IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON BIG DATA LEARNING AND DISCOVERY

Received November 12, 2018, accepted November 27, 2018, date of publication November 29, 2018,

date of current version December 27, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2884028

HirePool: Optimizing Resource Reuse Based
on a Hybrid Resource Pool in the Cloud

RUNQUN XIONG"1, XIUYANG LI', JIYUAN SHI2, ZHIANG WU "3, (Member, IEEE),

AND JIAHUI JIN™1

!'School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
2Huawei Technologies Co., Ltd., Nanjing 210012, China

3Jiangsu Provincial Key Laboratory of E-Business, Nanjing University of Finance and Economics, Nanjing 210003, China

Corresponding author: Jiahui Jin (jjin@seu.edu.cn)

This work was supported in part by the National Science Foundation of China under Grant 61602112, Grant 61632008, Grant 61572129,
and Grant 61502097, in part by the Natural Science Foundation of Jiangsu Province under Grant BK20160695 and Grant BK20170689,

in part by the Jiangsu Provincial Key Laboratory of Network and Information Security under Grant BM2003201, in part by the Key
Laboratory of Computer Network and Information Integration of the Ministry of Education of China under Grant 93K-9, in part by the
Collaborative Innovation Center of Novel Software Technology and Industrialization, and in part by the Collaborative Innovation Center of

Wireless Communications Technology.

ABSTRACT In a cloud environment, the primary way to optimize physical resources is to reuse a
physical machine (PM) by consolidating complementary multiple virtual machines (VMs) on it. When
considering VMs’ dynamically changing resource demands, one hot research topic revolves around reusing
VM migration resources more efficiently. The challenge here is finding the best tradeoff between
the VM migration optimization performance and complexity. On one hand, to improve the migration
efficiency, VM migration planning is adopted to achieve efficient resource reuse while minimizing the
number of VM migrations. On the other hand, the huge number of PMs and VMs in a cloud datacenter
often adds considerable complexity to migration planning, which hampers the decision-making process in
VM migration. To address these issues, this paper proposes a hybrid resource pool model to reduce the
complexity of VM migration planning by limiting the scope of VM migration decisions. Then, based on this
model, we use our novel resource-reuse optimization mechanism (called HirePool) to improve efficiency by
maximizing resource usage with only a few VM migrations. Finally, we perform simulation tests and actual
experiments running on a real cloud platform to evaluate HirePool. Results show that HirePool improves
average resource usage by 13%, saves the number of PMs used by 12%, and reduces the average number of
migrations (compared with contrast mechanisms) by 31%.

INDEX TERMS Resource reuse, cloud environment, dynamic resource requirement, virtual machine
migration, optimization.

I. INTRODUCTION
With the development of cloud computing technology,
an increasing number of enterprises and research institutions
are deploying various commercial big data processing
and scientific computing applications in cloud data-
centers [1]-[4]. Cloud datacenters can elastically provide
storage space, computing resources (CPUs cores or CPU
time), and network bandwidth in the form of virtual machines
(VMs) deployed on physical machines (PMs) to satisfy mul-
tifarious users’ requirements.

To reduce energy consumption and operating costs,
the efficiency of PM resource reuse has become a tremen-
dous concern for cloud datacenter managers [5]. Reusing a

PM as a resource (by consolidating multiple complementary
VMs on it) is an effective way to optimize physical resource
usage. Some related research mainly focuses on estimating
VM resource requirements, and optimizing VM allocation for
higher resource usage [6]-[11]. However, current approaches
are for coarse-grained resource reuse, which is only suit-
able for one-off VM deployment; these approaches are so
inefficient that they cannot provide the fine-grained resource
adjustment needed to meet running VM dynamic resource
requirements.

In recent years, when considering VMs’ dynami-
cally changing resource requirements, many researchers
have aimed to increase resource reuse’s efficiency via

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

74376

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1941-5586
https://orcid.org/0000-0002-0591-1861
https://orcid.org/0000-0001-9570-1456

R. Xiong et al.: HirePool: Optimizing Resource Reuse Based on a Hybrid Resource Pool in the Cloud

IEEE Access

utilization(%)

utilization(%)

S
T2 ‘time

FIGURE 1. Increasing resource reuse efficiency with virtual machine (VM)
migration (PM stands for physical machine).

VM migration [12]-[19]. As Fig.1 shows, VM3 can migrate
from PM2 to PM1 during the T2 time period according to
VM dynamic use. This greatly increases VM1’s utility, but
it causes VM2 to go out of service. This process can (and
should be) improved. The key challenge here is coming up
with an effective VM migration plan that adjusts VM deploy-
ments in different periods as VM resource requirements
dynamically change.

Over the years, many solutions have been proposed to
resolve this issue; however, existing work offers an insuffi-
cient trade-off between VM migration optimization perfor-
mance and complexity. On one hand, most solutions lack
effective. VM migration planning, which results in poor
migration efficiency or too many migrations. In other words,
they only consider the current, immediate resource demands,
and ignore the dynamically changing resource requirements
over multiple time periods [12], [15]-[17]. On the other
hand, multiple efficient models have emerged that reduce
the number of migrations [13], [14], [18], [21], but they are
difficult to deploy in a real cloud datacenter. The reason why
is that the enormous number of PMs and VMs in a cloud
datacenter dramatically increases the solution’s complexity.
For example, assume that there are m PMs and each PM is
allocated n VMs in a datacenter. They must consider n"*!
possible number of migrations in the next ¢ time periods.
Such a high solution space complexity is unable to keep up
with the needs of rapid decision-making for VM migration
planning.

To solve this contradiction, here we propose an efficient
resource-reuse optimization mechanism based on our novel
hybrid resource pool model named HirePool. The model
divides all PMs into two pools in a datacenter, and lim-
its the scope of VM migration decision to two PMs that
belong to the two pools, respectively. In this way, it can
decrease the solution-space and decision-making complexity
of VM migration planning from n™* to 2", Furthermore,
based on this model, HirePool improves the efficiency of
resource reuse by maximizing physical resource usage with
fewer VM migrations. HirePool can adjust how it allocates
VMs through reasonable migration planning, according to the
dynamically changing resource requirements of multiple time
periods in the future.

VOLUME 6, 2018

The main contributions of this paper are as follows:

1) We propose a hybrid resource pooling model that
reduces the complexity of VM migration planning for
resource reuse in large-scale cloud datacenters.

2) We design a resource-reuse optimization mechanism
(HirePool) to improve the efficiency of resource reuse
by maximizing resource usage with fewer VM migra-
tions.

3) We verify HirePool’s efficiency through simulation
tests and testbed experiments in a real cloud platform.

The rest of this paper is organized as follows. Section II

introduces related work. Section III briefly provides back-
ground knowledge. A novel hybrid resource pool model for
resource reuse is presented in Section IV. Then, the detailed
math model and design of HirePool are depicted, too.
Section VI evaluates HirePool’s performance using experi-
ments, and Section VII concludes the paper and discusses
future work.

Il. RELATED WORK

In trying to optimize cloud datacenter resource utilization
with resource reuse, many researchers have focused on
VM placement (or allocation) and VM migration.

In the field of VM placement, related work states that VMs
can efficiently reuse a PM’s resource by allocating physi-
cal resources to VMs based on their resource demands and
consolidating complementary VMs on this PM. In practice,
some research [7], [8] has modeled the change of resource
demands as a temporal relations model, and deployed the
VM appropriately along a given time interval based on the
model, then co-located VMs with complementary resource
requirements in the same PM to optimize resource utilization.
Meanwhile, other work has used the queuing theory [6], [11],
probability statistics [9], [10], and other mathematical tools
to model the dynamic change of VM resource demands and
on that basis, researchers proposed mechanisms to optimize
VM placement, in an effort to achieve high physical resource
usage in cloud datacenters.

Recent VM migration researchers have pursued approaches
that only focus on migrating VMs according to the most
immediate or current resource requirements. Because these
approaches only consider resource demands at one or each
time point instead of planning holistically for the overall
VM migration process, they solve specific, limited instances
in the short term but in the long term, they lead to inadequate
availability and use of physical resources. For example,
Ruan and Chen [15] presented a novel VM allocation algo-
rithm that leverages the performance-to-power ratios for var-
ious host types, and optimizes the balance in VM migration
between host usage and energy consumption. Chen et al. [16]
proposed a resource-intensity-aware load-balancing method
in clouds that migrates VMs from overloaded PMs to lightly
loaded PMs, which significantly reduced the time and cost
to achieve load balance and avoided future load imbalance.
Eyraud-Dubois and Larchevéque [17] classified VMs by
their resource demands and sorted PMs by their physical

74377

IEEE Access

R. Xiong et al.: HirePool: Optimizing Resource Reuse Based on a Hybrid Resource Pool in the Cloud

resource load, and then presented a heuristic algorithm to
handle the variations in VM resource requirements through
live VM migrations. Homsi et al. [19] studied the workload
consolidation for cloud datacenters with guaranteed QoS
using VM migration to improve resource utilization and
power consumption. Armant et al. [20] proposed some semi-
online task assignment policies for workload consolidation in
cloud computing systems.

Other VM migration researchers have focused on design-
ing VM migration plans to improve the migration’s effi-
ciency. Han et al. [13] presented a migration planning method
based on the Markov decision process (MDP). The authors
adopted the Markov chain model to study the VM manage-
ment problem, and used the horizon large-scale MDP to plan
VM migration. Dabbagh et al. [14] proposed an efficient
resource-allocation framework for overcommitted clouds that
yields significant energy savings by minimizing PM over-
loads via resource usage prediction, and reducing the number
of active PMs via efficient VM placement and migration
planning. Ye et al. [18] proposed a profiling-based server con-
solidation framework that minimizes the number of PMs used
in datacenters while maintaining satisfactory performance of
various workloads. They designed two modules: first, a con-
solidation planning module that, given a set of workloads,
minimizes the number of PMs by an integer programming
model; and second, a migration planning module that, given
a source VM placement scenario and a target VM placement
scenario, minimizes the number of VM migrations using a
polynomial time algorithm. Gaggero and Caviglione [21]
researched how to plan VM migrations with dynamically
changing resource requirements within the next few periods.
The authors modeled this issue as a control optimization
problem based on integer programming. However, because of
its complexity, the authors used a Monte Carlo optimization
method to approximate the problem.

After investigating current research, it is apparent that the
following problems still exist (regarding resource reuse in a
cloud environment):

1) Despite many previous VM placement strategies allo-
cating physical resources to VMs, still yet they only
consider resource demands at one or each time point,
thereby failing to utilize different resources constantly
and fully, because they ignore dynamically changing
resource requirements.

2) Most research work related to VM migration lacks
overall migration planning, which generates high
migration overhead and degrades VM performance.

3) While some proposed VM migration planning mecha-
nisms strive to improve migration efficiency, in prac-
tice, the huge number of PMs and VMs in a cloud
datacenter often creates such a complex migration plan-
ning problem that it affects and hampers rapid decision-
making for VM migration.

As a solution, we use a hybrid resource pooling model

to reduce VM migration planning’s complexity. We then
use HirePool, the efficient resource-reuse optimization

74378

[]
Tasks
n Submission > ‘ . ’ ‘ ‘ +++Task Queue

Application Yarn,Mesos,HTCondor +- Task Scheduler
Layer

Vir%j D D D C b

oS [l os [oS §f oS §l OS os
R
esource’Layer

Virtual Machine Cluster

Physital
Resource Layer

Data Center Physical Machine Cluster

FIGURE 2. Cloud datacenter architecture.

mechanism we designed to optimize physical resources’
usage for large-scale cloud datacenters with efficient
VM migration planning.

Ill. PRELIMINARIES

To better understand the issues involved, here we provide
background knowledge about a cloud datacenter’s architec-
ture and its resource-reuse mechanism(s).

A. CLOUD DATACENTER ARCHITECTURE

Fig.2 shows the cloud datacenter architecture used in this
paper, which consists of three layers: the physical resource,
virtual resource, and application layers. Cloud providers use
visualization technologies to allocate physical resources to
tenant VMs, which constitute a VM cluster that can pro-
vide flexible on-demand resources to service multiple tasks
requested from the application layer. That’s because VMs are
easy to deploy and configure quickly, and the scale of virtual
clusters (the number of VMs) conveniently is adjustable to the
application’s resource demands. Meanwhile, a cloud datacen-
ter hosts multiple applications through a task scheduler (such
as Yarn [22], Mesos [23], HTCondor [24]) that is responsible
for allocating VMs to various running applications, subject
to the familiar constraints of capacities, queues, and so forth.
On such platforms, the cloud provider must find the best
way to allocate VMs onto PMs to exploit the platform’s
resources, while still maintaining resources’ availability
guarantees [17].

B. RESOURCE REUSE

Currently, industry and academic research mainly use
resource overcommitment as the foundation of resource
reuse [25], [26]. As Fig.3(a) shows, on an overcommit-
ted PM, the aggregate capacity requested by the provi-
sioned VMs exceeds the actual PM’s physical capacity, which
allows multiplexing physical resources among multiple VMs,
greatly improving resource usage which is the connotation
of resource reuse. For instance, as Fig.3(b) shows, although
the resource requirements of tasks running in VMI and
VM2 dynamically change at different time periods, these

VOLUME 6, 2018

R. Xiong et al.: HirePool: Optimizing Resource Reuse Based on a Hybrid Resource Pool in the Cloud

IEEE Access

VM1

Virtual Resources

Core0 Corel Core2

PM

Physical CPU Socket VM2

(a) Resource Overcommitment.

t1 2 t4 Time
(b) Resource Reuse based on Resource
Overcommitment.

FIGURE 3. Resource reuse based on resource overcommitment.

two VMs that demand three virtual CPUs in peak can be
deployed safely on a PM that only has three physical CPUs
by harnessing a resource-reuse mechanism. The reason why
is because the aggregate VM1 and VM2 resource usage at any
given time does not exceed the total PM capacity. Under the
circumstances, the cloud’s physical resource usage is maxi-
mized. Thus, herein the term overcommitment ratio defines
the degree of physical resource reuse.

Definition 1 (Overcommitment Ratio): We define an over-
commitment ratio (OR) to represent the proportion of a virtual
resource provided by a PM and its physical resource. For
example, if a PM has 12 physical CPUs, it could provide
24 virtual CPUs by using virtualization technology, so the
overcommitment ratio of this PM is OR=24--12=2.

However, while executing a resource-reuse mechanism,
the risk of resource congestion or resource leave unused may
occur naturally, and then it needs a resource-reuse optimiza-
tion mechanism to further improve physical resource usage.
Specifically, at some time point, the aggregate VMs’ resource
usage exceeds the shared resources’ available physical capac-
ity, and then VM performance may significantly degrade.
In this case, we need to migrate some VMs out of the PM
to ensure that all the resource requirements for the remaining
VMs can be satisfied. At other time periods, inversely, a large
fraction of VM workloads rarely use all their resources, which
leads to low physical resource usage. In this case, we need to
migrate other VMs onto the PM to maximize resource usage.

IV. MECHANISM DESIGN AND IMPLEMENTATION

Resource reuse optimization adopts VM migration planning,
to adjust deploying VMs in a way that maximizes resource
usage and reduces the number of VM migrations. This
requires effective migration planning, to determine which,
where, and when VMs should be migrated for the adjacent
time periods. Suppose that there are m VMs hosted by a PM
and n other PMs can be migrated onto in # periods of time; the
number of possible migration schemes could be n*!, which
leads to the burden and curse of dimensionality for decision-
making. Consequently, we first propose a hybrid resource
pool to limit VM migrations between two PMs in this pool
(to reduce VM migration planning’s complexity), and then
design an efficient resource-reuse optimization mechanism
(HirePool) based on that, to improve physical resource usage.

VOLUME 6, 2018

VM2 is migrated from PM1 to PM2
T g VM2

PM2 t1 2

t3 t4 Time
i VM2

VM2 is migrated from}B{\'/llz to PM1

Resource Pool without Resource Reuse\

i VMs |
| migration|

A/

PM without Resource Reuse

PM with Resource Reuse

_ Hybrid Resource Pool

FIGURE 4. Hybrid resource pool model (a vCPU is a virtual CPU).

A. HYBRID RESOURCE POOL MODEL

Fig.4 shows the proposed hybrid resource pool model.
The physical resource in the cloud datacenter is divided
into a resource pool with resource reuse (named rePool
whose OR>1), and a resource pool without resource reuse
(named norePool, whose OR=1). In this paper, we appoint
rePool to play the lead in this hybrid resource pool, and
VMs are deployed on PMs in rePool acquiescently to
maximize resource usage. For each PM in rePool, if the
aggregate VMs resource usage exceeds its resource capac-
ity, some VMs running on it will be migrated onto PMs
in norePool to ensure that all application tasks can be
executed smoothly. As time passes, once the PM’s actual
physical capacity can satisfy the demands of VMs that have
been migrated to norePool, these VMs will be recalled and
redeployed on their former PM.

B. HIREPOOL

Here, in the process of HirePool, each active PM in rePool
is the optimized object, and the migration planning proce-
dure only determines how many VMs on it will be migrated
to norePool at each time period. Thus, it decreases the
number of VMs that should be migrated and limits the
scope of VM migration decision to two PMs belonging to
rePool and norePool, respectively. In this way, it lowers
the solution-space complexity of VM migration planning
decision-making from n"™*! to 2™*!, where, the meanings
of variable n, m, t are the same with description of the first
paragraph in Section IV.

1) OPTIMIZATION OBJECTIVES
HirePool realizes cloud resource-reuse optimization objec-
tives from two perspectives.

74379

IEEE Access

R. Xiong et al.: HirePool: Optimizing Resource Reuse Based on a Hybrid Resource Pool in the Cloud

T0 T1 Tl Time
Resource Resource Resource
Optimizati Optimization Optimization Phase 1:
Resource
""" Optimization
VMs VMs VMs
Deployment Deployment Deployment
Ms VMs s Ms Phase 2:
Migration Migration Migration Migration
l l l Optimization

[VM Migration Optimization J

FIGURE 5. Resource-reuse optimization for a future / period in time T,

« Resource optimization. This entails maximizing VMs’
resource usage in the hybrid resource pool. If a VM’s
maximum resource requirement is given, increasing the
resource usage reveals that the objective is to minimize
the physical resource occupied by the VM.

o Migration optimization. This entails minimizing the
number of VM migrations between two resource pools
based on the premise that a resource optimization objec-
tive is guaranteed. The reason why is that too many
VM migrations could lead to degraded system perfor-
mance or crashed VMs.

2) OPTIMIZATION PROCEDURES

Considering the two aforementioned optimization objectives,
HirePool optimizes resource reuse in two phases, as Fig.5
shows.

Phase 1 (Resource Optimization): HirePool processes
resource optimization in each time period, and achieves cur-
rent global optimal deployments for all VMs according to
their resource demands while the resource optimization is
assured.

Phase 2 (Migration optimization): HirePool optimizes all
VM migration from the perspective of an entire time period,
and selects the optimal deployment from all deployments for
each time period to minimize the number of migrations.

C. MATHEMATICAL MODELING

Based on the aforementioned hybrid resource pool model,
the mathematical model of a PM’s resource reuse problem in
rePool is defined as follows. Notations used in this paper
are listed in Table 1. We assume that the number of physical
CPUs of this PM is N, there are m VMs deployed on it, and
cii = 1,2,...,m) represents the number of virtual CPUs
owned by VM i. There are m tasks scheduled to this PM, and
each task is serviced by a VM. Considering the number of
CPUs requested by tasks in the next T time periods, we use
rit)ye[l,cilt=Ty,...,To+T,i=1,2,...,m)todenote
the CPU number requested by task i in ¢ time period, and
use x;(¢)(€ 0, 1) to express the deployment plan of VM i in
t time period. Herein, x;(f) = O represents that the VM is
supposed to be deployed on a PM belonging to rePool
and x;(r) = 1 represents that the VM is supposed to be
deployed on a PM of norePool in this time period. We use

74380

TABLE 1. Notations used.

Notation Explanation

Npc the number of physical CPUs of a physical machine

c; the number of virtual CPUs owned by the -th VM

i (t) the CPU number requested by task 4 in ¢ time period

zi(t) the deployment plan of VM ¢ in ¢ time period

s(t) a VM’s deployment plan in ¢ time period

MC(s1,s2) the migration cost function, which means the number of
migrations by adjusting deployment s1 to s2

U(s(t)) the objective function of the resource optimization
problem as a knapsack problem

I, the set of VMs with their z; (t) = 1

E, the set of VMs with their z;(¢) = 0

Un the set of VMs whose x; (t) is uncertain

s) = (x1(2), ..., x,()) to represent a VM’s deployment

plan in the current time period. Based on the optimization
objectives mentioned in Section IV-B.1, these two optimiza-
tion problems are defined as follows.

Definition 2: (Resource optimization problem). We use
ri(t) to represent the resource requirement of each VM in
period of time ¢, and we need to minimize the physical
resources consumed by those deployed VMs to maximize
resource utilization. The optimal deployment set is defined as
S(t) = {s1(¢), s2(¢), ...}, which consists of all the VMs’ allo-
cation candidates that can satisfy the optimization objective.
The resource optimization problem can be formally defined
as

S(r) = arg min (U(s(r» = Npe + in(oci) (1)

s(®) i=1

sty (1= xi(O)ri(t) < Npe)
i=1

xi(t)y=0o0rl (G=1,2,...,m) 3)

Formula (1) is the optimization objective, which means
the consumed CPU resource in the hybrid resource pool
after optimizing VM deployment (N, represents the resource
in rePool, and Z:":l xi(t)c; represents the resource in
norePool). Formula (2) is the constraint, which means the
aggregate VMs’ resource usage cannot exceed the available
PMs’ physical capacity belonging to rePool.

Definition 3: (Migration optimization problem). Given the
optimal migration set S(z) = {s1(¢), s2(¢), . ..} in each period
of time ¢, we need to pick out the final deployment plan for
each period of time #(s¢(t) € S(¢)) to minimize the number of
VM migrations. The migration optimization problem can be
formally defined as

To+T—1
min Y MC(sp(1), sp(t + 1)) (4)

t=Ty

m
MC(sy, 82) = Z ‘xil —x7

i=1

&)

where MC(s1, sp) is the migration cost function, which
means the number of migrations by adjusting deployment s

VOLUME 6, 2018

R. Xiong et al.: HirePool: Optimizing Resource Reuse Based on a Hybrid Resource Pool in the Cloud

IEEE Access

to 5p. If 51 = (xll, .. .,x,il), sy = (xlz, ... ,x,%), then we can

determine MC(s1, s2) by (5).

D. IMPLEMENTING ALGORITHMS

HirePool adopts two optimization algorithms to solve the
resource and migration optimization problems presented in
Section IV-C, respectively.

1) RoA: RESOURCE OPTIMIZATION ALGORITHM

ROA uses a binary search tree (BST) based on the branch and
bound (B&B) method to determine optimal VM migration
planning. To expedite the B&B search, RoA formulates the
resource optimization problem as a knapsack problem and
derives the objective function U(s(¢))’s optimal value using
the dynamic programming (DP) method. Then, RoA can
optimize the search process by using this value.

a: OBTAIN THE OPTIMAL VALUE OF THE OBJECTIVE
FUNCTION

To get the minimum of objective function U(s(¢)), RoA con-
structs a function U'(s(r)) = Y 1o, (1 —xi(t))c;, and then
transfers U (s(t)) as follows:

U(s(t) = Npe + Y _ xi(t)c (6)

i=1

=Npe+) ci—p (—xiei (D
i=1 i=1

m
= Npe +)i = U'G0)). ®)

i=1
Obviously, the minimum of U(s(#)) equals the maximum
of U'(s(t)). If y; = 1 — x;(¢), then the resource optimization
problem can be formulated to the 0-1 knapsack problem
defined elsewhere (9), (10), (11). Here, ¢; is the objects’
value, 7;(¢) is the objects’ weight, and N, is the knapsack’s

capacity.

max U'(s() =Y yi x ¢ ©)
i=1
sty X ri(t) < Npe (10)
i=1
yi=0orl, (i=1,...,m). (11)

Then, RoA uses the DP algorithm [27] to solve the knap-
sack problem, and gets the minimum M’ of U’(s(z)). Next,
the minimum of U(s(¢)) is calculated in (12).

m
M:NPC+ZC,-—M’ (12)
i=1
b: SEARCH FOR THE OPTIMAL SET OF VM DEPLOYMENT
To determine the optimal VM deployment (S(r) =
s1(2), s2(t), ...) with the corresponding minimum M, RoA
builds a BST based on the B&B search method and uses M
as a pruning bound to speed up the B&B search process.

VOLUME 6, 2018

Decision for VM1 |
!

Nye: 8 Min (U(s(0))-12

VMI: ¢;=4,71(£)=2
r)
Decision for VM2| Q/ \Q\

VM2: ¢;=6,15(8)=3
L 0 1 0

VM3: ¢3=6,13(t)=4
0 o]
5ol

VM4: ¢4=8, 74 (£)=6
1/ N0 1\ 1/ N 1/

Decision for VM3

=T ‘/' N
Decision for VM4 ! (\)
(:. Nodes an

N O R ‘/" N =X
[L [[
. d which are pruned 1 0
. Nodes which indicate the found solutions s, (¢) = (1,0,0,1) 52(8) = (0,1,1,0)

FIGURE 6. Binary search tree based on the branch and bound (B&B)
method.

=
o

Building BST: RoA will build an (m + 1)-layer BST for
the resource optimization problem of m VMs. The 2™ leaves
in this BST means 2™ possible VM deployment schemes.
Each branch node in BST represents a deployment scheme
set (corresponding to the subtree leaf nodes) whose root is
that node. The i layer branch in BST denotes the deploy-
ment decision of the i/ VM. If a branch’s decision variable
xi(t) = 1, it means that the VM is deployed in norePool,
else if x;(r) = 0, the corresponding VM will be placed in
rePool. Fig.6 shows a BST with four VMs.

Calculating Bound: Suppose the current branch node is n;
we use (I,, E,, Uy,) to represent the set of deployment for
node n. Here, I,, denotes the set of VMs with their x;(t) = 1,
E, represents the set of VMs with their x;(r) = 0, and
U, delegates the set of VMs whose x;(¢) is uncertain. The
minimum objective function’s lower bound corresponds to
node n, which we solve in (13).

B(n) =Npe+ Y _ci—B'(n), (13)

i=1

where B'(n) is the upper bound of the maximum of corre-
sponding function U’(s(¢)) for the current set of deployment
(In, Ey, Uy). We can set y; = 1 — x;(r) and can get B'(n) by
solving the following function:

m
max U'(s(t)) = Z Vi X ¢i (14)
i=1
" 1
s.t. Z yi X 1i(t) < Npe (15)
i=1
yi=0, i€l (16)
yi=1, i€k, (17)
0<yi<1l, ielU,. (18)

Considering the aforementioned function, we adopt a
method similar to [28] to get B'(n). First, for all VM in the
set Uy, we sort their value of ¢;/r;(¢) in descending order to
reconstruct it as U, = [1,...,J,...]. Then we can calculate
s by (19). Finally, we obtain B'(n) in (21).

k

3s=min (k€ Up: Y r(t) > Npe — D_ri(0)} (19)

j=1 icE,

74381

IEEE Access

R. Xiong et al.: HirePool: Optimizing Resource Reuse Based on a Hybrid Resource Pool in the Cloud

Algorithm 1 RoA: Resource Optimization Algorithm
Require:
Npc: the number of physical CPUs;
¢;: the number of virtual CPUs utilized by VM i;
ri € [1, ¢;]: the number of virtual CPUs used by VM i;
M the minimum of object function U(s());
Ensure:
S(t) = {51(2), s2(¢), . . .}: the set of optimal deployment;
1.V =1l,...,i,...] < Sort all VMs by the value of
¢i/ri(t) in descending order;
2: Build an empty queue Q and add the binary tree’s root
node into Q;
3: while Q # @ do
4 Pick out a branch node n = (I, E,,, U,) from Q;
5 Calculate the bound value B(n);
6: if B(n) < M then
7.
8
9

O < Npc + 3 iy, Ci5
R <Y\ rilt):
: R <Y gy, Tit);
10 if O == M and R" < N),c then

11: Find out an optimal deployment solution and add
this solution to S(¢) : {x;(t) = 1]i € I, xi(t) =
0li e E,UU,};

12 else if R < N, then

13: Create two new child nodes (I, + {i}, E,, U, —

{i}), U, E, + {i}, U, — {i}) according to the layer
i of node n, and add them into Q;

14: end if

15: end if

16: end while

17: return S(¢);

s—1

= Npe = »_ri(t) = > _ri(0) (20)

icEy, j=1
s—1

Bn) = ci+ Y cj+bleg/r0). @1
icE, j=1

B&B Search: At the beginning, we sort the value of ¢;/r;(t)
in descending order for all VMs that will be migrated, and
then take a breadth-first search in the BST according to the
value sorted previously. That is, we will make migration
decisions for VMs so that their ¢;/r;(¢) is maximal in BST’s
first branch nodes, and make decisions for VMs so that their
¢i/ri(t) is second-maximal in BST’s second branch nodes,
and so on. In the actual BST search process, RoA will deter-
mine whether the node branches should be pruned according
to the bound calculated before. Algorithm 1 gives a detailed
description of RoA.

As lines 5 and 6 of Algorithm 1 show, if the current
node’s bound value exceeds the objective function’s maxi-
mum, the node’s branch will be pruned. If a current deploy-
ment is optimal, as line 10 of RoA shows, there is no need to
search for subsequent branches of this node, and the solution

74382

Sucre)(To) Sn(rg+1)(To + 1) Sn(rg+n)(To +8)

FIGURE 7. Migration cost graph example of t time periods.

will be added to S(¢). Algorithm 1’s line 12 is used to judge
whether the current solution is a feasible option; if not, it will
be pruned. As Fig.6 shows, solid lines represent the branches
and nodes that actually must be searched, so we can get
two optimal deployment solutions (s1(¢) = (1,0, 0, 1)) and
(s2(t) = (0, 1, 1, 0)) by searching part of the BST. Essentially,
this means that the optimal VM deployment solutions S(¢) =
{s1(?), s2(¢), ...} correspond to the optimal value of objective
functions obtained by RoA.

2) MoA: MIGRATION OPTIMIZATION ALGORITHM

MoA will construct a migration cost graph to depict the num-
ber of VM migrations generated by different VM deployment
schemes. In a migration cost graph, each selection path from
the source node to the target node represents a VM deploy-
ment scenario, and the path’s total weight is equal to the
number of VM migrations caused by this deployment sce-
nario. To determine an optimal VM deployment, MoA uses
Dijkstra’s algorithm to find the shortest path in a migration
cost graph.

a: CONSTRUCTING A MIGRATION COST GRAPH

In this paper, we use a directed weight graph to describe
the migration optimization problem. To solve the migration
optimization problem, we assume we must determine the
final VMs deployment scheme s¢(¢) € S(¢), where t €
(To, ..., To + T), for each time period ¢ within 7 time
intervals. For each #, MoA discerns the set of optimal deploy-
ment solutions S(z) = {s;(¢), s2(¢), ...}, and the number of
elements of itis n(¢) = |S(¢)|. Then, we construct a migration
cost graph with 7 +2-row nodes, as Fig.7 shows. The first row
of the graph only has one root node S, the (¢ +2)" row of the
graph only has one objective node E, and there are n(f) nodes
in other # rows, respectively. We use {s1(), s2(2), . . ., Su(r)(¥)}
to represent them. There is no path between the nodes in the
same row, and a path only exists between nodes in different
rows. We define the path’s weight using the following rules:
(1) a path’s weight is 0 if it starts with node S or ends up
with node E, and (2) a path’s weight is w(s;(?), sj(t + 1)) =
MC(si(t), sj(t+1)) according to (5), if it starts with node s;(t)
and node s;(t + 1), respectively. The path from root node S
to objective node E in the migration cost graph represents a

VOLUME 6, 2018

R. Xiong et al.: HirePool: Optimizing Resource Reuse Based on a Hybrid Resource Pool in the Cloud

IEEE Access

VM deployment solution in 7" time intervals, and the key to
MoA is to find the shortest path in this migration cost graph.

b: SOLVING A MIGRATION OPTIMIZATION PROBLEM

Once we have the migration cost graph, we can find the
optimal VM deployment solution. The basic idea of MoA
is to find the shortest path that corresponds to an optimal
deployment scheme using Dijkstra’s algorithm. Then, MoA
can determine which VM should migrate between rePool
and norePool in the adjacent time interval. Algorithm 2 is
a detailed description of MoA.

Algorithm 2 MoA: Migration Optimization Algorithm
Require:
G: the graph of migration cost;
S the root node;
E': the objective node;
Ensure:
F: the final deployment solution (= {s7(To), sp(To +
D), ..., s(To + 1)}, that is, the shortest path);

1: for each vertex vin G do

2: d[v] < infinity;

3: previous[v] < undefined;
4: end for

5. d[s] < 0;

6: Q <« set of all vertices;

7. while Q # @ do

8: u <« vertex in Q with mind|[u];
9: Remove u from Q;

10: for each neighbor v of u do
11: alt < dlu] + w(u, v);
12: if alt < d[v] then

13: d[v] < alt;

14: pre[v] < u;

15: end if

16: end for

17: end while

18: F' < empty sequence;

19: u < E;

20: while pre[u] is defined do

21: Insert u at the beginning of F’;
22: u < prev[ul;

23: end while

24: Insert u at the beginning of F';
25: return F

V. DEPLOYING THE RESOURCE-REUSE MECHANISM

IN THE REAL WORLD

There are still issues to consider when deploying the mech-
anisms mentioned in this paper in the real world. Here,
we detail these problems and extend the resource-reuse mech-
anism to solve them.

1) The problem of placing VMs on PMs in a resource
pool: When a VM needs to migrate from a resource

VOLUME 6, 2018

pool with resource reuse to a resource pool without
resource reuse, the VM will be deployed in a resource
pool without resource reuse, using a VM place-
ment algorithm named FirstFit [29]. Specifically, this
method is to deploy the VM on the first PM that can
run it. When a VM needs to migrate from a resource
pool without resource reuse back to a resource pool
without resource reuse, it means that the PM (on which
the VM was deployed in the reuse resource pool) can
run it. So, the VM will migrate to the original PM in
the resource pool.

2) The problem of the number of tasks running in a VM:
To easily describe and model this problem, we assume
that only one task runs in each VM. But in practice,
multiple tasks can run on a VM concurrently. In the
actual optimization, you only need to think of these
tasks as a logical task abstractly, then you can still use
the method we propose to optimize.

3) The problem of VMs’ varying resource requirements:
In practice, we first employ a method [7] that analyzes
tasks’ resource requirements of tasks in the datacen-
ter to get the resource requirement model when each
type of task is running. In the subsequent optimization,
whenever a user submits a new task, we gain resource
requirement models according to the type of task that
lead to resource requirement changes.

4) The problem of triggering the resource-reuse opti-
mization algorithm: The system performs the new
resource-reuse optimization according to new forecasts
of the VM resource requirements at each specified time
interval.

VI. PERFORMANCE EVALUATION

In this section, we perform a set of experiments in both
simulation and real cloud platform environments, to evaluate
HirePool’s feasibility and efficiency. In the simulation exper-
iment, the dataset we use for tasks’ resource requirements
comes from Google Cluster Data [30]. In the real platform
experiment, the dataset we use comes from AMS experimen-
tal scientific computing tasks’ resource requirements, which
are produced in Southeast University’s cloud datacenter [31].

A. COMPARISONS AND INDICATORS
In the experiment, we compare the performance of HirePool
with five mechanisms: NRR, NMRS, Markov, PCC, and PPR.

« NRR: (No resource reuse). In this scenario, all VMs are
deployed on PMs without using resource overcommit-
ment technology, and the VM’s peak resource require-
ment is reserved for the entire execution time. That is,
NRR allocates physical resources to VMs only once,
based on static VM resource demands.

« NMRS: (No migration resource sharing). This approach
adopts resource overcommitment technology to realize
resource reuse and maximize resource usage during
VM deployment, similar to previous work [7]. However,

74383

IEEE Access

R. Xiong et al.: HirePool: Optimizing Resource Reuse Based on a Hybrid Resource Pool in the Cloud

the VM migration mechanism is not applied to further
optimize NMRS’s resource reuse performance.

o Markov: This method also uses resource overcom-
mitment technology to reuse physical resources during
VM deployment, and adopts the Markov decision mech-
anism used in [12] and [13] to plan the VM migration by
considering variations in VM resource requirements.

o PCC: (Predictive control for consolidation). This mech-
anism uses resource overcommitment technology, too,
and the main idea of PCC can refer to [21]. It handles
the variations in VM resource requirements via live
VM migrations, by formulating the problem as a control
optimization problem based on integer programming,
and then uses a Monte Carlo optimization method to
approximate a solution.

« PPR: (Performance-to-power ratio aware). This method
adopts our hybrid resource pool’s architecture. The dif-
ference between this method and HirePool is that PPR
uses the VM migration scheme presented by [15], which
migrates VMs by using a greedy algorithm. But this
method cannot optimize the number of VM migrations
and may significantly degrade the service response time
of some or all applications.

In the process of conducting the experiments, we measured
four performance indicators.

o ANP: (Average number of PMs used). This is the aver-
age number of PMs required for each period time.

+ ARU: (Average resource usage). This is the average
resource use of all PMs in the datacenter for each time
period.

o ANM: (Average number of VM migrations). This is the
average number of migrations for each VM for each time
period.

e ACT: (Average computing time). This is the aver-
age computing time required for each resource-reuse
optimization.

B. SIMULATION EXPERIMENTS

1) SIMULATION SETTINGS

In simulation experiments, we used CloudSim [35] to stimu-
late a cloud datacenter environment. Each PM in the datacen-
ter provided 24 physical CPUs, 24GB RAM and 1TB hard
disk storage. We divided the VMs deployed on the PM into
three types with different virtual CPU cores, and the CPU
cores are 4, 6, and 8, respectively, but the same with 2GB
memory and 100GB hard disk storage. Resource overcom-
mitment technology is not supported by PMs in norePool;
that is, 24 physical CPUs of each PM can only be virtualized
into 24 virtual CPUs. However, the 24 physical CPUs of each
PM in rePool can be virtualized into several virtual CPUs
according to its OR (for example, if OR=2, there are 48 virtual
CPU cores that can be virtualized and provided by such a
PM). After the tasks are submitted, they are scheduled to a
free VM (if there is one) by the task scheduler, or else they
are arranged into a waiting queue until a VM is released.

74384

EHirePool ®PPR ®PCC ©Markov ENMRS ®NRR

1
z L T

0.5 & L L
0 I_ II I_ II I_ II

1000 2000 3000

Average Resource Utilization

Number of VMs provided by data center

FIGURE 8. Comparison of PMs’ average resource usage.

Resource requirements loads are generated based on the data
in the Google Cluster dataset [30] when tasks are running.
Using the method proposed in [7], the future resource require-
ments of each task are obtained according to its type. We sim-
ulated 100 hours of resource usage in a cloud datacenter,
where the length of each time period is set as 10 minutes for
each VM migration planning.

2) EXPERIMENTAL RESULTS AND ANALYSIS

a: RESOURCE OPTIMIZATION PERFORMANCE

We evaluated the ANP and ARU of the six resource optimiza-
tion mechanisms for comparison (described in Section VI-A)
in a datacenter containing 1,000, 2,000, and 3,000 VMs,
respectively, and the OR of PMs in rePool was set as 2.
Fig.8 shows the experimental results, where the horizontal
coordinates represent the number of VMs provided by the
datacenter, the vertical coordinates represent the ARU of all
PMs in the datacenter in each time period, and the error bars
show the standard deviation with 90% confidence. According
to Fig.8’s results, we see that four resource-reuse mechanisms
can achieve better resource optimization compared to NRR
without resource reuse, that is because the cloud’s physical
resource usage can be maximized by over-commit technol-
ogy. Then, compared to NMRS (without VM migration),
we find that the resource-reuse mechanisms (Markov, PCC,
PPR, and HirePool) that support VM migration effectively
improve resource-reuse efficiency. Finally, we observe that
HirePool offers the best resource optimization performance,
and it improves the ARU by 13% and decreases the ANP
by 12% (compared to the Markov and PCC approaches
that also consider resource and migration optimization). So,
the results verify that HirePool effectively improves resource
usage and optimizes resource-reuse efficiency. Furthermore,
although these results show that PPR also achieves better
resource optimization performance, it may lead to longer
VM migration times due to lack of migration optimization
(as confirmed in the following tests).

b: VM MIGRATION COST
Using the same settings as the aforementioned experiments,
we also tested VM migration costs that is, the number of

VM migrations caused by using resource overcommitment
for HirePool, PPR, Markov, and PCC. Fig.9 shows the results,

VOLUME 6, 2018

R. Xiong et al.: HirePool: Optimizing Resource Reuse Based on a Hybrid Resource Pool in the Cloud

IEEE Access

® HirePool ®PPR ®Markov ®PCC

T I I

0.1
" I I I
0 - - |
1000 2000

3000

Average VM Migrations
S
@

Number of VMs provided by data center

FIGURE 9. Comparison of average VM migrations.

HirePool «==@==PCC

0.14 250

22225
J
W

&

5}

Average Computing Time (s)
o i

Number of VMs provided by data center

FIGURE 10. Comparison of computing time for planning.

where the horizontal coordinates represent the number of
VMs provided by the datacenter, the vertical coordinates
represent the ANM of each VM for each time period, and the
error bars show the standard deviation with 95% confidence.
From these results, we see that HirePool effectively reduces
the number of VM migrations while simultaneously ensuring
the resource-reuse effects. Specifically, compared to PCC,
HirePool reduces the ANM by 31% and has little impact on
the user experience. This is mainly due to the VM migration
planning carried out by HirePool, which reduces the number
of VM migration as much as possible.

¢: COMPUTATIONAL TIME COST

To validate whether HirePool can effectively reduce the com-
plexity of VM migration planning, we evaluated the ACT
of making decisions for VM migration planning between
HirePool and PCC. Specifically, we compared the calculation
time spent by these two mechanisms on migration planning
decision-making when the number of VMs in the datacenter
increases from 100 to 2,000 in simulation experiments, and
each PM can deploy 10 VMs. Fig.10 shows the results, where
the abscissa represents the number of VMs provided by the
datacenter, the ordinate represents the average computing
time required for each migration plan made by the two mech-
anisms on different scales of the datacenter, and the error bars
show the standard deviation with 95% confidence. Because
the ACT spent by the two mechanisms, respectively, has a
relatively large gap, the ordinate is marked with a logarithmic
scale. Overall, the ACT spent by the proposed mechanism
seems quite low approximately 0.1 second and does not
change with the expansion of VMs’ scale. The reason why

VOLUME 6, 2018

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6

Average Resource Utilization

0.55

0.5
24 32 40 48 56 64 72 80 88 96
Number of vCPUs provided by a PM

FIGURE 11. Influence of varying resource overcommitment ratios on the
average resource usage (ARU).

0.5

04

Average VM Migrations
I

48 56 64 72 80

Number of vCPUs provided by a PM

FIGURE 12. Influence of varying resource overcommitment ratios on the
average number of VM migrations (ANM).

is that HirePool only concerns itself with VM migration
planning on a single PM, and the scope of migration is limited
to two PMs belonging to rePool and norePool, respec-
tively, so HirePool can solve the migration-planning decision-
making problem quickly. As Fig.10 shows, the computing
time of PCC increases as the datacenter’s scale increases.
This is because PCC’s migration plan services all datacenter’s
VMs, so when with the datacenter’s size increases, the scale
for VM migration-planning decision making also increases
although an approximation algorithm based on Monte Carlo
optimization was used.

d: RESOURCE OVERCOMMITMENT RATE EFFECT

Here, we attempt to validate the influence of OR on the
performance of resource reuse (such as ARU and ANM).
As defined, a PM can provide a different number of virtual
CPUs (vCPUs) with different OR, and we did simulation
experiments on a PM with 24, 32, ..., 80, 88, and 96 vCPUs,
respectively. Fig.11 and Fig.12 show the experimental results,
where the abscissa represents the number of vCPUs that can
be provided by a single PM at different OR, and the ordinate
of Fig.11 represents the ARU while the ordinate of Fig.12
represents the ANM. All the error bars show the standard
deviation with 90% confidence.

In Fig.11, the ARU shows a trend with a large increase at
the beginning and then a small decrease when OR increases.
We think this upward trend occurs when OR > 1, because
the more that VMs reuse physical resources, the better, par-
ticularly if there are enough physical resources leftover. The
downward trend occurs when the exaggerated OR leads to

74385

IEEE Access

R. Xiong et al.: HirePool: Optimizing Resource Reuse Based on a Hybrid Resource Pool in the Cloud

HTCondorMaster
) Virtual
Cluster
[HTCnndor] [HTCondor] [HTCondnr] [HTCnndnr] [HTCondor]
Worker Worker Worker Worker Worker
Cloud
‘ a opgnstack VM Management: VM Deployment and VM Migration ‘ Platform
| 5 | K| N N N N | Hybrid
X X X X X N| X X Resource
PMI PM2 PM3 PM4 PM5 PM6 PM7 PMS8 Pool
Resource Pool with Resource Pool without
Resource Reuse Resource Reuse

FIGURE 13. Test cloud platform’s architecture.

too many VMs competing for physical resources, so that
many VMs end up migrating to norePool, and conse-
quently the whole ARU decreases. Additionally, we see
in Fig.11 that when a single PM provides 40-56 vCPUs
(that is, 1.66 < OR < 2.33), the ARU reaches the
maximum. This is because the aggregate resource require-
ments of all VMs deployed on a single PM are consistent
with the PM’s physical resource capacity, which is an opti-
mal equilibrium for HirePool. Moreover, we see in Fig.12
that the ANM increases as OR increases. The reason why
is that when the resource overcommitment rate increases,
the possibility increases (during a given time period) for
the sum of all the VMs’ resource requirements to become
greater than the PM’s capacity, which may lead to an
increase in the number of VMs that must migrate to the
norebPool.

C. REAL PLATFORM EXPERIMENTS

1) CLOUD PLATFORM SETTINGS

Except for the aforementioned simulation experiments, Hire-
Pool is also validated by tests on Southeast University’s real
cloud datacenter platform (SEU) [32]. The platform is com-
prised of eight PMs, and each PM is IBM H22 Blade Server
with 2#Six-Core Xeon® 5650 CPUs, 24GB of DDR3 RAM,
and 146GB hard disk storage. These physical resources are
managed by OpenStack as infrastructure as a service (IaaS)
for applications. Each VM in this cloud platform has four
vCPUs, 2GB memory and 12GB HD. There are four PMs
in rePool and norePool, respectively, and each PM in
rePool can provide 12 VMs and those in norePool can
provide six VMs. We adopted HTCondor [24] to construct
a VM cluster with 48 VMs, which all belong to rePool.
Fig.13 shows the real cloud platform’s architecture. The tasks
executed in the VM cluster were an AMS-02 Monte Carlo
simulation in Southeast University’s Science Operation Cen-
ter [31], and we used the HirePool mechanism to optimize
resource reuse. In the experiments, we tested the ANP, ARU,
and ANM changes when tasks ran on the VM cluster, and
we also verified the influence of VM migration on the tasks’
performance.

74386

200 1

100

Number of Used CPU Cores

(a) (b)

Time (hours) Average reso

© (@

FIGURE 14. (a) Number of CPU cores used by all VMs; (b) Empirical CDF
of number of CPU cores used; (c) Average resource usage of all PMs used;
(d) Empirical CDF of average resource usage.

2) EXPERIMENTAL RESULTS AND ANALYSIS

a: RESOURCE OPTIMIZATION PERFORMANCE

During the real tests, the VM cluster ran with a consistently
busy workload of 48 AMS Monte Carlo simulation produc-
tion tasks. Once a task completed, another new task was sub-
mitted immediately. Fig.14-(a) and (b) show the change in the
number of CPU cores used by all VMs in the cloud platform
over 100 hours and its distribution. From them, we can see
that the CPU cores requirements varied dynamically during
the entire runtime, although the number of VMs did not
change. And the number of CPU cores used is about the same
probability in each range, and does not focus on a particular
range. Fig.14-(c) and (d) show the average resource usage of
all PMs running in the virtual cluster over 100 hours and its
distribution; we see that no matter how the resource require-
ments change, the whole system ensures adequate resource
usage, and the probability that ARU is above 0.8 is very high,
indicating that the resource utilization rate of most PM is
very high. So, from Fig.14, we can conclude that HirePool
is an effective mechanism for resource-reuse optimization
to dynamically adjust the number of PMs according to the
changes in resource requirements. The reason is that HirePool
can reuse physical resources in rePool when the load is low,
and conversely, it can migrate VMs into norePool when the
load increases.

b: MIGRATION OPTIMIZATION PERFORMANCE

Fig.15-(a) shows the distribution of average number of
VM migrations in the real cloud platform when planning
migration for each hour. The times of live VM migration can
be limited to nine with 90% confidence, as depicted by the
figure. We also tested the time cost for each VM migration.
Fig.15-(b) shows the results, where the abscissa represents
the time spent for VM migration, and the ordinate represents
the distribution of the time cost for VM migrations. More
than 80% time costs are within 100 seconds (similar to [33]

VOLUME 6, 2018

R. Xiong et al.:

HirePool: Optimizing Resource Reuse Based on a Hybrid Resource Pool in the Cloud

IEEE Access

CDF
CDF

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 50 100

Average number of VM migrations

(2)

150

Time Cost for Each Migration (seconds)

(b)

CDF

200 250 300 0 002 004 006 008 01 012 014 016

Ratio of VM Migration Time to Task Execution Time

()

FIGURE 15. Empirical CDF of (a) average number of VM migrations; (b) time cost for VM migrations; (c) ratio of VM migration time

to task execution time.

and [34]). Additionally, we tested the ratio of VM migration
time to total execution time for each task; Fig.15-(c) shows
the results, where the abscissa represents all possible ratios
and the ordinate represents the distribution of the time ratio
of VM migration to task execution. We see that the ratio
of VM migration time to task execution time is less than
0.05 for more than 80% tasks, so we conclude that the impacts
of VM migration during resource-reuse optimization on the
performance of total tasks and the users’ experience are
inconsequential.

VII. CONCLUSIONS AND FUTURE WORK

Considering the dynamically changing resource require-
ments of VMs in cloud datacenters, this paper proposes an
effective resource-reuse optimization mechanism based on
a hybrid resource pool model, to improve the efficiency of
resource reuse by maximizing resource utilization with fewer
VM migrations. From this work, we can find out that for
some problems which are difficult to be solved due to the
large scale, the problem size can be reduced by limiting the
constraint, so that the problem can be solved. As shown in this
paper, if we consider the original migration planning problem
directly, we will find the problem is very large (that is, n*")
and difficult to solve. When we restrict that the VMs can
only migrate between a rePool PM and a norePool PM,
the problem scale will be greatly reduced to 2!, so that the
problem can be solved quickly.

Moreover, the virtual resource-reuse optimization mech-
anism proposed here is basic, functional, and effective.
We plan to expand and improve upon this work, and con-
tinue research in three respects. First, changing the resource
overcommitment ratio will influence the results of resource
reuse and VM migration time, so we hope to propose a
novel algorithm that determines the appropriate overcom-
mitment ratio intelligently. Second, we only consider a one-
dimensional CPU requirement in this paper, but we hope
HirePool can adapt to multidimensional resource require-
ments (such as shown in [36]) in the future. Finally, we only
consider the optimization of VM migration time in this work;
in future work, we will consider migration communication
costs, energy consumption, and other factors in migration-
optimization modeling more fully.

VOLUME 6, 2018

RE
[1]

[2]

[3]

[4

=

[5

—

[6

—

[71

[8

—

[9

[t

(10]

(11]

[12]

[13]

(14]

(15]

(16]

(17]

(18]

FERENCES

M. A. Rodriguez and R. Buyya, “A responsive knapsack-based algo-
rithm for resource provisioning and scheduling of scientific workflows in
clouds,” in Proc. IEEE ICPP, Beijing, China, Sep. 2015, pp. 839-848.

C. Q. Wu, X. Lin, D. Yu, W. Xu, and L. Li, ““End-to-end delay minimization
for scientific workflows in clouds under budget constraint,” IEEE Trans.
Cloud Comput., vol. 3, no. 2, pp. 169-181, Apr./Jun. 2015.

Q. Jiang, Y. C. Lee, and A. Y. Zomaya, “Executing large scale scientific
workflow ensembles in public clouds,” in Proc. IEEE ICPP, Beijing,
China, Sep. 2015, pp. 520-529.

C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and QoS-
aware cluster management,” in Proc. ACM ASPLOS, New York, NY, USA,
2014, pp. 127-144.

S. Mustafa, K. Bilal, S. U. R. Malik, and S. A. Madani, “SLA-aware energy
efficient resource management for cloud environments,” IEEE Access,
vol. 6, pp. 15004-15020, 2018.

S. Zhang, Z. Qian, Z. Luo, J. Wu, and S. Lu, “Burstiness-aware resource
reservation for server consolidation in computing clouds,” IEEE Trans.
Farallel Distrib. Syst., vol. 27, no. 4, pp. 964-977, Aug. 2016.

L. Chen and H. Shen, “Consolidating complementary VMs with
spatial/temporal-awareness in cloud datacenters,” in Proc. IEEE INFO-
COM, Toronto, ON, Canada, Apr./May 2014, pp. 1033-1041.

S. Albagli-Kim, H. Shachnai, and T. Tamir, “Scheduling jobs with
dwindling resource requirements in clouds,” in Proc. IEEE INFOCOM,
Toronto, ON, Canada, Apr./May 2014, pp. 601-609.

H. Lin, X. Qi, S. Yang, and S. Midkiff, ‘““Workload-driven VM consolida-
tion in cloud data centers,” in Proc. IEEE IPDPS, Toronto, ON, Canada,
May 2015, pp. 207-216.

S. Xu, W. Lin, and J. Z. Wang, “Virtual machine placement algorithm
based on peak workload characteristics,” (in Chinese), J. Softw., vol. 27,
no. 7, pp. 1876-1887, 2016.

M. Li, J. Bi, and Z. Li, ‘“Resource-scheduling-waiting-aware vir-
tual machine consolidation,” (in Chinese), J. Softw., vol. 25, no. 7,
pp. 1388-1402, 2014.

L. Chen, H. Shen, and K. Sapra, “Distributed autonomous virtual resource
management in datacenters using finite-Markov decision process,” in
Proc. ACM SOCC, Seattle, WA, USA, 2014, pp. 1-13.

Z. Han et al., “Dynamic virtual machine management via approximate
Markov decision process,” in Proc. IEEE INFOCOM, San Francisco, CA,
USA, Apr. 2016, pp. 1-9.

M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Efficient datacen-
ter resource utilization through cloud resource overcommitment,” in Proc.
IEEE INFOCOM Wkshps, Hong Kong, Apr./May 2015, pp. 330-335.

X. Ruan and H. Chen, “Performance-to-power ratio aware virtual machine
(VM) allocation in energy-efficient clouds,” in Proc. IEEE CLUSTER,
Chicago, USA, Sep. 2015, pp. 264-273.

L. Chen, H. Shen, and K. Sapra, “RIAL: Resource intensity aware load
balancing in clouds,” in Proc. IEEE INFOCOM, Toronto, ON, Canada,
Apr./May 2014, pp. 1294-1302.

L. Eyraud-Dubois and H. Larchevéque, ““Optimizing resource allocation
while handling SLA violations in cloud computing platforms,” in Proc.
IEEE IPDPS, Boston, MA, USA, May 2013, pp. 79-87.

K. Ye et al., “Profiling-based workload consolidation and migration in
virtualized data centers,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 3,
pp. 878-890, Mar. 2015.

74387

IEEE Access

R. Xiong et al.: HirePool: Optimizing Resource Reuse Based on a Hybrid Resource Pool in the Cloud

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

S. Homsi, S. Liu, G. A. Chaparro-Baquero, O. Bai, S. Ren, and G. Quan,
“Workload consolidation for cloud data centers with guaranteed QoS using
request reneging,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 7,
pp. 21032116, Jul. 2017.

V. Armant, M. De Cauwer, K. N. Brown, and B. O’Sullivan, “Semi-online
task assignment policies for workload consolidation in cloud computing
systems,” Future Gener. Comput. Syst., vol. 82, pp. 89-103, May 2018.
M. Gaggero and L. Caviglione, ‘Predictive control for energy-aware
consolidation in cloud datacenters,” IEEE Trans. Control Syst. Technol.,
vol. 24, no. 2, pp. 461-474, Mar. 2016.

(2016). YARN. [Online]. Available: https://hadoop.apache.org/docs/r2.7.2/
hadoop-yarn/

(2016). Mesos. [Online]. Available: http://mesos.apache.org/

(2016). HTCondor. [Online]. Available: http://research.cs.wisc.edu/
htcondor/

R. Ghosh and V. K. Naik, “Biting off safely more than you can chew:
Predictive analytics for resource over-commit in IaaS cloud,” in Proc.
IEEE CLOUD, Honolulu, HI, USA, Jun. 2012, pp. 25-32.

D. Breitgand, Z. Dubitzky, A. Epstein, A. Glikson, and I. Shapira, “SLA-
aware resource over-commit in an IaaS cloud,” in Proc. ACM CNSM,
Laxenburg, Austria, 2013, pp. 73-81.

P. Toth, “Dynamic programming algorithms for the zero-one knapsack
problem,” Computing, vol. 25, no. 1, pp. 29-45, 1980.

P. J. Kolesar, ““A branch and bound algorithm for the knapsack problem,”
Manage. Sci., vol. 13, no. 9, pp. 723-735, 1967.

X.Tang, Y.Li,R. Ren, and W. Cai, “On first fit bin packing for online cloud
server allocation,” in Proc. IEEE IPDPS, Chicago, IL, USA, May 2016,
pp. 323-332.

(2016). Google Cluster Data. [Online]. Available: https://github.
com/google/cluster-data

(2016). AMS-02 Monte Carlo Simulation in Science Operation Center
at Southeast University. [Online]. Available: https://indico.cern.ch/event/
505613/contributions/2227427/

F. Dong, J. Luo, J. Jin, Y. Wang, and Y. Zhu, ‘‘Performance evaluation and
analysis of SEU cloud computing platform—Using general benchmarks
and real world AMS application,” in Proc. IEEE SMC, Seoul, South Korea,
Oct. 2012, pp. 1455-1460.

U. Deshpande, D. Chan, T.-Y. Guh, J. Edouard, K. Gopalan, and N. Bila,
“Agile live migration of virtual machines,” in Proc. IEEE IPDPS, Chicago,
IL, USA, May 2016, pp. 1061-1070.

H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, “Live migration of virtual
machine based on full system trace and replay,” in Proc. ACM HPDC,
Garching, Germany, 2009, pp. 101-110.

CloudSim: A Framework for Modeling and Simulation of Cloud Computing
Infrastructures and Services. Accessed: Sep. 18,2016. [Online]. Available:
http://www.cloudbus.org/cloudsim

X. Guan, B.-Y. Choi, and S. Song, “Energy efficient virtual network
embedding for green data centers using data center topology and future
migration,” Comput. Commun., vol. 69, pp. 50-59, Sep. 2015.

RUNQUN XIONG received the Ph.D. degree in
computer science from Southeast University. He
was with the European Organization for Nuclear
Research as a Research Associate for the AMS-02
experiment from 2011 to 2012. He is currently a
Lecturer with the School of Computer Science and
Engineering, Southeast University, China, where
he is involved in AMS-02 data processing at
the AMS Science Operations Center. His current
research interests include cloud computing, indus-

trial Internet, and drone-based wireless communication systems. He is a
member of the ACM and the China Computer Federation.

74388

XIUYANG LI received the B.S. degree in com-
puter science and engineering from the Ocean
University of China, Qingdao, China. He is cur-
rently pursuing the M.S. degree with the School
of Computer Science and Engineering, Southeast
University, China. His current research interests
include drone-assisted wireless communications
and mobile edge computing.

JIYUAN SHI received the Ph.D. degree in com-
puter science from Southeast University, China.
He was a Visiting Doctoral Student at the
European Organization for Nuclear Research,
Switzerland, from 2012 to 2014. He is currently
an Algorithm Research Engineer at Huawei Tech-
nologies Co., Ltd. His current research interests
include network big data analysis, scientific work-
flow scheduling, and resource management in
cloud systems.

ZHIANG WU (S’14-M’17) received the Ph.D.
degree in computer science from Southeast Uni-
versity, China. He is currently a Full Professor with
the School of Information Engineering, Nanjing
University of Finance and Economics, China. He
is also the Director of the Jiangsu Provincial Key
Laboratory of E-Business. His recent research
focuses on distributed computing, data mining,
e-commerce intelligence, and social network anal-
ysis. He is a member of the ACM and a Senior
Member of the China Computer Federation.

JIAHUI JIN received the Ph.D. degree in com-
puter science from Southeast University, Nanjing,
China, in 2015. He was a Visiting Ph.D. Student
with the University of Massachusetts, Amherst,
from 2012 to 2014. He is currently an Assis-
tant Professor with the School of Computer Sci-
ence and Engineering, Southeast University. His
research interests include large-scale data pro-
cessing, distributed systems, and parallel task
scheduling.

VOLUME 6, 2018

	INTRODUCTION
	RELATED WORK
	PRELIMINARIES
	CLOUD DATACENTER ARCHITECTURE
	RESOURCE REUSE

	MECHANISM DESIGN AND IMPLEMENTATION
	HYBRID RESOURCE POOL MODEL
	HIREPOOL
	OPTIMIZATION OBJECTIVES
	OPTIMIZATION PROCEDURES

	MATHEMATICAL MODELING
	IMPLEMENTING ALGORITHMS
	RoA: RESOURCE OPTIMIZATION ALGORITHM
	MoA: MIGRATION OPTIMIZATION ALGORITHM

	DEPLOYING THE RESOURCE-REUSE MECHANISM IN THE REAL WORLD
	PERFORMANCE EVALUATION
	COMPARISONS AND INDICATORS
	SIMULATION EXPERIMENTS
	SIMULATION SETTINGS
	EXPERIMENTAL RESULTS AND ANALYSIS

	REAL PLATFORM EXPERIMENTS
	CLOUD PLATFORM SETTINGS
	EXPERIMENTAL RESULTS AND ANALYSIS

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	RUNQUN XIONG
	XIUYANG LI
	JIYUAN SHI
	ZHIANG WU
	JIAHUI JIN

