j ≤ n
2 , then r(ui|W ) = r(vi+2n−1|W ) = (1, j+1).

• If n2 + 1 ≤ j ≤ n − 2, then r(ui|W ) = r(vi+2n−1|W ) =
(1, n− j+ 1).

• If j = n− 1, then r(vi+1|W ) = r(vi+2n−1|W ) = (1, 4).
• If n ≤ j ≤ n + 1, then r(vi+1|W ) = r(vi+2n−1|W ) =

(1, j− n+ 3).
• If n+ 2 ≤ j ≤ 3n

2 , then r(vi+1|W ) = r(ui|W ) = (1, j−
n+ 1).

• If 3n
2 + 1 ≤ j ≤ 2n − 1, then r(vi+1|W ) = r(ui|W ) =

(1, 2n− j+ 1).

This is a contradiction.
(2). Both vertices belong to the set {ui : 0 ≤ i ≤ n

2 − 1}.
Without loss of generality, we can suppose that the resolving
set isW = {ui, ui+j}where 1 ≤ j ≤ n

2 −1. However, we have
in this case

• If 1 ≤ j ≤ n
4 when n ≡ 0, 4 (mod 8) and 1 ≤ j ≤ n−2

4
when n ≡ 2, 6 (mod 8), then r(vi|W ) = r(vi+n|W ) =
(1, 2j+ 1).

• If n4 +1 ≤ j ≤ n
2 −1 when n ≡ 0, 4 (mod 8) and n+2

4 ≤

j ≤ n
2 − 1 when n ≡ 2, 6 (mod 8), then r(vi|W ) =

r(vi+n|W ) = (1, n− 2j+ 1).

This is a contradiction.
(3). One vertex belongs to the set {vi : 0 ≤ i ≤ 2n−1} and

another belongs to the set {ui : 0 ≤ i ≤ n
2−1}.Without loss of
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generality, we can choose the resolving set as W = {vi, ui+j}
where 1 ≤ j ≤ n

2 − 1.
• If j = 0, then r(vi+1|W ) = r(vi+2n−1|W ) = (1, 2).
• If 1 ≤ j ≤ n

4 when n ≡ 0, 4 (mod 8) and 1 ≤
j ≤ n−2

4 when n ≡ 2, 6 (mod 8), then r(vi+2j+1|W ) =
r(vi+n+2j−1|W ) = (2j+ 1, 2).

• If n4 +1 ≤ j ≤ n
2 −1 when n ≡ 0, 4 (mod 8) and n+2

4 ≤

j ≤ n
2 − 1 when n ≡ 2, 6 (mod 8), then r(vi+2j+1|W ) =

r(vi+n+2j−1|W ) = (n− 2j+ 1, 2).
Again a contradiction is obtained.

Hence in all cases we have β(SMn) = 3. �

IV. THE METRIC DIMENSION OF GENERALIZED
PETERSEN MULTIGRAPHS P(2n, n)
The generalized Petersen graphs P(n,m), n ≥ 4, 1 ≤ m ≤ n

2
form an important class of 3-regular graphs with 2n vertices
and 3n edges having vertex set

V (P(n,m)) = {u1, u2, . . . , un, v1, v2, . . . , vn}

and edge set

E(P(n,m)) = {uiui+1, uivi, vivi+m : 1 ≤ i ≤ n}

where all indices are taken modulo n.
Form = 1, the generalized Petersen graph P(n, 1) is called

a prism, denoted by Dn. In [4], it was shown that

β(Dn) =

{
2, if n is odd;
3, otherwise.

So prisms constitute a family of cubic graphs with bounded
metric dimension. In [15], Javaid et al. proved that the
generalized Petersen graphs P(n, 2) are a family of graphs
with constant metric dimension 3 for every integer n ≥ 5.
Imran et al. [11] considered the generalized Petersen graphs
P(n, 3) and deduced the following results:
Theorem 3 [11]: For generalized Petersen graphs P(n, 3),

we have
(a) β(P(n, 3)) = 4 for n ≡ 0 (mod 6) and n ≥ 24.
(b) β(P(n, 3)) = 3 for n ≡ 1 (mod 6) and n ≥ 25.
(c) β(P(n, 3)) ≤ 5 for n ≡ 2 (mod 6) and n ≥ 8.
(d) β(P(n, 3)) ≤ 4 for n ≡ 3, 4, 5 (mod 6) and n ≥ 17.
Javaid et al. [14] proved that

β(P(2n+ 1, n)) =

{
2, if n=1;
3, otherwise.

It was proved in [16] that the generalized Petersen graphs
P(2n, n−1) constitute a family of graphs with constant metric
dimension 3 when n is odd, and metric dimension 4 when
n is even.

The generalized Petersen graphs P(2n, n) are in fact multi-
graphs and in this section, we study their metric dimension.
The generalized Petersen multigraphs P(2n, n) have vertex
set V (P(2n, n)) = {vi, ui : 0 ≤ i ≤ 2n − 1} and
edge set E(P(2n, n)) = {vivi+1, viui, uiui+n : 0 ≤ i ≤
2n − 1}, where indices are taken modulo 2n. We call the

FIGURE 2. Two views of P(12, 6).

TABLE 9. Codes for the outer vertices of P(8, 4).

TABLE 10. Codes for the inner vertices of P(8, 4).

vertices v0, . . . , v2n−1 outer vertices, numbered clockwise,
and u0, . . . , u2n−1 inner vertices.

Note that in the generalized Petersen graphs P(2n, n),
the vertices ui and ui+n are joined by parallel edges, but since
we are interested in finding the metric dimension of P(2n, n)
these parallel edges play no role. For this reason, we view
the vertices of the set {ui : 0 ≤ i ≤ 2n − 1} as vertices
of degree two. Now after this observation, we can obtain the
simple generalized Petersen graph P(2n, n) from the graph
of the Möbius ladder M2n by subdividing twice those edges
that join the vertices vi and vi+n, where 0 ≤ i ≤ 2n − 1 and
indices are taken modulo 2n. Two different views of P(12, 6)
are shown in Figure 2.

We view the P(12, 6) as particular subdivision (as men-
tioned above) of a prism with one twisted edge. In the next
theorem, we extend the study to the metric dimension of
generalized Petersen graphs P(2n, n). Note that the choice of
appropriate basis vertices is the core of the problem.
Lemma 7: If n ≡ 0 (mod 4) and P(2n, n) is the general-

ized Petersen multigraph, then β(P(2n, n)) ≤ 3.
Proof: We can write n = 4k where k ≥ 1. We will show

that for a chosen index i such that 0 ≤ i ≤ 2n − 1, W =
{vi, vi+n−1, ui+n+2k} is a resolving set for P(2n, n), where
k = n

4 . For n = 4, the codes of the vertices in P(2n, n) \ W
with respect to W = {v0, v3, u6} are in Table 9 and Table 10.
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TABLE 11. (a) Codes for the outer vertices of P(2n, n). (b) Codes for the
outer vertices of P(2n, n).

TABLE 12. Codes for the inner vertices of P(2n, n).

It can be seen that all the vertices in V (P(8, 4)) \ W
have distinct codes with respect to W . Now the codes of the
vertices of V (P(2n, n)) \W when n > 4 are: r(vi+2k+1|W ) =
(2k+1, 2k−2, 3), r(ui|W ) = (1, 3, 2k+2), r(ui+2k−1|W ) =
(2k, 2k + 1, 4), r(ui+2k |W ) = (2k + 1, 2k, 1) and in tables
11(a), 11(b) and table 12.

It can be seen that no two vertices of P(2n, n) lying in
column 1 of the tables 11(b), 11(b) and table 12 have the same
code with respect to W , this yields W is a resolving set for
P(2n, n). Hence β(P(2n, n)) ≤ 3 when n ≡ 0 (mod 4). �
Lemma 8: If n ≡ 2 (mod 4) and P(2n, n) is the general-

ized Petersen multigraph, then β(P(2n, n)) ≤ 3.
Proof: We can write n = 4k + 2, where k ≥ 1. We will

show that for a chosen index i such that 0 ≤ i ≤ 2n − 1,
W = {vi, vi+n−1, ui+n+2k} is a resolving set for P(2n, n),
where k = n−2

4 . The codes of the vertices in V (P(2n, n)) \
W with respect to W are: r(ui+2k |W ) = (2k + 1, 2k +
2, 1),r(ui+2k+1|W ) = (2k + 2, 2k + 1, 4), r(ui+n−1|W ) =
(3, 1, 2k + 3) and in tables 13(a), 13(b) and table 14.

Since all the vertices lying in the first column of above two
tables have distinct codes with respect to W implying that
β(P(2n, n)) ≤ 3 when n ≡ 2 (mod 4). �
Lemma 9: If n ≡ 1 (mod 4) and P(2n, n) is the general-

ized Petersen multigraph, then β(P(2n, n)) ≤ 4.
Proof: We can write n = 4k + 1, where k ≥ 1. For

a chosen index i such that 0 ≤ i ≤ 2n − 1, we show that
W = {vi, vi+n, ui+n+2k−1, ui+n+2k+1} is a resolving set for
P(2n, n), where k = n−1

4 .
The codes of the vertices in V (P(2n, n)) \W with respect

to W are: r(vi+n−1|W ) = (4, 1, 2k + 1, 2k + 1),r(ui|W ) =
(1, 2, 2k + 2, 2k + 2), r(ui+2k−1|W ) = (2k, 2k + 1, 1, 5),

TABLE 13. (a) Codes for the outer vertices of P(2n, n). (b). Codes for the
outer vertices of P(2n, n).

TABLE 14. Codes for the inner vertices of P(2n, n).

TABLE 15. (a) Codes for the outer vertices of P(2n, n). (b) Codes for the
outer vertices of P(2n, n).

r(ui+2k |W ) = (2k + 1, 2k + 2, 4, 4), r(ui+2k+1|W ) = (2k +
2, 2k + 1, 5, 1), r(ui+n+2k |W ) = (2k + 2, 2k + 1, 3, 3) and
in the tables 15(a), 15(b) and tables 16(a), 16(b).

It can be verified that all the vertices of V (P(2n, n)) \ W
that are lying in the first column of the tables mentioned
above have distinct codes with respect toW . This yields that
β(P(2n, n)) ≤ 3 for n ≡ 1 (mod 4). �
Lemma 10: If n ≡ 3 (mod 4) and P(2n, n) is the general-

ized Petersen multigraph, then β(P(2n, n)) ≤ 4.
Proof: We write n = 4k + 3 where k ≥ 1. For a

chosen index i such that 0 ≤ i ≤ 2n − 1, we show that
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TABLE 16. (a) Codes for the inner vertices of P(2n, n). (b) Codes for the
inner vertices of P(2n, n).

TABLE 17. (a) Codes for the outer vertices of P(2n, n). (b) Codes for the
outer vertices of P(2n, n).

W = {vi, vi+n, ui+n+2k , ui+n+2k+2} is a resolving set for
P(2n, n) where k = n−3

4 .
The codes of the vertices in V (P(2n, n)) \W with respect

to W are: r(vi+n−1|W ) = (4, 1, 2k + 2, 2k + 2),r(ui|W ) =
(1, 2, 2k + 3, 2k + 3), r(ui+2k |W ) = (2k + 1, 2k + 2, 1, 5),
r(ui+2k+1|W ) = (2k+2, 2k+3, 4, 4), r(ui+2k+2|W ) = (2k+
3, 2k+2, 5, 1), r(ui+n+2k+1|W ) = (2k+3, 2k+2, 3, 3) and
in tables 17(a), 17(b) and tables 18(a), 18(b).

Since no two distinct vertices of V (P(2n, n)) \ W lying
in tables 17(a), 17(b) and tables 18(a), 18(b) have the same
code. Thus we get β(P(2n, n)) ≤ 4 when n ≡ 3 (mod 4). �
Lemma 11: If n ≡ 0, 2 (mod 4) and P(2n, n) is the

generalized Petersen multigraph, then β(P(2n, n)) ≥ 3.
Proof: Suppose that β(P(2n, n)) = 2, then the following

three possibilities arise.
Case 1: Both vertices belong to the set {vi : 0 ≤ i ≤ 2n−

1} ⊂ V (P(2n, n)). For fixed i, suppose that resolving set is
W = {vi, vi+j}. However then

• If 1 ≤ j ≤ n
2 , then r(vi+2n−1|W ) = r(ui|W ) = (1, j+1).

• If n2 + 1 ≤ j ≤ n − 1, then r(vi+2n−1|W ) = r(ui|W ) =
(1, n− j+ 2).

TABLE 18. (a) Codes for the inner vertices of P(2n, n). (b) Codes for the
inner vertices of P(2n, n).

• If j = n, then r(vi+1|W ) = r(vi+2n−1|W ) = (1, 4). And
for k = 1 when n ≡ 0 (mod 4), we have cW (vi+1) =
cW (vi+7) = (1, 3).

• If n + 1 ≤ j ≤ 3n
2 − 1, then r(vi+1|W ) = r(ui|W ) =

(1, j− n+ 2).
• If 3n

2 ≤ j ≤ 2n − 1, then r(vi+1|W ) = r(ui|W ) =
(1, 2n− j+ 1).

Case 2: Both vertices belong to the set {ui : 0 ≤ i ≤ 2n−
1} ⊂ V (P(2n, n)). For fixed i, suppose the resolving set is
W = {ui, ui+j}. However then

• If 1 ≤ j ≤ n
2 − 1, then r(vi+n|W ) = r(vi+2n−1|W ) =

(2, j+ 2).
• If n2 ≤ j ≤ n − 1, then r(vi+n|W ) = r(vi+2n−1|W ) =

(2, n− j+ 1).
• If j = n, then r(vi+1|W ) = r(vi+2n−1|W ) = (2, 3).
• If n + 1 ≤ j ≤ 3n

2 , then r(vi+1|W ) = r(vi+n|W ) =
(2, j− n+ 1).

• If 3n
2 + 1 ≤ j ≤ 2n− 1, then r(vi+1|W ) = r(vi+n|W ) =

(2, 2n− j+ 2).

Case 3: One vertex belongs to the set {vi : 0 ≤ i ≤ 2n −
1} ⊂ V (P(2n, n)) and another belongs to {ui : 0 ≤ i ≤ 2n −
1} ⊂ V (P(2n, n)), then two subcases arise:
Subcase(i): For fixed i, supposeW = {vi, ui+j} is a resolv-

ing set. However, we have

• If j = 0, then r(vi+1|W ) = r(vi+2n−1|W ) = (1, 2).
• If 1 ≤ j ≤ n

2 − 1, then r(vi+2n−1|W ) = r(ui|W ) =
(1, j+ 2).

• If n2 ≤ j ≤ n − 2, then r(ui+n|W ) = r(ui+2n−1|W ) =
(2, n− j+ 2).

• If j = n − 1, then r(vi+1|W ) = r(ui|W ) = (1, 4). And
for k = 1 when n ≡ 0 (mod 4), we have r(vi+6|W ) =
r(ui+4|W ) = (2, 3).

• If j = n, then r(vi+1|W ) = r(vi+2n−1|W ) = (1, 3).
• If n+ 1 ≤ j ≤ 3n

2 − 2, then r(vi+2n−1|W ) = r(ui|W ) =
(1, j− n+ 3).

• If 3n
2 − 1 ≤ j ≤ 3n

2 , then r(ui+1|W ) = r(ui+n|W ) =
(2, j− n+ 2). For k = 1 when n ≡ 0 (mod 4), then for
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j = 3n
2 −1we have r(vi+2|W ) = r(ui+4|W ) = (2, 3) and

when j = 3n
2 , we get r(ui+1|W ) = r(ui+4|W ) = (2, 4).

• If 3n
2 + 1 ≤ j ≤ 2n− 1, then r(ui+1|W ) = r(ui+n|W ) =

(2, 2n− j+ 3).

Subcase(ii): For fixed i, suppose W = {ui, vi+j} is a
resolving set. But then

• If 0 ≤ j ≤ n
2 − 2, then r(vi+j+2|W ) = r(ui+j+1|W ) =

(j+ 3, 2).
• If j = n

2 − 1, then r(ui+ n
2
|W ) = r(ui+ 3n

2 −1
|W ) = ( n2 +

2, 2).
• If n2 ≤ j ≤ n − 2, then r(ui+j+1|W ) = r(ui+j+n|W ) =

(n− j+ 2, 2).
• If j = n−1, then r(vi+n+1|W ) = r(ui+2n−1|W ) = (3, 2).
• If n ≤ j ≤ 3n

2 − 3, then r(vi+j+2|W ) = r(ui+j+1|W ) =
(j− n+ 4, 2).

• If 3n
2 − 2 ≤ j ≤ 3n

2 , then r(ui+j−1|W ) = r(ui+j−n|W ) =
(j− n+ 2, 2). For k = 1 when n ≡ 0 (mod 4), then for
j = 3n

2 − 2 we have r(ui+3|W ) = r(ui+5|W ) = (4, 2).
If j = 3n

2 − 1, then r(vi+3|W ) = r(ui+1|W ) = (3, 2) and
when j = 3n

2 , we have r(ui+2|W ) = r(ui+5|W ) = (4, 2).
• If 3n

2 + 1 ≤ j ≤ 2n − 1, then r(ui+j−1|W ) =
r(ui+j−n|W ) = (2n− j+ 3, 2).

We get a contradiction in all above cases, which implies that
no two vertices for V (P(2n, n)) serve as basis vertices. Hence
β(P(2n, n)) ≥ 3 when n is even. �
Now we prove that β(P(2n, n)) ≥ 4 when n is odd.

For this purpose, we need some more notions and defini-
tions. Without loss of generality, we can suppose that the
vertices v0, v1, . . . , v2n−1 of the outer cycle are labeled in
clockwise direction. For any two vertices vi and vj (i 6= j),
the clockwise distance, d∗(vi, vj), is the distance measured
in clockwise direction from vi to vj in the subgraph induced
by the outer cycle. For example, d∗(v0, v2n−1) = 2n− 1 and
d∗(v2n−1, v0) = 1. This definition can be extended to any two
vertices of P(2n, n). The indices will be taken modulo 2n.
Consider a vertex on the outer cycle, say v0. A vertex

ui is called a good vertex for v0 if d(v0, ui) = d , where
d ∈ {d(v0, ui+n−1), d(v0, ui−n+1)}; otherwise, ui is called a
bad vertex for v0. And vi is called a good vertex for v0 if
d(v0, vi) = d , where d ∈ {d(v0, vi+n−3), d(v0, vi−n+3)}. This
definition can be extended to any two inner vertices belonging
to the set {u0, . . . , u2n−1}. The vertex vi is a good vertex for u0
if d(u0, vi) = d , where d ∈ {d(u0, vi+n−1), d(u0, vi−n+1)};
ui is a good vertex for ul , say l = 0, if d(u0, ui) = d ,
where d ∈ {d(u0, ui+n−1), d(u0, ui−n+1), d(u0, ui+2n−2),
d(u0, ui−2n+2), d(ul, vl)} and bad otherwise.

Figure 3, shows the graph of P(10, 5). In this figure if we
consider a vertex u0, then it is easy to see that v4, v5 and v6
are the associated good vertices for u0.
It is important to note that the set of good vertices for

u0 can be obtained from the set of good vertices for v0 by
adding vertices v1, v2, v2n−2 and v2n−1. Similarly a vertex uj
is good for the pair {v0, vi} if it satisfies the above definition
for a vertex uj to be good for the outer vertices. If vl is
good for the pairs {v0, vi} and {v0, vj} then vl is good for the

FIGURE 3. The graph P(10, 5) and the associated good vertices for the
vertex u0.

triplet {v0, vi, vj}. Due to rotational symmetry of the graph
P(2n, n) we deduce the following result:
Lemma 12: For any two vertices vi and uj of P(2n, n)

such that vi 6= uj, we have d(vi, uj) = d(vi+r , ui+r ) for any
1 ≤ r ≤ 2n− 1.
In order to find vertices that are good for pairs of vertices

belonging to the outer cycle, the following lemmas will be
useful.
Lemma 13: Let 0 ≤ j ≤ 2n − 3. If ui is good for v0 and

ui−j−1 is also good for v0, then ui is also good for the pair
{v0, vj+1}.

Proof: By definition, d(v0, ui) = d(v0, ui+n−1) or
d(v0, ui) = d(v0, ui−n+1) and d(v0, ui−j−1) = d(v0,
ui−j+n−2) or d(v0, ui−j−1) = d(v0, ui−j−n). By Lemma 12,
the last two equalities imply that d(v1+j, ui) = d(v1+j, ui+n−1)
or d(v1+j, ui) = d(v1+j, ui−n+1). �
Lemma 14: Let 0 ≤ j ≤ 2n − 7. If vi is good for v0

and vi−j−1 is also good for v0, then vi is also good for the
pair {v0, vj+1}.

Clearly β(P(2n, n)) > 1 because paths are the only graphs
with metric dimension 1, see [5].
Lemma 15: If n ≡ 1, 3 (mod 4), n ≥ 7 and P(2n, n) is

the generalized Petersen multigraph, then β(P(2n, n)) ≥ 3.
Proof: We show that there is no resolving set of

V (P(2n, n)) consisting of two vertices A and B. If both A and
B belong to the outer cycle, we can suppose that A = v0.
Let d∗(v0,B) = j + 1. Since the vertices u1, u2, . . . , u2n−1
and v3, v4, . . . , v2n−3 are good vertices for v0. By using
Lemma 13, we find that u2n−1 is a good vertex for all pairs
{v0,B}, where B ∈ {vj+1 : 0 ≤ j ≤ 2n − 3} and if B =
v2n−1, then u1 is a good vertex for the pair {v0,B}. Similarly,
by Lemma 14we can find that v2n−3 is a good vertex for every
pair {v0,B} such that B ∈ {vj+1 : 0 ≤ j ≤ 2n − 7} and
if B ∈ {v2n−5, v2n−4, . . . , v2n−1}, then v2n−8 is good for all
pairs {v0,B}.

IfA,B ∈ {ui : 0 ≤ i ≤ 2n−1}, we can considerA = u0 and
B = ui. This case can be reduced to the case when A = v0 and
B = vi because the set of good vertices for ul also includes
the set of good vertices for vl for any 0 ≤ l ≤ 2n−1. If A = vi
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and B = ui, then any good vertex for vi is also a good vertex
for ui, hence for the pair {A,B}. The remaining case when
A = vi and B = uj (i 6= j) can also be reduced to the case
when A = vi and B = vj. It follows that there is no resolving
set containing two vertices in this case, which completes the
proof. �
Lemma 16: If n ≡ 1, 3 (mod 4), n ≥ 7, then

β(P(2n, n)) ≥ 4.
Proof: Clearly, β(P(2n, n)) ≥ 3, by Lemma 15. Now

we have to show that there is no resolving set of V (P(2n, n))
consisting of three vertices A,B and C when n ≡ 1, 3
(mod 4). By the same reasoning as in Lemma 15, it is enough
to consider only the case when A,B and C belong to the
outer cycle. Since the set of good vertices for u0 can be
obtained from the set of good vertices for v0 by adding
vertices v0, v2, v2n−2 and v2n−1. Without loss of generality
we suppose that d∗(A,B) < d∗(A,C) and let A = v0.

Consider (d∗(v0,B), d∗(v0,C)) = (l + 1, j + 1) such
that B = vl+1 and C = vj+1. Since u1, . . . , u2n−1
and v3, . . . , v2n−3 are good vertices for v0. By applying
Lemma 13, we find that u2n−1 is a good vertex for all the
pairs {v0,B} and {v0,C}, where l, j = 0, 1, . . . , 2n − 3 and
hence for all the triplets {v0,B,C}. And ifB = v2n−2 andC =
v2n−1, then u1 is a good vertex for the pairs {v0,B} and {v0,C}
and hence for the triplet {v0,B,C}. Now by Lemma 14,
we find v2n−3 is a good vertex for all the pairs {v0,B} and
{v0,C}, where l, j = 0, 1, . . . , 2n − 7 and hence for all the
triplets {v0,B,C}. When B,C ∈ {v2n−5, . . . , v2n−1}, then
v2n−8 is a good vertex for all pairs {v0,B} and {v0,C} and
hence for all triplets {v0,B,C}. It follows that there is no
resolving set with three vertices in this case, which completes
the proof. �
Theorem 4: Let P(2n, n) denote the generalized Petersen

multigraph. Then for every integer n ≥ 2 we have

β(P(2n, n)) =

{
3, if n is even;
4, otherwise.

Proof:
Case 1: n is even.
By Lemmas 7, 8 and 11, β(P(2n, n)) = 3.
Case 2: n is odd.
By Lemmas 9, 10, 15 and 16, β(P(2n, n)) = 4. �

V. EXCHANGE PROPERTY FOR RESOLVING SETS
We have seen that a subset W of vertices of a graph G is a
resolving set if every vertex in G is uniquely determined by
its distances to the vertices of W . Resolving sets behave like
bases in a vector space in that each vertex in the graph can
be uniquely identified relative to the vertices of these sets.
But though resolving sets do share some of the properties of
bases in a vector space, they do not always have the exchange
property from linear algebra. Resolving sets are said to have
the exchange property in G if whenever S and R are minimal
resolving sets for G and r ∈ R, then there exists an s ∈ S so
that S − {s} ∪ {r} is a minimal resolving set [2].

If the exchange property holds for a graph G, then every
minimal resolving set forG has the same size and algorithmic
methods for finding the metric dimension of G are more
feasible. Thus to show that the exchange property does not
hold in a given graph, it is sufficient to describe two minimal
resolving sets of different size. However, since the converse
is not true, knowing that the exchange property does not hold
does not guarantee that there are minimal resolving sets of
different size.

The following results concerning the exchange property for
resolving sets were deduced in [2].
Theorem 5 [2]: The exchange property holds for resolv-

ing sets in trees.
Theorem 6 [2]: For n ≥ 8, resolving sets do not have the

exchange property in wheels Wn.
The exchange property for resolving sets ofMöbius ladders

Mn when n ≡ 6 (mod 8) will be discussed in the next
theorem.
Theorem 7: The exchange property for minimal resolving

sets does not hold in Möbius ladders Mn when n ≡ 6
(mod 8), where n ≥ 14.

Proof: We can write n = 8k + 6, where k ≥ 1. Since
W = {v1, v2, v4k+3} is a metric basis (see [1]) and hence a
minimal resolving set. Also W ∗ = {v1, v2k+2, v4k+3, v4k+4}
is a minimal resolving set. There is no w ∈ W ∗ such that
S = W ∗ \ {w} is still a resolving set.
If w = v1, then r(v1|S) = r(v4k+5|S) = (2k + 1, 2, 1).

When w = v2k+2, we get r(v2k+2|S) = r(v6k+6|S) =
(2k + 1, 2k + 1, 2k + 2). If w = v4k+3, then r(v4k+3|S) =
r(v4k+5|S) = (2, 2k + 1, 1) and when w = v4k+4, we get
r(v4k+4|S) = r(v8k+6|S) = (1, 2k + 2, 1).

There are minimal resolving sets of different size. Hence
the exchange property does not hold for resolving sets in Mn
when n ≡ 6 (mod 8). �

In the next theorem, we show that the exchange property
does not hold for resolving sets of the barycentric subdivision
of Möbius ladders denoted by SMn for every even integer
n ≥ 8.
Theorem 8: For any even integer n ≥ 8, resolving sets

do not have the exchange property in the barycentric subdi-
visions of Möbius ladders denoted by SMn.

Proof:
Case 1:We can write n = 8k where k ≥ 1. Without loss of

generality we can choose i = 0. ThenW = {v0, vn−1, u2k−1}
is a metric basis (see Lemma 2) and hence a minimal resolv-
ing set. AlsoW ∗ = {v0, v1, u0, u2k−1} is a minimal resolving
set. There is no w ∈ W ∗ such that S = W ∗ \ {w} is still a
resolving set.

If w = v0, then r(v4k+1|S) = r(v12k+1|S) = (4k, 4k, 4).
When w = v1, we get r(v4k |S) = r(v12k |S) = (4k, 4k+1, 3).
If w = u0, then r(v4k+1|S) = r(u2k |S) = (4k + 1,
4k, 4) and when w = u2k−1, we get r(v8k−1|S) =
r(v8k+1|S) = (3, 4, 2).
Case 2: We can write n = 8k + 2 where k ≥ 1.

Without loss of generality we can choose i = 0. Then
W = {v0, vn−1, u2k+1} is a metric basis (see Lemma 3) and
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hence a minimal resolving set. AlsoW ∗ = {v0, v1, u0, u2k+1}
is a minimal resolving set. There is no w ∈ W ∗ such that
S = W ∗ \ {w} is still a resolving set.
If w = v0, then r(v8k+5|S) = r(u4k |S) = (4, 4, 4k). When

w = v1, then we get r(v3|S) = r(u4k |S) = (3, 4, 4k). If
w = u0, then r(v8k+5|S) = r(u2|S) = (5, 4, 4k) and when
w = u2k+1, then r(v8k+1|S) = r(v8k+3|S) = (3, 4, 2).
Case 3:We canwrite n = 8k+4where k ≥ 1.Without loss

of generality we choose i = 0. Then W = {v0, vn−1, u2k} is
a metric basis (see Lemma 4) and hence a minimal resolving
set. Also W ∗ = {v0, v1, u0, u2k} is a minimal resolving set.
There is now ∈ W ∗ such that S = W ∗\{w} is still a resolving
set.

If w = v0, then r(v4k+3|S) = r(v12k+7|S) = (4k + 2, 4k +
2, 4). When w = v1, then we get r(v4k+2|S) = r(v12k+6|S) =
(4k + 2, 4k + 3, 3). If w = u0, then r(v8k+1|S) =
r(u4k |S) = (5, 6, 4k + 2) and when w = u2k , we get
r(v8k+3|S) = r(v8k+5|S) = (3, 4, 2).
Case 4:We canwrite n = 8k+6where k ≥ 1.Without loss

of generality we choose i = 0. ThenW = {v0, vn−1, u2k+2} is
a metric basis (see Lemma 5) and hence a minimal resolving
set. AlsoW ∗ = {v0, v1, u0, u2k+2} is a minimal resolving set.
There is now ∈ W ∗ such that S = W ∗\{w} is still a resolving
set.

If w = v0, then we have r(v8k+11|S) = r(u4k+1|S) =
(6, 6, 4k). When w = v1, then r(v3|S) = r(u4k+2|S) = (3, 4,
4k + 2). If w = u0, then r(v8k+5|S) = r(u4k+2|S) =
(3, 4, 4k + 2) and when w = u2k+2, then r(v8k+5|S) =
r(v8k+7|S) = (3, 4, 2).
In each case, there are minimal resolving sets of different

size. Hence the exchange property does not hold in SMn for
any even integer n ≥ 8. �
The following theorem shows that the exchange property

does not hold for resolving sets of generalized Petersenmulti-
graphs P(2n, n) for any even integer n ≥ 4.
Theorem 9: For any even integer n ≥ 4, resolving sets

do not have the exchange property in generalized Petersen
multigraphs P(2n, n).

Proof: We can write n = 4k, 4k + 2 where k ≥ 1.
Without loss of generality we choose i = 0. Then W =

{v0, vn−1, un+2k} is a metric basis (see Lemma 7, 8) and
hence a minimal resolving set. Also W ∗ = {v0, v1, u0, vn−1}
is a minimal resolving set. There is no w ∈ W ∗ such that
S = W ∗ \ {w} is still a resolving set.
If w = v0, then r(vn+1|S) = r(u2n−1|S) = (3, 3, 2). When

w = v1, then r(un+1|S) = r(u2n−2|S) = (3, 4, 3). If w = u0,
then r(un|S) = r(u2n−1|S) = (2, 3, 2) and when w = vn−1,
then r(v2|S) = r(u1|S) = (2, 1, 3).
There are minimal resolving sets of different size. Hence

the exchange property does not hold in P(2n, n) for any even
integer n ≥ 4. �

VI. CONCLUSION
The problem of determining whether β(G) < k is an
NP-complete problem. In this paper, we have studied the met-
ric dimension of the subdivision of a Möbius ladder denoted

by SMn and generalized Petersen multigraphs P(2n, n).
We proved that only three vertices suffice to resolve all the
vertices of SMn. For the generalized Petersen graphs P(2n, n)
which are multigraphs, we proved that their metric dimension
is 3 when n is even and 4 otherwise.

It is natural to ask for a characterization of graph classes
with respect to the nature of their metric dimension. We have
also studied the exchange property for minimal resolving
sets of the subdivision of a Möbius ladder Mn. It has been
shown that the exchange property of the bases in a vector
space does not hold for minimal resolving sets of barycentric
subdivisions of Möbius ladders and also does not hold for
minimal resolving sets of generalized Petersen multigraphs
P(2n, n) when n is even. We close this section by raising a
question that naturally arises from the text.
Open Problem: When does a nontrivial connected

graph have the same metric dimension as its barycentric
subdivision?
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