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ABSTRACT Location has become an essential part of the next-generation Internet of Things systems. This
paper proposes a multi-sensor-based 3D indoor localization approach. Compared with the existing 3D local-
ization methods, this paper presents a wireless received signal strength (RSS)-profile-based floor-detection
approach to enhance RSS-based floor detection. The profile-based floor detection is further integrated with
the barometer data to gain more reliable estimations of the height and the barometer bias. Furthermore,
the data from inertial sensors, magnetometers, and a barometer are integrated with the RSS data through an
extend Kalman filter. The proposed multi-sensor integration algorithm provided more robust and smoother
floor detection and 3D localization solutions than the existing methods.

INDEX TERMS Internet of Things, indoor localization, wireless received signal strength, inertial navigation,
magnetometer sensor, barometer, 3D, floor detection.

I. INTRODUCTION
The next-generation internet of things (IoT) systems will
become increasing dependent on intelligent technologies
such as autonomous localization, big data, and intellisense.
Accordingly, the location information is becoming an essen-
tial part of the IoT systems [1]. The global navigation satellite
systems (GNSS) and inertial navigation systems (INS) based
outdoor localization systems have achieved great advances
over the past decades [2]. In contrast, robust indoor position-
ing remains an open issue due to factors such as the degra-
dation of GNSS signals in deep indoor areas, the complexity
of indoor environments and the diversity in low-cost devices
and system deployments [3].

Wireless localization is one of the most widely used
indoor localization methods. Although wireless signals such
as Bluetooth low energy (BLE) and wireless local area net-
work (WiFi) can be utilized to provide long-term accurate
positions that do not drift over time, achieving high-accuracy
wireless localization is challenging. The challenges include
the dependency on signal availability and geometry [4]
and the existence of RSS fluctuations and interferences
such as the non-line-of-sight condition [6], reflections [7],
multipath [8], and the human body disturbance [9].

To obtainmore reliable localization solutions, sensor-based
dead-reckoning (DR) has been used as an augmentation
to wireless localization [5]. The short-term DR solution
can be utilized to bridge the outages of wireless sig-
nals, provide smoother solutions when integrated with
wireless positioning [10], and aid the profile-based wire-
less fingerprinting [11] and access point localization and
signal-propagation model estimation [30]. Crowdsourcing
based on DR data has also been researched [20], [21]. The
challenges for low-cost sensor-based DR include the exis-
tence of sensor errors [12] and thermal drifts [13], the neces-
sity of initialization [14], the existence of frequent magnetic
disturbances [14], and the misalignment angle between the
vehicle (e.g., human body) and the device [15].

Due to the complementary characteristics of wireless posi-
tioning and DR, their integration has been widely used. Most
of the existing indoor localization works are focusing on the
two-dimensional (2D) case. That is, the localization activity is
restrained in a single floor. However, in the IoT era, numerous
devices may be used in various 2D and three-dimensional
(3D) scenarios. Thus, the 3D localization technique is needed.
A practical approach for 3D indoor localization is to deter-
mine the floor in which the device is located and then localize
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FIGURE 1. Diagram for proposed 3D localization method.

the device within the selected floor. Therefore, accurate floor
detection is essential for a robust 3D localization. For floor
detection, data from various types of sensors and their com-
binations have been investigated, such as

• RSS from wireless sensors, e.g., WiFi [16]– [19],
BLE [22], and cellular [23]

• Air pressure measured by a barometer [24]– [26]
• Inertial sensors (i.e., gyros and accelerometers) [27]
• The integration of RSS and barometer data [28],

[29], [31]
• The integration of RSS and inertial sensor data [32], [33]
• The integration of RSS and the floor plan (i.e., indoor
map) [34]

• The integration of barometer data and the floor plan [35]
• The integration of RSS, inertial sensor data, and barom-
eter data [36]

• The integration of RSS, inertial sensor data, and the floor
plan [37], [38]

• The integration of RSS, inertial sensor data, and the user
position probability map [39].

Meanwhile, various techniques and algorithms have been
proposed for floor detection. These techniques include

• Kalman filter [28], [36].
• Particle filter [37], [39], [38].
• The crowdsourcing-based methods [24], [32].
• The simultaneous localization and mapping (SLAM)-
based approaches [29], [31], [40].

• Neural Networks [16], [17], [19].
• Least squares [22].
• Fingerprinting [19], [23], [41], [42].
• Centroid [22].
• The clustering methods [25], [31], [42].

In this paper, a multi-sensor 3D localization approach is
proposed. Compared to the existing 3D localization methods,

the main improvements include

• The existing RSS-based floor-detection methods suf-
fer from performance degradations due to RSS fluc-
tuations and interferences. To alleviate this issue,
a RSS profile-based floor-detectionmethod is presented.
The RSS-profile is generated with the aid from the
sensor-based DR solutions. The profile-based method
can provide significantly more reliable floor-detection
solutions.

• The profile-based floor detection is further integrated
with the barometer data to provide a more robust
floor-detection solution. Additionally, the barometer
bias is estimated in real time by using the data from
wireless and inertial sensors as constraints.

• To mitigate the impact of outliers and enhance the reli-
ability of wireless localization, the data from inertial
sensors, magnetometers, and a barometer is integrated
with the RSS through an extend Kalman filter (EKF).
The proposed algorithm provides significantly more
robust and smoother 3D locations than the existing
multi-sensor integration methods.

Figure 1 illustrates the diagram for the proposed 3D
localization method. The inputs, outputs, and the constraints
in the algorithm are highlighted by blue, red, and green
boxes, respectively. In this algorithm, the measurements from
gyros and accelerometers are used for motion (e.g., posi-
tion, velocity, and attitude (PVA)) prediction through the
INS mechanization. The predicted motion states are further
used to construct the system model for the multi-sensor
localization EKF.

Meanwhile, the accelerometer data is used for step detec-
tion, while the data from magnetometers and accelerometers
are utilized for heading determination. The calculated head-
ing and step results are further used to construct the heading
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and velocity updates for the EKF. Additionally, the wireless
RSS data is used to generate wireless location updates for
the EKF. By fusing the motion predictions and location,
velocity, and heading updates in the EKF, a 3D location
solution can be gained.

Another part in the proposed algorithm is the height-
estimation module. In this module, the wireless RSS is com-
bined with the location solution to generate the RSS profiles.
The RSS profiles are further integrated with the barometer
measurements in the height-estimation EKF to estimate the
height. The estimated height is utilized to construct a height
constraint for the multi-sensor localization EKF.

This paper is organized as follows. Section II illus-
trates the multi-sensor-based localization method, Section III
describes the height estimation approach, Section IV shows
the experimental verification, and Section V draws the
conclusions.

II. MULTI-SENSOR LOCALIZATION
This section describes the modules in the multi-sensor inte-
grated localization algorithm. The modules include those
for motion prediction and the heading, height, velocity, and
position constraints.

A. MOTION PREDICTION
The INS mechanization [43] is used to provide the motion
prediction. The gyro-measured angular rates are first used
to track the device attitude. The obtained attitude is then
used to transform the accelerometer-measured specific forces
from the device body frame (i.e., b-frame) to the local-level
navigation frame (i.e., n-frame). Afterwards, the gravity vec-
tor is added to the n-frame specific force vector to obtain
the acceleration vector. Finally, the acceleration is integrated
once to determine the velocity and twice to track the position.
The continuous-time INS mechanization algorithm in the
n-frame is ṙnv̇n

Ċn
b

 =
 D−1vn

Cn
bf

b
− [(2ωn

ie + ωn
en)×]v

n
+ gn

Cn
b[ω

b
ib×]− [ωn

in×]C
n
b

 (1)

where D = diag(
[
Rm + h (Rn + h)cos(l) −1

]
), rn =[

l λ h
]T represents the position vector (latitude, longitude,

and height); vn =
[
vN vE vD

]T denotes the velocity vec-
tor (north, east, and down velocities); Cn

b is the direction
cosine matrix from the b-frame to the n-frame; f b is the
accelerometer measurement vector, and ωb

ib the gyro mea-
surement vector; ωn

ie and ωn
en represent the angular rate of the

Earth and that of the n-frame with respect to the e-frame; ωn
in

represent the angular rate of the n-frame with respect to the
inertial frame (i.e., i-frame); gn is the local gravity vector;
Rm and Rn are the radius of curvature of meridian and cur-
vature in the prime vertical, respectively, and h is the height.
The sign [v×] denotes the skew-symmetric matrix of v, and
the sign diag(v) indicates the diagonal matrix form of the
vector v.

B. HEADING CONSTRAINT
The magnetometer data is utilized to compute an absolute
heading through the following steps [44]: a) leveling themag-
netometer measurements by using the horizontal (i.e., roll
and pitch) angles, b) using the leveled magnetometer mea-
surements to calculate the magnetic heading (i.e., the heading
angle from the Earth’s magnetic north), and c) calculating the
true heading (i.e., the heading angle from the Earth’s geo-
graphic north) by adding a declination angle to the magnetic
heading.

The device horizontal angles can be computed by the
accelerometer-measured specific forces as

φ = atan2
(
−fy,−fz

)
θ = atan2

(
fx , (f 2y + f

2
z )

1
2

)
(2)

where fi represents the specific force along the i-th accelerom-
eter axis; φ and θ denote the roll and pitch angles, respec-
tively. The sign atan2() is the four-quadrant inverse tangent
function.

By following [43], the direction cosinematrix that involves
the horizontal angles can be computed as

Cn
b =

 cos(θ ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

1 0 0
0 cos(φ) −sin(φ)
0 sin(φ) cos(φ)


=

 cos(θ ) sin(φ)sin(θ) cos(φ)sin(θ)
0 cos(φ) −sin(φ)

−sin(θ) sin(φ)cos(θ) cos(φ)cos(θ)

 (3)

Afterwards, the x-, y-, and z-axis magnetometer readings
can be converted into the horizontal magnetic intensities by[

mH ,x mH ,y
]T
= Cn

b
[
mx my mz

]T (4)

where
[
mH ,x mH ,y

]
is the transformed magnetometer read-

ings in the horizontal plane. The true heading can be com-
puted as

ψ = ψM + D = −atan2
(
mH ,y,mH ,x

)
+ D (5)

where ψ and ψM are the true and magnetic headings, respec-
tively. D is the declination angle, which can be obtained
from the international geomagnetic reference field (IGRF)
model [46].

When the magnetometer-derived heading is available,
it can be utilized to build a heading measurement model for
the EKF. The heading measurement model can be written as

ψ̃ − ψ̂ = δψ + nψ (6)

where ψ̃ is the magnetometer-derived heading, ψ̂ is the head-
ing prediction from the motionmodel, δψ is the heading error
to be estimated, and nψ is the heading measurement noise.

C. HEIGHT CONSTRAINT
When the height measurement (e.g., by fusing the
RSS-profile and barometer data in Section III) is available,
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it can be utilized to build a height measurement model for
the EKF. The height measurement model can be written as

h̃− ĥ = δh+ nh (7)

where h̃ is the height measurement, ĥ is the height prediction
from the motion model, δh is the height error to be estimated,
and nh is the height measurement noise.

D. VELOCITY CONSTRAINT
When a step is detected in the pedestrian localization case,
the device velocity should be approximately zero. If this is
the case, the zero velocity update (ZUPT) can be used as a 3D
velocity update for the EKF. The ZUPT measurement model
can be described as[

0 0 0
]T
− v̂n = δvn + nv (8)

where v̂n is the 3D velocity prediction from themotionmodel,
δvn is the velocity errors to be estimated, and nv is the velocity
measurement noise vector.

The pedestrian steps are detected by using the the
peak-detection method in [47] to process the accelerometer
data.

E. LOCATION CONSTRAINT
When the wireless RSS is available, it can be utilized to
provide an absolute location update through fingerprinting.
Fingerprinting consists of two steps: training and positioning.
The training step is conducted to build a database that consists
of a set of reference points (RPs) with known coordinates and
the RSS from the wireless access points (APs). The Wireless
fingerprint at the i-th RP is recorded as

Fi =
[
ri maci rssi

]
maci =

[
maci,1 maci,2 · · · maci,M

]
rssi =

[
rssi,1 rssi,2 · · · rssi,M

]
(9)

where maci,j and rssi,j (j ∈ [1,M ]) are the media access
control (MAC) address and RSS of the j-th AP at the i-th RP,
respectively. ri is the position of the i-th RP, and M is the
number of APs.

The positioning step is implemented to find the closest
match between the measured RSS and those stored in the
database. To calculate the similarity between the measured
RSS vector and the reference RSS vectors in the database,
the Euclidean distance between the measured and reference
RSS vectors is calculated as

ei = |s− l i| (10)

where s and l i are the measured RSS vector and the reference
RSS at the i-th RP, respectively, and ei is the Euclidean
distance.

The position solution from fingerprinting is used as
the EKF location update. The corresponding measurement
model is

r̃n − r̂n = δrn + nr (11)

where r̃n is the position solution from fingerprinting, r̂n is
the 3D position prediction from the motion model, δrn is
the position errors to be estimated, and nr is the position
measurement noise vector.

The EKF is adopted to fuse the data from the motion
prediction and multiple updates. Refer to [43] for the details
about the EKF algorithm.

III. HEIGHT ESTIMATION
This section describes the approach for height estimation.
As demonstrated in Figure 1, the data from both the barometer
and the RSS-profile is integrated. The following subsec-
tions illustrates the methods for height estimation using the
barometer data, RSS, and the RSS profile, as well as their
integration.

A. BAROMETER HEIGHT
The barometer-measured air pressure can be converted to
the barometer height. With the model in [48], the barometer
height can be computed as

hb = 44330

(
1.0−

(
100p
p0

) 1.0
5.255

)
(12)

where h is the barometer height, p and p0 are the measured
air pressure and the sea level reference pressure, respectively.
The p0 value is set at 101325 Pa for calculation.

B. RSS-BASED FLOOR DETECTION
It has been proven that RSS from APs at multiple floors
can be utilized for floor detection [16]– [19], [22], [23]. The
majority of the existing floor-detection methods are based
on the principle of fingerprinting. The fingerprinting-based
methods are not dependent on the knowledge of AP locations
and path-loss model (PLM) parameters. However, such meth-
ods suffer from a heavy computational load and performance
degradations when the device is located at a point that does
not exist in the fingerprinting database.

In this paper, the geometry for the wireless signals from
the APs on each floor is used to weight the probability for
each floor. The principle for this method is that if the device is
located at a certain floor, the geometry for the wireless signals
from the APs on this floor should be stronger than that for
the wireless signals from the APs on the other floors. Refer
to [45] for details about the geometry of wireless measure-
ments. The dilution of precision (DOP) value is adopted to
quantify the geometry of wireless measurements, and thus be
used as the score to weight the probability for each floor. The
floor that has the smallest positional DOP (PDOP) value will
have the highest probability to be the floor where the device
is located at.

With the method in [45], the PDOP value for the APs at a
certain floor is computed as

χ =

(
3∑

k=1

D(k, k)

) 1
2

, D = (HTH)−1 (13)
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where χ represents the PDOP value. D represent the matrix
that describes the DOP values, and D(k, k) is the k-th diag-
onal element in D. H is the design matrix, which can be
computed as

H =



xu − x1
d1

yu − y1
d1

· · · · · · · · ·

xu − xi
di

yu − yi
di

· · · · · · · · ·

xu − xM
dM

yu − yM
dM


(14)

where ru =
[
xu yu

]
is the 2D device location vector and

ri =
[
xi yi

]
is the 2D location vector for the i-th AP.M is the

number of APs, and di is the geographical distance between
the device and the i-th AP. The distance di can be calculated
by using the method in [49] as

di = 10
rssi−bi
10ni (15)

where rssi is the RSS from the i-th AP, and bi and ni are
the PLM parameters for the i-th AP. The location xi and yi
and PLM parameters ni and bi for the i-th AP are determined
through the least squares by using the measurement model
in [49] as

rss = −10nilog10

((
(xi − xu)2 + (yi − yu)

2
) 1

2
)
+ bi

(16)

where xu =
[
xu,1 · · · xu,j · · · xu,N

]T and yu =[
yu,1 · · · yu,j · · · yu,N

]T are the device locations at multiple
RPs, and N is the number of RPs. The state vector to be
estimated is xi =

[
xi yi ni bi

]T . The state vector is estimated
through the least-squares method. The design matrix H i and
measurement vector zi for AP-i location and PP estimation
are

H i =



−10n(xi−xu,1)

d21 ln10

−10ni(yi−yu,1)

d21 ln10
−10log10d1 1

· · · · · · · · ·

−10n(xi−xu,j)

d2j ln10

−10ni(yi−yu,j)

d2j ln10
−10log10dj 1

· · · · · · · · ·

−10n(xi−xu,N )

d2M ln10

−10ni(yi−yu,N )

d2M ln10
−10log10dM 1


(17)

zi =
[
rss1 · · · rssj · · · rssN

]T (18)

Using the least squares, the state vector xi and the corre-
sponding covariance matrix P i are estimated by

x̂i =
(
HT
i R
−1
i H i

)−1
HT
i R
−1
i zi (19)

P̂ i =
(
HT
i R
−1
i H i

)−1
(20)

whereRi = diag(nrss) and nrss is the RSSmeasurement noise
vector.

To compute the DOP value χ with Equation (13), the 2D
device location ru =

[
xu yu

]T is also required. In this paper,
ru is computed by the weighted average of the AP locations as

ru =
M∑
i=1

wiri∑M
i=1 wi

, wi =
1
di

(21)

C. PROFILE-BASED FLOOR DETECTION
It has been proven in [11] that the short-term DR solution
can be combined with the RSS data to generate a RSS-
profile, so as to alleviate the position ambiguity issue of
wireless positioning. In this paper, the location solution from
multi-sensor integration is combined with the RSS data to
gain the RSS profile, which is further used for floor detection.
Themethod for generating a RSS profile can be found in [11].
An RSS measurement is appended into the profile only
when the device is moving (e.g., when there is a pedestrian
step) because the involvement of static data may reduce the
diversity of the RSS in the profile. The RSS profile can be
written as

S = [rssi−m+1, rssi−m+2, . . . , rssi] (22)

where m represents the number of historical RSS measure-
ments in the RSS profile.

With a RSS profile, the profile-based PDOP value X is
calculated by

X =
1
m

m∑
i=1

χi (23)

The floor that has the smallestX value will have the highest
probability to be the floor where the device is located at.

To further enhance the reliability of profile-based floor
detection, a blunder detection mechanism is utilized to detect
the outliers in the RSS profile. The principle for blunder
detection is that the difference between a valid RSS mea-
surement (i.e., not an outlier) in the profile to the mean of all
RSSmeasurements in the profile should be within a threshold
value. Therefore, the hypothesis for blunder detection is

H0 : χi − X ≤ αχTχ (24)

where Tχ is the threshold value for blunder detection and
αχ is a scale factor. The Tχ value is described by the stan-
dard deviation (STD) value of the RSS measurements in the
profile as

Tχ =

(
1
m

m∑
i=1

(χi − X)2
) 1

2

(25)

and αχ is set at a constant such as 3.
If the hypothesis in Equation (24) is rejected, the mea-

surements corresponding to the outliers are removed, and the
least squares is used again until all residuals have passed the
blunder detection.

VOLUME 6, 2018 76693



Y. Li et al.: Multi-Sensor Multi-Floor 3D Localization With Robust Floor Detection

D. INFORMATION FUSION FOR HEIGHT ESTIMATION
It can be found from the outcomes in Section IV that the
barometer-based approach in Subsection III provided an
absolute height; however, it was susceptible to the perfor-
mance degradation due to the existence of the barometer bias.
In contrast, the RSS-profile-basedmethod in Subsection III-C
provided a robust floor detection solution but suffered from
performance degradation when the user is moving from one
floor to another. Therefore, the data from the barometer and
RSS are integrated to obtain a more robust height estimation
and to calibrate the barometer bias.

An EKF is applied for this integration. The state to be
estimated in the height-estimation EKF is xh =

[
h bb

]
, where

h is the height and bb is the barometer bias. In the EKF
system model, a pseudo height model is applied. Meanwhile,
the barometer bias is modeled as a 1-st order Gauss-Markov
process. The EKF system model can be described as[

ḣ
ḃb

]
=

 wh

−
1
τbb

bb + ξbb

 (26)

wherewh is the system noise for the height, τbb and ξbb denote
for the correlation time and driving noise of the 1-st order
Gauss-Markov process, respectively.

When the barometer height is available, it is utilized to
build a EKF measurement model as

h̃b − ĥ = δh+ bb + nhb (27)

where h̃b is the barometer height measurement and nhb is the
corresponding measurement noise.

Additionally, when the RSS-profile-based height is avail-
able, it is utilized to build a EKF measurement model as

h̃p − ĥ = δh+ nhp (28)

where h̃p is the RSS-profile-derived height and nhp is the
corresponding measurement noise.

The equations for the height-estimation EKF follows those
in [43].

IV. EXPERIMENTAL VERIFICATION
A. TEST DESCRIPTION
The field test was conducted on floors one to four (i.e., F1 to
F4) of the energy environment experiential learning (EEEL)
building at the University of Calgary. The EEEL building
is a modern office building that have complex indoor envi-
ronments, including both line-of-sight and non-line-of-sight
areas, as well as open areas and corridors. The size of each
floor at this building was 120 m by 40 m. The test data was
collected by using a Samsung S4 Android smartphone, which
was equipped with gyro, accelerometer, and magnetometer
triads, a barometer, a WiFi receiver, and a GPS receiver. The
sampling rates were set at 20 Hz for for gyros, accelerome-
ters, and magnetometers, 1 Hz for the barometer, 0.5 Hz for
WiFi, and 0.1 Hz for GPS.

To test the algorithms, the tester held the smartphone and
walked along the path in Figure 2. The sequence of user

FIGURE 2. Test trajectory and corresponding floor plan.

motion was as follows: entered the building from the south-
west entrance at F1 -> walked at F1 -> walked up the stairs ->
walked at F2 -> walked up the stairs -> walked at F3 ->
walked up the stairs -> walked at F4 -> moved down in
an elevator -> walked at F3 -> moved down in an ele-
vator -> walked at F2 -> moved down in an elevator ->
walked at F1 -> exited the building from the southwest
entrance at F1. The sensor measurements during the test are
illustrated in the next subsection. The reference trajectories
were generated by taking a Lenovo Phab 2 Pro smartphone to
collect red-green-blue-depth (RGB-D) images and generate
SLAM solutions.

B. SENSOR MEASUREMENTS AND
LOCALIZATION FEATURES
To demonstrate the sensor measurements during the test time
period, Figures 3, 4, and 5 show the gyro and accelerometer
signals, the magnetometer and barometer measurements, and
the WiFi RSS data, respectively. The right subfigures in Fig-
ures 3 and 4 are the zoomed-in views of the corresponding
left subfigures. The four subfigures in Figure 5 represent
the RSS from the APs at the four floors. Eight APs were
selected at each floor. It can be seen that the gyro data
indicated the straight-walking and turning motions, while the
accelerometer data can be utilized to detect the static and
moving time periods. Meanwhile, both the barometer and
RSS data reflected the changes of height. The former directly
reflected the absolute height, while the latter had changes in
RSS from APs at each floor when the user moved from one
floor to another.

Figure 6 (a) demonstrates the magnetometer-derived head-
ing angles that were computed through the method in
Subsection II-B. The time series of magnetometer-derived
heading fitted with the reference in the long term but suffered
from noises and interferences. Figure 6 (b) shows the height
that was calculated by using the barometer data. There was a
systematic difference between the barometer height and the
corresponding reference.
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FIGURE 3. Gyro and accelerometer signals.

FIGURE 4. Magnetometer and barometer signals.

FIGURE 5. WiFi RSS from APs at each floor.

FIGURE 6. Magnetometer-derived heading (a) and barometer-derived
height (b).

Figure 7 (a) shows the 2D location solution that was
calculated by using the INS mechanization and the ZUPT
updates. The solution visualized the trajectory for testing but
had increasing drifts over time. Figure 8 illustrates the results
of using the accelerometer-measured specific forces to detect

FIGURE 7. 2D DR position (a) and estimated barometer bias (b).

FIGURE 8. Steps detected by using accelerometer measurements.

the pedestrian steps. The blue line denotes the norm values
of accelerometer measurements and the red dots show the
detected steps.

FIGURE 9. RSS-based floor detection solution.

FIGURE 10. RSS profile-based floor detection solution.

C. FLOOR DETECTION RESULTS
Figures 9 and 10 illustrate the floor-detection solutions
by using the methods in Subsections III-B and III-C,
respectively. The black lines in the left subfigures illustrate
the reference floor number, while the blue, green, red, and
cyan markers in the right subfigures are the floor-detection
scores (i.e., PDOP values for the RSS-based method and the
profile-based PDOP values for the profile-based method) for

VOLUME 6, 2018 76695



Y. Li et al.: Multi-Sensor Multi-Floor 3D Localization With Robust Floor Detection

floors one to four, respectively. When using the RSS-based
floor-detection method, the floor-detection scores for adja-
cent floors were close to one another during several time
periods (e.g., those around 200 s and 650 s). Accordingly,
22 % of the F2 solutions were falsely detected to be F1, and
17 % of the F4 solutions were flasely detected to be F3.

With the profile-based method, the differences between the
floor-detection scores for adjacent floors had been enlarged
significantly. As a result, the false detection rates had been
reduced from 5 %, 23 %, 10 %, and 27 % to 0 %, 8 %, 4 %,
and 0 % for F1, F2, F3, and F4, respectively.

Figure 7 (b) demonstrates the barometer bias solution that
was estimated by using the EKF in Subsection III-D. The blue
dots show the difference between the barometer height and
the height estimate from the EKF, while the red line illustrates
the real-time estimated barometer bias.

D. 3D LOCALIZATION SOLUTIONS
Figure 11 (a) illustrates the RSS fingerprinting solution
by using the RSS-based method for floor detection and
then using the database at the estimated floor for position-
ing (i.e., the WiFi-FD strategy). In contrast, Figure 11 (b)
demonstrates the RSS fingerprinting solution by using
the profile-based method for floor detection and then
using the database at the estimated floor for position-
ing (i.e., the WiFi-PFD strategy). The profile-based floor-
detection approach had significantly reduced the probability
of large position errors (i.e., ‘‘jumps in the position solution’’)
that were caused by a false floor detection but had not elimi-
nated them. Therefore, data from other sources were needed
to further enhance the 3D localization solution.

FIGURE 11. RSS-based localization solutions.

Figure 12 (a) shows the 3D localization solution by
integrating the solution in Figure 11 (a) with the data
from inertial sensors, magnetometers, and the barometer
by using the multi-sensor localization EKF in Section II
(i.e., the Sensor/WiFi-FD strategy). The method used has a
similar principle to the existing works. It can be seen that
the large location errors had been reduced after integration
with the sensor data. Figure 12 (b) shows the 3D localization
solution by integrating the solution in 11 (b) with the sensor
data (i.e., the proposed multi-sensor system (MSS) strategy).
The MSS strategy provided a smoother 3D location solution
than the Sensor/WiFi-FD strategy.

FIGURE 12. Multi-sensor-based localization solutions.

FIGURE 13. CDF of location errors.

Figure 13 illustrates the cumulative distribution func-
tion (CDF) of the location errors by using the strategies
WiFi-FD, WiFi-PFD, Sensor/WiFi-FD, and MSS. The sub-
figures (a) and (b) show the error CDF of the 2D horizon-
tal location errors and the 1D height errors, respectively.
Meanwhile, Tables 1 and 2 demonstrate the statistics of
the 2D horizontal location errors and the 1D height errors,
respectively. The error statistics include the STD, mean, root
mean square (RMS), the error within which the probability
is 80 % (i.e., the 80 % error), and the error within which the
probability is 95 % (i.e., the 95 % error).

TABLE 1. Statistics of 2D location errors.

TABLE 2. Statistics of height errors.

When the profile-based floor-detection method was
applied, the 2D location error RMS value was reduced from
7.6 m in theWiFi-FD strategy to 5.1 m in theWiFi-PFD strat-
egy, with an accuracy improvement of 31.6 %. This outcome
indicates the necessity of a robust floor-detection solution
on accurate wireless fingerprinting. Meanwhile, when inte-
grated with the sensor data, the 2D location error RMS value
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was reduced from 7.8 m in the WiFi-FD strategy to 3.9 m
in the Sensor/WiFi-FD strategy, with an accuracy improve-
ment of 48.7 %. When using the MSS strategy, the RMS
of 2D location errors were further reduced to 2.6 m, with
an accuracy improvement of 33.3 % compared to the Sensor/
WiFi-FD strategy.

For the height solution, theWiFi-FD strategy suffered from
an error RMS of 2.1 m, which was reduced to 1.0 m and 0.7 m
when the WiFi-PFD and Sensor/WiFi-FD strategies were
utilized, respectively. These results show the effectiveness of
the profile-based method and the integration of sensors on
height estimation. Furthermore, theMSS strategy reduced the
height error RMS to 0.4 m, with an accuracy improvement
of 42.9 % compared to the Sensor/WiFi-FD strategy.

V. CONCLUSION
This paper has proposed a multi-sensor-based three-
dimensional (3D) localization approach by integrating the
wireless received signal strength (RSS) and the data from
inertial sensors, magnetometers, and a barometer. Com-
pared to the RSS-based floor-detection method, the proposed
profile-based method improved the floor detection accuracy
from 83.8 % to 97.0 %. When using the floor-detection
results to aid the RSS-based fingerprinting, the root mean
square (RMS) values of the two-dimensional (2D) location
errors and the height errors were reduced from 7.6 m and
2.1 m to 5.1 and 1.0 m, respectively, with accuracy improve-
ments of 31.6 % and 52.4 %. Compared to the ordinary
multi-sensor integration method, the proposed algorithm fur-
ther reduced the RMS values of the 2D location errors and
the height errors from 3.9 m and 0.7 m to 2.6 and 0.4 m,
respectively, with accuracy improvements of 33.3 % and
42.9 %. These outcomes have indicated the effectiveness
of the proposed method on floor detection and 3D indoor
localization.
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