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ABSTRACT The main techniques used for failure analysis in induction motors are limited because they are
not capable of detecting all the faults present in an induction motor. However, a complementary technique
that aids in fault diagnosis in induction motors is infrared imaging. This paper proposes an automatic
methodology based on infrared imaging for thermal condition monitoring and failure analysis in induction
motors and the kinematic chain; it can be considered an alternative tool for classical infrared imaging
inspection procedures and for monitoring and failure analysis techniques in an induction motor in particular.
The proposed methodology detects the region of interest using automatic image segmentation by means
of the Otsu thresholding method, where it performs the feature extraction of temperatures for the thermal
analysis of inductionmotors. Themethodology is based on the standardASTME1934-99a for fault diagnosis
in induction motors. To demonstrate the efficiency of the proposed methodology, this paper presents the
failure analysis of three fault conditions in an induction motor: a broken rotor bar, bearing damage, and
misalignment.

INDEX TERMS Induction motor, infrared imaging, condition monitoring, failure analysis, image
segmentation, thermal analysis.

I. INTRODUCTION
Induction motors (IM) are electric machines that are used
for a variety of purposes in industrial plants [1], [2].
IM represent 85% of the worldwide energy consumption due
to their robustness, low cost and versatility [3]. However,
IM are subject to undesirable fatigue and stress, which can
cause machine damage or failure [4]. For this reason, con-
dition monitoring and fault diagnosis in IM receive consider-
able attention, resulting in new techniques andmethodologies
for fault location in IM. The most common faults in IM
are reported to be 41% due to ball bearing damage (BD),
37% due to stator faults, 10% due to rotor faults and 12%
attributed to other failure types [5]. When an IM is operated
with a fault, its operational costs increase. Consequently,
failure analysis of IM is one of the most important topics
in industry applications [1]. For condition monitoring and
fault diagnosis in IM, different techniques and methodologies
are used for inspection. However, these techniques used have
their own limitations and are not capable of diagnosing all the
faults present in the IM. The most commonly used techniques

are temperature measurement, vibration, electrical signals
(MCSA) and acoustic measurement [6]–[9].

A complementary technique that has been emerging as
an aid in fault diagnosis in IM is infrared imaging, a non-
invasive and nondestructive technique that efficiently moni-
tors temperature. Qualitative and quantitative analysis using
infrared imaging represents a large area of opportunity for the
development of new failure analysis methodologies [10]. The
goals of condition monitoring in IM are to reduce associated
dangers, maximize the availability of the rotating machines,
and provide forewarning of some unforeseen faults, since
enormous economic costs of operation may arise when these
types of factors are not considered [11], [12]. Infrared imag-
ing has become important in preventive and predictive main-
tenance scheduling because it is possible to visualize and
locate hot spots or a region of interest (ROI) to determine
maloperation conditions and then establish a criterion for
monitoring, fault detection and fault diagnosis in electrome-
chanical systems [11]–[14]. An increase in temperature is a
possible symptom of fault detection in IM, due to the problem
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that causes the high temperature in the rotating machine com-
ponents. In addition, the fault can affect other components in
the kinematic chain, increasing their temperatures, a situation
that can be detected with infrared imaging. Inspections can
be carried out while the equipment is operating, preventing
risks [14], [15] and globally monitoring the IM and their
kinematic chains by locating ROIs where the temperature has
increased.

Different methods for detecting ROIs have been used in
multiple applications. One of these is the Otsu thresholding
method, selected for use in this research due to its perfor-
mance in different infrared imaging applications as reported
in the literature. For example, in the field of medicine,
image segmentation detects regions that represent breast can-
cer [16]; in materials testing, image segmentation is used to
detect surface cracks in titanium-coated aluminum [17]; and
in electrical equipment, image segmentation is used to inspect
switches, fuses, and substations [18].

However, one of the problems with infrared imaging is
that most of the proposedmethodologies are performed either
manually or semiautomatically with the help of commercial
software and depend on an expert technician, which may
result in lost time, greater human effort and higher economic
cost. For this reason, the proposal of new automatic method-
ologies based on infrared imaging can be a helpful tool for
preventive and predictivemaintenance in the industrial sector,
reducing analysis time, economic cost, and human effort [11].

In the literature, different methodologies are reported for
monitoring IM thermal factors. The majority of methodolo-
gies that use infrared imaging for condition monitoring of
IM aim to estimate damage by analyzing the thermal behavior
of the electric machine. These methodologies analyze the
performance curve for energy balance and calculate heat
losses or perform condition monitoring of IM during tran-
sient states [19]–[22]. Other methods monitor the insulation
degradation in the stator [23]. It is also possible to detect
cooling system failure in IM by infrared imaging [24]. More
recently, infrared imaging has been used to study the most
common faults present in IM such as broken rotor bars, dam-
aged ball bearings, misalignment, inappropriate connections,
etc. [25]–[29].

Infrared imaging has been combined with image process-
ing techniques to identify ROIs by applying thresholds for
detecting stator winding interturn faults in an IM [27], ball
bearing defects [28], or for other mechanical factors [29].
However, these methodologies are based on manual or semi-
automatic methods requiring expert knowledge for infrared
imaging analysis, as well as the support of commercial soft-
ware to analyze the thermal image temperature measurement,
which also depends on trained personnel, and has an asso-
ciated data processing time as well as greater human and
economic costs.

This paper is based on a previously proposed methodol-
ogy [28], which consists of thermal condition monitoring
of IM using infrared imaging. The image is segmented and
feature extraction of the parameters of interest in the ROI is

conducted for failure analysis. The methodology is applied
only to the study of ball bearing defect faults, and has the
inconvenience of requiring commercial software, data pro-
cessing time and human effort to apply the methodology.
However, in order to reduce the inconveniences of the previ-
ousmethodology, this work proposes amethodology to detect
the ROI of some faults in IM (ball bearing defects, broken
rotor bars, and misalignment) using automatic segmentation
of the infrared image. Within the ROI, failure analysis and
diagnosis in the IM is realized based on thermal analysis.
With this proposal, it is possible to eliminate dependence on
the visual interpretation of the thermographic camera opera-
tor, which then becomes a support tool for failure analysis
and diagnosis in IM. A thermographic camera is used for
thermal condition monitoring of the IM, detecting the ROI
in the infrared image by means of the Otsu thresholding
method, which is proposed for image segmentation. Next,
the thermogram is calculated from the gray-scale intensity
values of the infrared image; with the ROI and the thermo-
gram, feature extraction (maximum temperature, minimum
temperature, average temperature, relative temperature, tem-
perature difference and heating area) is performed and first
order statistical parameters are calculated and used for failure
analysis in IM. A qualitative method is applied, and based
on the ASTM E1934-99a standard, fault diagnosis in IM
is determined to estimate the severity of the fault. Finally,
the efficiency of the methodology is proven through the
analysis of three types of faults: ball bearing defects (BD),
broken rotor bars (BRB), and misalignment (MAL) in IM
with associated kinematic chains to analyze the behavior and
mechanism of failure in IM.

II. THEORETICAL CONSIDERATIONS
A. INFRARED THERMOGRAPHY AND EMISSIVITY
An infrared thermography camera absorbs the infrared radi-
ation emitted by a body with a noncontact method, and
using Stefan-Boltzmann’s law, the body temperature is
obtained [30]. The camera measures an apparent temperature
which must be corrected with the known surface emissivity.

The maximum radiant power that can be emitted by any
object depends only on the temperature of the object with the
thermal radiation.

The radiance spectra emitted by a surface with a tempera-
ture T and a wavelength λ is given by Planck’s law (1).

M (λ,T ) =
C1

λ5(exp

(
C2/λT

)
− 1)

(1)

Where,

C1 = 2πhc2 = 3.742x108W · µm
/
m2

C2 =
hc/

k = 1.439x104 µm · K

M (λ,T ) is given in
(
W/

m2
·µm

)
, T is the absolute tem-

perature of the surface in Kelvin and λ is the wavelength.
The wavelength of peak transmission in this representation
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is found by locating the maximum via of the condition. This
leads to Wien’s displacement law (2).

λmax · T = 2897.8 µm · K (2)

The spectral emission of a blackbody source is calculated
from Stefan-Boltzmann’s law (3).

MBB (λ,T ) =
∫
∞

0
Mλ(T ) dλ =

σT 4

λ
(3)

Here,MBB (λ,T ) is given in
(
W/

m2
·µm

)
and σ = 5.67×

10−8W/m2
· K 4 denotes the Stefan-Boltzmann constant.

The emissivity of a surface represents the ratio between the
radiation emitted by the surface at a given temperature and the
radiation emitted by a blackbody at the same temperature.
The emissivity of a surface (ε) varies between 0 and 1,
inclusively.

To estimate the spectral hemispherical emissivity,
the wavelength and average direction (4) is applied. The
emissivity of a surface at a given wavelength can be different
at different temperatures, since the spectral distribution of the
emitted radiation changes with the temperature.

ε (λ,T ) =
M (λ,T )
MBB (λ,T )

(4)

Due to the difficulty of guessing accurate values for emis-
sivity, it is a common practice to directly measure ε. The
easiest method is to attach tape or a paint with a known emis-
sivity to the object under study. In the analysis, the surface
temperatures of the tape or paint follow from their known
ε. Assuming good thermal contact and waiting until thermal
equilibrium is established, adjacent surface temperatures of
the object are assumed to be the same; hence, the object
emissivity is found by varying ε in the camera software until
the object temperature is equal to the known tape surface
temperature. The accuracy of this method depends on the
accuracy of the known emissivity [31], [32].

B. INFRARED IMAGE SEGMENTATION WITH THE
AUTOMATIC THRESHOLD METHOD
Infrared image segmentation is the division of an image
into regions or categories corresponding to different
objects or parts of objects [33]–[35]. It is possible to perform
the segmentation manually or automatically. The threshold
method is used for automatic infrared image segmenta-
tion (5), and it consists of the separation of hot regions from
the rest of the image, comparing with an original infrared
image, I(x, y). For this method, a threshold value U between
0 and 255 is proposed for the threshold of an 8-bit gray-scale
image.

G (x, y) =
{
255 if I (x, y) > U
0 if I (x, y) ≤ U

}
(5)

where U is the proposed threshold value. The value
of 255 represents the zone of the region of interest
(ROI) or heat, 0 represents the bottom of the image and
G (x, y) represents the result of the threshold.

The Otsu threshold method is applied to obtain an auto-
matic segmentation (6); the objective of these methods is to
find the ideal threshold value that best adapts to the infrared
image under consideration [36].

Uopt = argmax

Po [1− Po] [µf − µo]2[
Poσ 2

f

]
+ [1− Po]σ 2

o

 (6)

where Uopt is the optimal threshold parameter for obtain-
ing automatic segmentation, µo and µf represent the mean
value of the hot region and the background respectively, σo
is the standard deviation for the background image, σf is
the standard deviation for the hot region, Po is cumulative

probability Po =
U∑
i=0

p(i), where p (i) = ni
N , p (i) is the

histogram probability distribution of the image, ni is the gray
level frequency i, N is the total number of pixels and U is a
proposed threshold.

C. MOTOR FAULTS AND THERMAL RELATIONSHIP
Some of the most studied fault conditions in IM are ball bear-
ing defects and broken rotor bars. BD result from poor bear-
ing lubrication or abnormal friction in the bearing housing.
This causes an increase in temperature in the area where the
bearing is installed [37], which propagates into the induction
motor and other parts of the kinematic chain. BRB occur
when the bars inside the rotor armor experience partial or total
breakage. This fault appears because of welding defects, high
strength joints, hot spots, and mechanical stress [25]. When
joint resistance occurs in a bar, heat dissipation takes place
around that point. This fault propagates to adjacent bars due
to the increment of current and temperature, accelerating the
damage in the electric machine [25] and consequently that
of other elements in the kinematic chain. MAL is present
when the rotating machine shaft and the load pulleys are not
aligned; this fault can be expressed as an eccentricity in the
induction motor, which generates more mechanical stress and
excessive rubbing and fatigue of the ball bearings, causing
decrease in torque, reduction in efficiency and increase in
temperature in the electric machine [38].

III. METHODOLOGY
This section describes the automatic methodology proposed
for the monitoring, detection and feature extraction of the
shape of the ROI and the parameters of interest during
infrared imaging application to thermal analysis in IM. The
methodology is described in five steps as shown in Fig. 1.
In the first step, the electromechanical system to bemonitored
is identified, which, for this work, consists of an induction
motor with an associated kinematic chain. The second step of
thermal condition monitoring with infrared imaging is iden-
tifying the system of interest; the calibration and validation
of measurements are performed with an RTD (Resistance
Temperature Detector).

The third is the detection of the ROI automatically through
image segmentation using the Otsu threshold method. In the
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FIGURE 1. Proposed automatic methodology for induction motor failure analysis based on infrared imaging.

fourth step, the feature extraction is obtained, the thermogram
(temperature matrix) is calculated from the intensity values
of the infrared imaging and the parameters of interest are
extracted. Last, the severity of the fault is estimated using
failure analysis based on a qualitative method and the ASTM
E1934-99a standard.

A. IDENTIFY THE ELECTROMECHANICAL SYSTEM FOR
MONITORING
The first step is to identify the electromechanical system
which will be monitored; for this work, an induction motor
and its associated kinematic chain are used to determine the
hot spots produced by the equipment operating conditions.
Once the system to be monitored has been identified, it is
possible to establish the operation to propose different cases
of study for the electric machine.

B. MONITORING
In this step, an infrared thermography camera is used for
thermal condition monitoring of the rotating machine and
its neighboring kinematic chain. This camera can be used in
several temperature ranges depending on the emissivity of the
surface. With the image capture, two additional images can
be obtained: first, a pseudocolored thermal image that allows
the human eye to observe the heat distribution in the IM being
monitored, and second, a gray-scale infrared image which is
used by the proposed methodology.

A calibration and validation of the thermographic camera’s
temperature values is performed. For the calibration, the tem-
perature values obtained with the thermographic camera are
compared with the output of a comparative method. Several
RTD temperature sensors were used to obtain the reference
measurement. The calibration guarantees that the measure-
ment obtained with the thermographic camera is the same as
that of the equipment to be monitored.

First, the RTD temperature sensors are installed inside the
IM in different places (T2-T7) as depicted in Fig. 2, while
another RTD sensor is used to measure the ambient tem-
perature (T1). Then, the measurements of the thermography

FIGURE 2. Location of temperature sensors (RTD) inside the induction
motor as a temperature reference measurement for calibration and
validation of the thermography camera.

camera are adjusted based on the mean temperature of
the RTD.

In addition, the emissivity is theoretically calculated from
the temperature (T) measured by the RTD in Kelvin and the
wavelength (λ) obtained by Wien’s displacement law. With
the values of T and λ, the radiance spectra emitted by a surface
is calculated by Planck’s law; the spectral emission of a black-
body is determined with the Stefan-Boltzmann law. Finally,
with the values obtained, the emissivity (ε) is estimated using
the equation of spectral hemispherical emissivity (4).

This value is then adjusted by empirical tests and super-
vised adjustment, by placing a piece of adhesive tape of
known emissivity on the induction motor, and then mon-
itoring the IM with the thermographic camera, recording
infrared imaging adjusted to the coefficient of emissivity of
the adhesive tape. The thermography reads the temperature
of the tape, then another area of the IM without adhesive
tape is measured and the coefficient of emissivity of the
thermographic camera is changed until the temperature of
that area of the IM is the same as that previously registered
with the adhesive tape [31].

C. DETECTION
Thresholding is a widely used method in image segmenta-
tion for detecting the ROI in infrared imaging either man-
ually or automatically. Manual thresholding requires much
time and more human effort than automatic thresholding.
Therefore, the Otsu threshold is proposed as an automatic tool
to detect the ROI in induction motors under different fault
conditions.
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The proposed methodology works with gray-scale infrared
imaging. The histogram that identifies the intensity distribu-
tion of the pixels that agree with gray-scale infrared imaging
is obtained. The Otsu threshold method is applied from the
histogram to obtain a parameter of optimal threshold (Uopt ),
which determines a relationship between the hot area region
of infrared imaging and the remaining parts of the image
through statistical methods that identify the ROI within the
infrared image using automatic segmentation.

D. EXTRACTION
Temperature estimation in thermography is of vital impor-
tance to obtain accurate results. In this regard, different
methodologies to correctly calculate temperature values are
proposed in the literature; the method most widely used by
different camera manufacturers is based on radiation received
by the camera that originates from three information sources:
the objective, the environment, and the atmospheric and
object-reflected emissions [39]. In the same way, infrared
imaging can be used to calculate temperature values bymeans
of the gray-scale pixel intensity values [40].

Unlike methodologies that use color images, this paper
uses gray-scale infrared imaging. The gray-scale infrared
images are 8-bit digital images, which means that the image
is represented by gray level intensities ranging from 0 to 255.
Working with this type of image facilitates data processing,
allowing low computational complexity as well as reduced
processing times, because the information in this type of
image is reduced yet valuable compared with image color
analysis. With the gray-scale infrared imaging intensity val-
ues and knowing both the maximum temperature Tcmax
and the minimum temperature Tcmin obtained directly from
the thermographic camera measurement and calculating the
actual temperature values using (7), this equation is applied
to gray-scale intensity matrices, since a digital gray-scale
thermographic image can be represented by a matrix with
intensity values ranging from 0 to 255 [40]. Through this
process, for each pixel of infrared imaging in gray-scale,
the true temperature (thermogram) is reached.

Ttrue(x, y) = Tcmin +
Tgray(x, y)
Tmgv

∗ (Tcmax − Tcmin) (7)

where Ttrue(x, y) is the value of the true temperature derived
from the pixel intensity, Tcmax and Tcmin are the maximum
and minimum temperature of the infrared imaging, respec-
tively, Tgray (x, y) is the value of the pixel intensity in the
gray-scale image and Tmgv is the peak intensity value in the
infrared imaging.

From the calculated thermogram, feature extraction is pos-
sible; this comes from the ROI detection determined by
automatic image segmentation. For example, it is possible to
extract Tmax , Tmin and the average temperature Tavg. Addi-
tionally, it is possible to apply a qualitative method to obtain
the relative temperature1T (8) and the difference in temper-
ature1Tr (9) of the ROI of IMwith faults and those of motors

TABLE 1. Parameters of interest.

in healthy-condition subject to the same conditions.

1T = Thot − Tref (8)

1Tr =
Thot − Tref

Tref
∗ 100% (9)

where 1T is the difference in temperature, 1Tr is the
relative temperature, Thot is the temperature of the ROI of
the IM with a fault and Tref is the temperature of the ROI of a
healthy system. Table 1 shows a summary of the parameters
calculated for every ROI obtained from automatic image
segmentation.

Additionally, parameters based on first order statistics are
proposed since they are widely used in the study of infrared
imaging [30], providing information for the detection and
fault diagnosis present in IM. The asymmetry of infrared
imaging is described through histogram based first order
statistical features. A histogram is a graphical representation
of pixel distribution of an image. Average gray intensity, (10),
skewness, (11), kurtosis, (12), entropy, (13), standard devi-
ation, (14), and variance, (15) are obtained by a feature
extraction for a failure analysis of infrared imaging. fx and
gy indicate the number of pixel columns and number of pixel
rows respectively, p is the number of distinct gray-scale pixels
in the quantized image, h(p) is the histogram of the pixel
intensity and q is the number of possible intensity levels of
the image [41]. The feature extraction is expressed as follows:

µ =
1
fxgy

q−1∑
p=0

ph(p) (10)

1
σ 3fxgy

q−1∑
p=0

(p− µ)3h (p) (11)

1
σ 4fxgy

q−1∑
p=0

(p− µ)4h(p) (12)

−
1
fxgy

q−1∑
p=0

nlog(p) (13)

σ = (
1
fxgy

q−1∑
p=0

(p− µ)2h (p))

1
2

(14)

σ 2
=

1
fxgy

q−1∑
p=0

(p− µ)2h (p) (15)
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FIGURE 3. Testing bench with electromechanical system for the
monitoring, detection and fault analysis of an induction motor
using infrared imaging.

E. SEVERITY
A qualitative method is applied, in which IM with faults are
compared to healthy IM operating under similar conditions
to determine the temperature difference and to analyze the
anomalies produced by high temperatures in the IM. The
severity of the fault in the IM is estimated by obtaining
the difference in temperature 1T, and using the American
Society for Testing&Materials Standard (ASTME1934-99a)
[42] we can estimate the severity of the fault that the IM may
have.

IV. EXPERIMENTAL SETUP
The infrared imaging is conducted with an infrared camera
(model FLIR A310, from FLIR Systems Incorporated) [43].
The thermographic camera was adjusted to obtain accurate
results based on different environmental factors such as emis-
sivity, atmospheric temperature, relative humidity, reflected
temperature and the distance between the IM and the camera.
The value of the emissivity is calculated by means of empiri-
cal tests through a supervised adjustment as explained in the
methodology of this work, the emissivity value is adjusted
to 0.93, which is used for all the tests carried out in this work.
This value is in the proposed ranges suggested for painted sur-
faces and recommended in previous works related to electri-
cal systems [44], [45] and was adjusted by tests. Furthermore,
the Fluke 975 AIMETER and the Fluke 61 were employed
to measure the environmental parameters for each test. The
algorithms for automatic image segmentation, the calculation
of the thermogram, the features extraction, and the qualitative
method are programing in C++. An electromechanical sys-
tem consisting of an AC machine, a 1.5 kW induction motor,
WEG three-phase electric power, connected to 220 VAC at
60 Hz is used for the conducted tests. The IM is mechanically
coupled to a gearbox by a rigid coupling, a reduction gearbox
and an electric generator representing the mechanical load of
the system. Fig. 3 shows the configuration of the system under
test.

The purpose of this methodology is monitoring the thermal
behavior in the IM for a HLT condition and under different
fault conditions such as a BRB, BD and MAL, to obtain
suitable patterns to differentiate amongmotor conditions. The
BRB condition is simulated by drilling the rotor to an 8 mm
depth to break one rotor bar as shown in Fig. 4a. A 2 mm hole
is drilled on the outer race of the bearing for the BD condition,

FIGURE 4. Proposed study cases for infrared imaging-based fault
analysis: a) Broken rotor bar (BRB), produced by drilling the rotor 8 mm,
b) Ball bearing defect (BD), produced by drilling a 2 mm hole, and
c) Misalignment (MAL), producing by moving the free end of the
induction motor.

as shown in Fig. 4b. The MAL condition is produced by
moving the free end of the IM so that a misalignment of 5 mm
in the horizontal plane is produced only from the free end;
Fig. 4c shows the misalignment on the shaft coupling.

Four experimental conditions are studied on the IM: HLT,
BRB, BD and MAL. Each test lasted 80 minutes; since in
this time the healthy motor reached thermal stability. The
image capture period for infrared imaging was one each
minute, so at the end of every test 80 infrared images were
obtained. For each case study proposed in this work, five
different tests were carried out. The proposed methodology
uses two infrared imaging captures from each test for its
thermal analysis, the first obtained at the start of the test and
the second obtained 80 minutes after starting the test.

V. RESULTS AND DISCUSSION
Fig. 5 shows the infrared images that are obtained as a
final result of the monitoring the IM for the proposed study
cases. Although the infrared imaging is shown in pseudocolor
for better visualization, the proposed methodology employs
gray-scale infrared imaging, which is also provided by the
thermographic camera. Fig. 5a shows an infrared imaging of
the healthy condition obtained when the IM reached thermal
stability. Fig. 5b depicts the BRB condition in the electric
machine; Fig. 5c shows the infrared imaging for the BD; and
Fig. 5d depicts the MAL condition. These results from the
infrared imaging show a remarkable difference between the
study cases.

Once the thermal behavior of the rotating machine is
obtained from the infrared imaging, the Otsu threshold
method is applied for image segmentation since it provides
good results for ROI detection, which is one of the contribu-
tions of this work. The threshold reference is established by
the HLT condition as shown in Fig. 6a. Afterwards, the Otsu
threshold method is applied, and for this case, the optimal
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FIGURE 5. Infrared imaging of the electromechanical system for fault
analysis in the induction motor: a) Healthy motor (HLT), b) Broken rotor
bar (BRB), motor induction fault condition, c) Ball bearing defect (BD),
motor induction fault condition, and d) Misalignment (MAL), motor
induction fault condition.

threshold parameter is Uopt = 76. Fig. 6b shows the thresh-
olding of the gray-scale healthy system. Then, the different
cases of study are analyzed using the proposed methodology.
The BRB condition is analyzed with Otsu threshold method,
obtaining an optimal threshold of Uopt = 103. Fig. 6c shows
the gray-scale infrared imaging and Fig. 6d depicts the thresh-
olding. In the same way, the BD failure is processed with
the Otsu threshold method, obtaining an optimal threshold of
Uopt = 141. The gray-scale image is shown in Fig. 6e and
the thresholding is obtained as depicted in Fig. 6f. Finally,
the MAL condition is also processed, obtaining an optimal
threshold of Uopt = 82. The gray-scale image for the mis-
alignment condition is shown in Fig. 6g and Fig. 6h depicts
the thresholding.

From (4) and with the values of the maximum and mini-
mum temperature of each infrared imaging, the temperature
matrix (thermogram) is calculated. Fig. 7 shows the results
obtained from the automatic image segmentation applied to
the infrared imaging for each study case proposed in this
work.With the thermogram and the segmented infrared imag-
ing, the thermal behavior of the induction motor is obtained
for each test carried out, applying feature extraction to the
ROI (Table 1).

By applying the proposed methodology, the parameters of
interest are obtained to estimate the thermal behavior pro-
duced by the IM under different conditions. First, the healthy
condition is compared to the other conditions with faulty
states. Next, a qualitative method is applied, which consists
of comparing the IM in a healthy state to the system when it
is faulty; using the ASTM E1934-99a standard, the operating
condition of the IM is estimated. Table 2 shows the results of
the parameters of interest for all study cases. The system with
a BRB has a temperature difference of 7.86 ◦Cwhile the HLT
condition results in an increase in temperature of 26.78%.

The image segmentation shown in Fig. 7a and Fig. 7b
demonstrates how the heat is distributed throughout the elec-
tric machine and may affect other elements of the motor

FIGURE 6. a) Gray-scale infrared imaging of a healthy system (HLT),
b) Applying automatic thresholding to a healthy system (HTL), c)
Gray-scale infrared imaging of a broken rotor bar system (BRB),
d) Applying automatic thresholding to broken rotor bar system (BRB),
e) Gray-scale infrared imaging of ball bearing defect system (BD),
f) Applying automatic thresholding to ball bearing defect system (BD),
g) Gray-scale infrared imaging of a misaligned system (MAL) and
h) Applying automatic thresholding to a misaligned system (MAL).

TABLE 2. Features of Interest for fault diagnostic.

such as the windings. The BD condition reaches a maxi-
mum temperature of 46.54 ◦C with a temperature differ-
ence of 17.19 ◦C compared to the HLT system, an increase
of 58.57%. The image segmentation from Fig. 7c clearly
shows that the area where the heating occurs is where the
damaged ball bearing is located. In this case, the heat-
ing is concentrated at a specific area near the bearing.
Finally, the MAL condition reaches a maximum temperature
of 40.24 ◦C, a temperature difference of 10.89 ◦C compared
to the HLT system, which represents a 37.10% increase.
The image segmentation from Fig. 7d clearly shows that the
area where the heating occurs is where the misalignment is
present, in this case in the coupling of the induction motor
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FIGURE 7. Automatic segmentation of infrared imaging. The red-colored
areas represent the location of the heating produced by each failure case
studied in this paper: a) Healthy (HLT), b) Broken Rotor Bar (BRB), c) Ball
Bearing Defect (BD), and d) Misalignment (MAL).

TABLE 3. First order statistical features.

shaft with the gearbox. The thermal pattern is clearly differ-
entiated from the healthy condition pattern. Also, the thermal
patterns are different for each study case, which helps identify
the fault.

A thermal analysis was performed on the information
provided by the gray-scale infrared imaging, obtaining the
first order statistical parameters as shown in Table 3. The
results show an increase in the average temperature which
varied with failure analysis. For example, when the IM has
a BRB failure, the temperature increase is 25.78%; with the
BD failure, it increases 43.51%; and with a MAL fault, it
increases 33.18%, all compared with the HLT condition.
While kurtosis and skewness decrease in the study of the
faults, when the IM has a BRB failure, there is a decrease
of 75.13%; with a BD failure, it decreases 78.91%; and
with a MAL fault, it reduces by 43.78%. With these results,
it is possible to consider the average temperature increase,
the kurtosis and the skewness as parameters for fault location
and fault diagnosis in IMs.

With the obtained results, the reached heating tempera-
tures can be analyzed through the international standard for
manual classification of conditions in electrical equipment,
ASTM E1934-99a, in which an action is recommended to
be undertaken depending on the temperature difference (1T )
obtained by a quantitative analysis between a healthy system
and a system with faults under the same operating conditions.
Table 4 summarizes the standard for classifying conditions in
electrical equipment.

TABLE 4. Conditions of qualitative measurement.

TABLE 5. Comparative analysis.

Following themethodology proposed in this work, the fault
severity is estimated at the induction motor. According to the
standard, the BD fault has a large discrepancy with respect to
the healthy condition and it should be repaired immediately.
The BRB fault is classified as priority II and is recommended
for repair when time permits. Finally, the MAL condition
is classified the same as the BRB fault, indicating a proba-
ble deficiency which is recommended for repair when time
permits.

Table 5 shows a comparison of the heat distribution and the
temperature from a qualitative analysis. The electric machine
in a healthy state is compared with each fault case studied
in this paper. The increase in temperature of the IM, due to
different faults has consequences that affect the IM, such as
considerable wear on its elements and the kinematic chain
which eventually reduces the rotating machine’s life. Addi-
tionally, depending onwhere the failure occurs, it can damage
other elements; for example, when the IM has a BRB fault,
the heat generated by the fault is dispersed throughout the
induction motor, and it may damage the windings. When the
fault is a BD, as observed in the results, it affects the area
where the bearing is installed and may affect the motor shaft
since the ball bearing is mounted on the shaft.

When there is a MAL fault, the heat distribution goes
from the induction motor to the gearbox, which can cause
wear on the elements of the kinematic chain or on the motor
itself. These are some of the problems that directly affect the
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TABLE 6. Features for fault diagnostic with commercial software.

system. However, it has been shown that an increase in tem-
perature represents energy losses caused by faults, which can
have major consequences such as an increase in the motor’s
energy consumption, decreased operational efficiency of the
equipment, and higher operation expenses of the induction
motor [3]. With the proposed methodology it is possible to
conduct a thermal analysis based on temperature increase to
identify the faults.

Finally, a comparison is made between the methodology
proposed in this work and thermal analysis of infrared imag-
ing using commercial software, to determine the advantages
of the methodology proposed in this work. The infrared imag-
ing of Fig. 5 were processed with the FLIR Tools software,
and manually segmented as shown in Fig. 8, obtaining the
maximum temperature (Tmaxs), minimum temperature (Tmins)
and temperature average (Tavgs) as parameters of interest in
each segmented region. The results are obtained with the
commercial software are shown in Table 6.

The methodology proposed in this work can be considered
an attractive and alternative tool for classical infrared imaging
inspection procedures and for techniques of IM monitoring
and failure analysis, due to the advantages it offers compared
to the use of commercial software. One advantage is that the
proposed methodology monitors, detects, extracts, analyzes
and performs fault diagnosis in an IM automatically, without
the need of operator interpretation, reducing data processing
times. This contrasts with using commercial software, which
requires qualified personnel for interpretation and analysis
of the infrared image. Another advantage of the proposed
methodology is the feature extraction of features of interest
such as Tmax, Tmin, Tavg, 1T, 1Tr, and first-order statistics
(Table 2 and 3) of the ROI, with which a more complete
failure analysis and diagnosis can be conducted. Conversely,

FIGURE 8. The images in the left column represent the infrared imaging
segmented with commercial software, while the infrared imaging in the
right column shows the results of the automatic segmentation proposed
in this paper, a) Healthy (HLT), b) Broken Rotor Bar (BRB), c) Ball Bearing
Defect (BD), and d) Misalignment (MAL).

the majority of commercial software only obtains Tmax, Tmin,
and Tavg of the ROI (Table 4) for thermal analysis.
The values obtained in Table 4 are acceptable for IM failure

analysis, but are subject to errors because Tmax and Tmin
are parameters that represent a single image pixel. Some-
times these values can be image noise and not the exact
actual temperature. In addition, the image segmentation zone
is larger, involving regions that are not of interest for the
thermal analysis, having a different Tavg. To reduce these
problems that often arise when analyzing infrared imaging
with commercial software, this methodology proposes a sta-
tistical analysis with the parameters obtained directly from
the ROI, which allows a greater veracity in the failure analysis
and fault diagnosis. Another advantage is that based on the
automatic image segmentation of the ROI, the type of IM fault
condition (HTL, BRB, BD, and MAL) is determined, since
they are represented by the hot spots generated by the faults.
Studies in the literature have reported that the area where
there is considerable warming in the IM or the kinematic
chain can be related to failure type [25], [37], [38]. Con-
versely, with commercial software, image segmentation is
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done manually and empirically, basing the fault classification
on the operator’s experience. Another advantage is that the
methodology has the capacity to determine the severity of
the failure and make a recommendation for the maintenance
action to be followed, using the ASTM E1934-99a standard,
a methodology based on a standard that is widely approved
for the detection of anomalies in rotating machines from
infrared imaging. Finally, the proposed methodology is an
open architecture allowing the improvement and develop-
ment of new algorithms that make this method more robust,
in contrast with most commercial software, which cannot be
developed because they have a closed software architecture.

Despite its advantages, the methodology proposed in this
paper has some limitations in industrial application. First,
it is dependent on the prior knowledge of the IM thermal
conditions; second, it does not allow analysis of all the differ-
ent points of the infrared imaging because it focuses on the
ROI, which contains the hottest areas of the infrared imaging.
Nevertheless, these limitations can be compensated for by
using other approved techniques for IM failure analysis, such
as analysis by MCSA or vibration. Finally, another limitation
is to consider the minimum set of criteria necessary to cap-
ture infrared imaging (focusing, reflection, light, emissivity,
reflected object and atmospheric temperatures, and relative
humidity), but it is possible to include sensors that help
measure these parameters.

VI. CONCLUSIONS
This article presents an automatic methodology for the mon-
itoring, detection, extraction, and failure analysis in an IM
using thermographic images. This method can be considered
an attractive and alternative tool due to its faster data process-
ing compared to manual methods that use infrared imaging.
In addition, it is a standard-based methodology (based on the
ASTM E1934-99a standard) approved for failure analysis in
rotating machines using infrared imaging.

This methodology has been tested to detect abnormal ther-
mal conditions in three defective conditions present in an
induction motor; a broken rotor bar, ball bearing defects and
misalignment. From the results, it can be concluded that the
proposed methodology is adequate for fault diagnosis for the
faults considered, as well as to effective in determining the
severity of the failure and a recommendation on the immedi-
acy of the corrective actions required.

Based on the results of the proposed methodology and the
literary review, it can be concluded that this work can greatly
help or complement the techniques used most frequently in
fault analysis, and as a result a more complete analysis for
the detection of faults in an IM and the kinematic chain can
be obtained.

The results obtained in this work suggest that this method-
ology is well adapted for fault location in IM and it can
be extended for monitoring the operating conditions of the
associated kinematic chain. Future works will implement
an automatic faults classifier based on pattern recognition
methods applied to the image segmentation.
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