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ABSTRACT Land use and land cover (LULC) change is frequent in mountainous terrain of southern China.
Although remote sensing technology has become an important tool for gathering and monitoring LULC
dynamics, image pairs can occur scale changes, noises, geometrical distortions, and illuminated variations if
these are acquired from different types of sensors (e.g., satellites). Meanwhile, how to design an efficient land
cover change detection algorithm that ensures a high detection rate remains a critical and challenging step.
To address these problems, we propose a robust multi-temporal change detection framework for land cover
change in mountainous terrain which contains the following contributions. i) To transform multi-temporal
remote sensing image pairs acquired by different type of sensors into the same coordinate system by
image registration, a multi-scale feature description is generated using layers formed via a pretrained VGG
network. ii) A gradually increasing selection of inliers is defined for improving the robustness of feature
points registration, and L2-minimizing estimate (L2E)-based energy optimization is formulated to calculate a
reasonable position in a reproducing kernel Hilbert space. iii) Fuzzy C-Means classifier is adopted to generate
a similarity matrix between image pair of geometric correction, and a robust and contractive change map
is built through feature similarity analysis. Extensive experiments on multi-temporal image pairs taken by
different type of satellites (e.g., Chinese GF and Landsat) or small unmanned aerial vehicles are conducted.
Experimental results show that our method provides better performances in most cases after comparing with
the five state-of-the-art image registration methods and the four state-of-the-art change detection methods.

INDEX TERMS LULC change, multi-scale feature description, inliers, L2E , fuzzy C-Means classifier.

I. INTRODUCTION
Under the special natural conditions (e.g., overcast and
foggy) and fragile ecological environment in mountainous
terrain of southern China, land use and land cover (LULC)
change have occurred frequently. In addition, land covered
composition and its change serve as a crucial role as agricul-
tural production, food security and sustainable development
in mountainous terrain. Therefore, accurate and up-to-date
information on land cover and its dynamic change are increas-
ingly necessary at different spatial and temporal scales.

In recent years, many change detection methods [1]–[10],
[13]–[15], [20], [26] have been developed to derive land cover
change information from remote sensing image, such as, prin-
cipal component analysis and k-means (PCA_Kmeans) clus-
tering based change detection method [14], spectral variance
and slow feature analysis (SSFA) based change detection
method algorithm [15], local estimation and global search
based deep network (LEGS) [4], and semi-supervised fuzzy
C-means (Semi_FCM) clustering based change detection
method [5]. However, most of these methods only focus
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on the remote sensing image acquired by satellite sensors
(e.g., Landsat, MODIS and SPOT-VGT), and the relatively
low spatial resolution limited the identification of them due
to the small size and scattered distribution of land cover in
mountainous terrain. Compared with the above-mentioned
methods, Wei et al. [9] and Milas et al. [11] capture more
land distribution details than satellite remote sensing images
by small unmanned aerial vehicle (UAV) with a small dig-
ital camera. There has to exist visual difference in camera
viewpoints, although theywere captured from a same location
and were matched using GPS data. Deep networks are robust
(i.e., invariant) to differences in viewpoints and illumination
condition, and nevertheless are sensitive to highly-abstract,
semantic differences of images. Specifically, recently popular
convolutional neural networks (CNNs) are particularly well
suited this task, Li and Yu [12] supposed a high-quality visual
saliency model can be learned from multi-scale features
extracted using CNNs.

Moreover, some factors cause that these image pairs
acquired cannot apply directly to identify regions of change
since scale changes, noises, geometrical distortions, and dis-
continuous rotated images with illuminated variations may
also be produced in such multi-temporal images. These fac-
tors are as follows: (i) when satellite revolves around its
orbit, image acquired can have geometrical distortions due
to the modeling inaccuracy of the sensor geometry, and the
jitter of the instruments platform during image acquisition.
(ii) when collecting multi-temporal images for the same loca-
tion, the imaging perspective of small UAVs is often easily
affected by wind speed/direction, complex terrain, aircraft
posture (pitch, roll, yaw), flying height and other human
factors. In order to effectively improve the matching degree
between the image and the actual terrain, the preprocessing
of these image pairs is an essential step, i.e., image registra-
tion method can align these image pairs of the same scene
taken from different viewpoints, from different times or with
different sensors. However, most of the current registration
methods are only suitable for a type of sensor, and are not
sensitive enough to multi-temporal image pairs. Therefore,
our goal focus on multi-temporal remote sensing image pairs
acquired by different type of sensors, and transforms them
into the same coordinate system.

Numerous algorithms [21], [24], [25], [27]–[31] for dif-
ferent registration scenarios have been presented in the last
few decades. The coherent point drift (CPD) algorithm for
both rigid and non-rigid point set registration [21] treated
one point set as centroids of a Gaussian mixture model,
and then fitted it to the other. It applied a fast Gaussian
transform [22] and low-rank matrix [23] approximation tech-
niques to reduce a large computational burden. Recently,
in order to estimate correspondence relationship between
two images, GLMDTPS [24] proposed a global and local
mixture distance. PRGLS [25] used the point registration as
the estimation of a mixture of densities to preserve both
global and local structures during matching. More recently,
Zhang et al. [28], [29] introduced an effective method that

maintains a highmatching ratio on inliers while taking advan-
tage of outliers for varying the warping grids.

In this paper, we present a robust set of change detection
framework for monitoring land cover change in mountainous
terrain with multi-temporal remote sensing images. In the
preprocessing stage of change detection, a multi-scale fea-
ture based image registration method is proposed to align
image pairs acquired by different type of sensors. Compared
with the current methods, the major contributions of our
work include: (i) multi-scale feature descriptor (MFD) con-
structed by CNN-based feature descriptor (CFD) and shape
context (SC). CFD is generated by layers formed a pretrained
VGG network; (ii) to estimate correspondence and transfor-
mations, a gradually increasing selection of inliers is realized
instead of using a stationary distinction of inliers and outliers.
At the early stage of registration, the rough transformation is
quickly determined by the most reliable feature points. After
which the registration details are optimized by increasing
the number of feature points. Then, L2-minimizing estimate
(L2E) based energy optimization is formulated to calculate
a reasonable position in a reproducing kernel Hilbert space;
(iii) fuzzy C-Means classifier is adopted to generate a simi-
larity matrix between transformed image pairs.

The rest of the paper is organized as follows. Section II
introduces a novel deep learning based framework, which
is infused with the CNN feature and the deep neural net-
work (DNN), to detect land cover change in mountain-
ous terrain. Section III demonstrates our experiments; and
Section IV draws conclusions.

II. METHODOLOGY
In this section, we first give the details of three contributions
• multi-scale feature description;
• dynamic inlier selection;
• fuzzy C-means classifier based pre-classification.

Second, we give the details of the proposed land cover change
detection framework. Figure 1 shows the framework of the
proposed method. Finally, our algorithm and parameter set-
tings are discussed in the latter part of this section.

Let us consider a image pair It1 and It2 , acquired over the
same geographical area at two different time t1 and t2. The
feature point sets A and B first are extracted from It1 and It2
respectively. Next the transformed image It is obtained by
our registration algorithm. Note that I ′t1 and I

′
t2 is obtained by

equal split of It and It2 according to a certain ratio. Finally,
we input I ′t1 and I

′
t2 into the model as change detection, and a

change detection map Smap will be generated.
Throughout the paper we use the following notations:
• AN×D = {a1, ..., aN }T ,BM×D = {b1, ..., bM }T - feature
point sets are extracted from a image pair It1 and It2 ,
respectively. D denote the dimension of feature point
sets, and D = 2.

• τ - the transformation function.
• B∗ - transformed locations of source point set B.
• It - the transformed image.
• I ′t1 , I

′
t2 - obtained by equal split of It and It2 .

• Smap - a change detection map.
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FIGURE 1. Flowchart of the proposed land cover change detection framework, consisting of three main phases:
(1) a multi-scale feature description, (2) an effective registration processing, and (3) an effective change detection
processing. Note that correct feature point matches are denoted by yellow lines, incorrect ones are denoted by red lines.

A. MULTI-SCALE FEATURE DESCRIPTOR
The mountainous terrain is the major geomorphic structure
in the south of China, and have special natural conditions
(e.g., overcast and foggy), a fragile ecological environment.
Therefore, it is sometimes hard to perform precise image
registration since images acquired by different type of sensors
can aggravate the non-rigid geometric distortions of images.
We will attempt the features extracted by the convolutional
neural networks (CNNs) to improve the feature expression.

1) CNN-BASED FEATURE DESCRIPTOR (CFD).
CFD is constructed by one of the state-of-the-art CNN which
used the VGG-16 architecture and pre-trained on ImageNet

dataset for image classification [32]. VGG-16 has sixteen
layers (as shown Figure 2) including 5 blocks of convolu-
tion computation, each with 2-3 convolution layers and a
max-pooling layer at the end of each block, from which we
select one of its pool3, pool4 and pool5_1 layers. We lay
a 28 × 28 grid over the input image dividing our patches,
each corresponding to a 256 − d vector in the pool3 output,
a descriptor is generated in every 8× 8 square. The center of
each patch is regarded as a feature point. The 256− d vector
is defined as the pool3 feature descriptor. The pool3 layer
output directly forms our pool3 feature map f1, which is of
size 28× 28× 256. The pool4 layer output, which is of size
14×14×512, is handled slightly differently. In every 16×16
area we obtain a pool4 descriptor, and pool4 feature map f2
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FIGURE 2. Architecture of modified VGG-16 network. h and w denote the height and width of the input image, respectively. Since we only use
convolution layers to extract features, the input image will not adjust the size to keep the feature of the original image as long as h and w are
multiples of 32.

is written as:

f2 = Op4
⊗

I2×2×1 (1)

where
⊗

denotes Kronecker product. I2×2×1 presents a ten-
sor of subscripted shape and filled with 1s. Note that f2 is
shared by 4 feature points.

The pool 5_1 layer output is of size 7×7×512, and pool5_1
feature map f3 takes the form:

f3 = Op5_1
⊗

I4×4×1 (2)

Similarly, every pool5_1 descriptor is shared by 16 feature
points. The distribution of feature descriptors is shown is
Figure 3. After producing f1, f2 and f3, the feature maps are

FIGURE 3. Distribution of feature descriptor. It is shown in a 32× 32
squared region. Green dots represent pool3 descriptors, generated in a
8× 8 squared region. Blue dots represent pool4 descriptors, each shared
by 4 feature points. The cyan dot represent a pool5_1 descriptor, shared
by 16 feature points.

normalized to unit variance using

fk =
fk
σ (fk )

, k = 1, 2, 3 (3)

where σ (.) calculates the standard deviation of elements in a
matrix. Therefore, the pool3, pool4 and pool5_1 descriptors
of point sets A and B are represented by F1(a), F2(a) and
F3(a), F1(b), F2(b) and F3(b) respectively.

CFD is used to measure the feature distance of between
two feature point sets A and B. CFD is a weighted sum of
three distance values, and is written as:

Fcfd =
√
2F1(a, b)+ F2(a, b)+ F3(a, b) (4)

where each component distance value Fk (a, b) is the
Euclidean distance between the respective feature descriptors

Fk (a, b) = Euclidean− disance(Fk (a),Fk (b)) (5)

The distance computed with pool3 descriptors F1(a, b) is
compensated with a weight

√
2 because F1 is 256-d whereas

F2 and F3 are 512-d. Ccfd is a cost matrix of CFD, and the
matrix form is as follows

Cθcfd (m, n) =


F(bm, an)
Fmaxθ

c1,

1 otherwise
(6)

where c1 denotes a valid match of bm and an under thresh-
old θ , Fmax is the maximum distance of all matched feature
point pairs under threshold θ .

2) SHAPE CONTEXT (SC).
The SC [33]–[35] could play such a role in shape matching.
Consider a center point an on the first shape and a center
point bm on the second shape. Firstly, the SC constructs
a polar coordinate system (see Figure 4). Then, we com-
pute a histogram han or hbm of the relative coordinates of
the remaining n − 1 or m − 1 points for an or bm on
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FIGURE 4. Shape context (SC) computation and matching. Left of (a) and (b): diagrams of log-polar histogram bins
centered at an and bm used in computing the shape contexts. We use 5 bins for log(r ) and 12 bins for θ . Right
of (a) and (b): each shape context e.g., hb

m or ha
n is a log-polar histogram of the coordinates of the rest of the point set

measured using the centered point as the origin.

the shape respectively. Csc(m, n) denotes the cost of match-
ing these two point sets, and is measured using Chi-square
distribution as:

Csc(m, n) =
1
2

X∑
x=1

[hbm(x)− h
a
n(x)]

2

hbm(x)+ han(x)
(7)

where hbm(x) and h
a
n(x) are two 1 × X sets, and denote the

number of points within each bin surrounding bm and an,
respectively.

3) MIXTURE FEATURE DESCRIPTOR (MFD).
We first compute a integrated cost matrix Cmfd using a
element-wise Hadamard product (denoted by

⊙
), and is

written as:

Cmfd = Cθcfd
⊙

Csc (8)

where Cθcfd and Cθsc are value in [0, 1]. Then, we apply
Jonker-Volgenant algorithm [37] to solve the linear assign-
ment on cost matrix Cmfd . Assigned point pairs are regarded
as putatively corresponding.

B. DYNAMIC INLIER SELECTION
Our feature points are acquired at the center of square
shaped image patches. Due to reasons of large rotation angles
and deformation, corresponding feature points may have
their image patches overlapping partly or completely. Thus,
to improve the effect of the registration, feature points with
large overlapping ratios should have a better degree of align-
ment, where as partly overlapping patches should have a
small distance between their centers. Therefore, the degree of
alignment is determined using our dynamic inlier selection.

In point set registration, there are several ways to esti-
mate the parameters of the mixture model, such as the EM
algorithm, gradient descent and variational inference. Our
point set registration mainly contains the following two steps:
(i) correspondence estimation, the corresponding target point
set Aψ is estimated between B and A; (ii) transformation
Updating, the transformation function τ is established to
update the position of τ (B) constantly, until τ (B) andAψ can
overlap asmuch as possible. Note that τ (B) (initial τ (B) = B)
indicates the transformed set B in each iteration.
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Therefore, the inliers of selection are assigned in every k
iteration to iteratively address B. Note that these inliers guide
for bundle adjustment of point locations whereas outliers are
moved coherently. At the feature prematching stage, a low
threshold θ0 is applied to filter out irrelevant points and select
coarsely a large number of feature points. Then, a large start-
ing threshold θ̃ is adopted to select confident inliers satisfy.
In the rest of registration process, threshold θ is subtracted
by a step-length ι in every k iterations, allowing a few more
feature points with high similarity to affect the estimating
correspondence and transformation. Such technology enables
feature points with high similarity to complete the overall
transformation while other feature points optimize registra-
tion accuracy.

C. PRE-CLASSIFICATION
The pre-classification step chooses the pixels that are
best suited to train the deep neural network. The Fuzzy
C-Means (FCM) is a popular image segmentation technique
that segments an image by discovering cluster centers. Sup-
pose a′ij and b′ij denote gray levels of the image pixels at
the corresponding positions (i, j) in I ′t1 and I ′t2 , respectively.
We use FCM classifier to provide jointly classify for the two
input images, and a similarity matrix s′ij is established.

s′ij =
|a′ij − b′ij|
a′ij + b′ij

(9)

where 0 ≤ s′ij ≤ 1. Then, a global threshold value of
similarity T will be applied to s′ij by the iterative threshold
method. Iterate over all a′ij and b′ij, if s′ij > T , then jointly
label a′ij and b′ij by FCM based on the principle of minimum
variance δ2ij. Otherwise label aij and bij separately. δ2ij is
written as:

δ2ij = a′ij
a′ijb′ij

a′ij + b′ij
[s′ij]

2 (10)

The gray-level of each pixel in the same position of the
corresponding two original images are compared to label the
pixels. The label of a pixel and its surrounding neighbor-
hood can be used to determine if a pixel is either part of
an edge or noise. The results are then passed to the neural
network for training.

D. MAIN PROCESS
1) IMAGE REGISTRATION
To effectively eliminate the geometric error and improve the
matching degree between the image and the actual terrain,
image registration is an essential step in the preprocessing of
remote sensing image including two processes: feature point
set registration and image transformation. Firstly, we carry
out feature point set registration.
• Correspondence Estimation. Gaussian mixture model
(GMM) has been proven the popular model in computer
vision and pattern recognition. Thus, the set B are used
as GMM centroids, and the set A as the data points

generated by the GMM. The GMM probability density
function is

p(an|bm) = −
1

2πσ 2 exp
1

2σ 2 ‖an − bm‖
2 (11)

Then, the outlier and noise distribution is supposed an
additional uniform distribution p(a|M + 1) = 1

N , which
is added to the mixture model. Thus, the mixture model
takes the form

p(an) = (1− ε)
N∑
n=1

log
M∑
m=1

p(m)p(an|bm)+ ε
1
N

(12)

where p(m) = 1
M denotes the mixed weight that are

nonnegativity and sum-to-one. We use equal isotropic
covariances σ 2 and equalmembership probabilities p(m)
for all GMM components (m = 1, ...,M ). ε denotes the
weight of the uniform distribution, with 0 ≤ ε ≤ 1.
We compute the revised parameter as:

ε = 1−

∑N
n=1

∑M
m=1 p(m|an)
N

(13)

Subsequently, inlier selection calculate a m × n prior
probability matrix pmn which is then taken by our
Gaussian mixture model (GMM) based transformation
solver.

pmn =

1 if bm and an are corresponding,
1− υ
N

otherwise
(14)

where υ ∈ (0, 1) should be designated according to our
confidence of the inlier selection to be accurate. Prior
probability matrix requires normalization:

pmn :=
pmn∑N
k=1 pmk

(15)

By the equation (15), the M × N posterior probability
matrix is obtained, which is used as the fuzzy correspon-
dence matrix P between Is and Ir . Then, the correspond-
ing target point set is obtained by

Aψ = PA (16)

Though the target coordinate Aψ is estimated by GMM,
the method will inescapable produce mismatching.

• Transformation Updating. Firstly, a positive definite
kernel (e.g., Gaussian kernel) is chosen; and a repro-
ducing kernel hilbert space (RKHS) [38], [39] H is
defined. Then, we employ the Gaussian Radial Basis
Function (GRBF), which is in the form G(bi, bj) =
exp(− |bi−bj|

2

β2
), where β is a constant to control the

spatial smoothness and G is of size m × m. According
to the representation theorem, a displacement function
ν(B) takes the form

τ (B) =
M∑
m=1

G(b, bm)ψ (17)
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FIGURE 5. Left: Vectorization of neighborhood features to be fed into the network. Right: The structure of an RBM, consisting of two layers, one
visible (v) and one hidden (h), with no connections within a layer. Hidden nodes are indicated by blue filled circles and the visible nodes indicated by
unfilled circles.

where ψ = (ψ1, ψ2, ..., ψm)T is a D × 1 coefficient
matrix. Therefore, the minimization over energy equa-
tion in H boils down to finding a finite coefficients
matrix ψ . transformation function ν(B) is equivalent to
the initial position plus a displacement function τ (B),
i.e., ν(B) = B+ τ (B).
Though the reliable target coordinateAψ is estimated by
GMM, the method will inescapable produce mismatch-
ing. Therefore, our next concern draws on formulating
a function, by which a reasonable position τ (bm) of bm
is determined. This position in turn improves the accu-
racy of the correspondence estimation as subsequent
iterations interlock. Since the error of L2-minimizing
estimator is less than the error of maximum likelihood
estimation (MLE), L2 Euclidean an distance is widely
used in multiple applications, and many registration
methods, especially, the problem of point set registration
can be well formulated by minimizing the L2 Euclidean
distance between two point sets. Therefore, we employ
the L2E [39] based energy function to estimate the trans-
formation function τ , which is written as

E(ψ, σ 2) =
1

2D(πσ )
D
2

− p̄+ λ ‖ τ ‖2G (18)

where p̄ = 2
m

∑M
m=1

1

(2πσ 2)
D
2
exp

(
−
‖Aψ−Um,·ψ‖2

2σ 2

)
,

Uij = G(bi, bj), Um,· denotes the mth row of matrix U,
ψi denotes the ith row of the coefficient matrix ψh×D.
Next, we can directly take the partial derivatives of
equation (18) with respect to coefficients matrix ψ ,
By setting them to zero, and solve the resulting linear
system of equations. As follows:

∂E
∂ψ
= UT

(
28� (H⊗ 1)

nσ 2(2πσ 2)
D
2

)
+ 2λGψ (19)

where 8 = Uψ − Aψ , H = exp{diag(88T )/2σ 2
} is a

M × 1 vector, diag(·) denotes the diagonal of a matrix,
1 is a 1 × D row vector of all ones. Symbols � and ⊗
denote the Hadamard product and Kronecker product,
respectively.

After updating the coordinates of the source point set by
B = B + Uψ , we anneal the covariances of the GMM
by σ 2

= ρσ 2, then return to correspondence estimation
and continue the feature point sets registration process until
the maximum iteration number is reached. Note the trans-
formed source point set B∗ is obtained in the final iteration.
Next, we employ the backward approach [40] to establish a
thin-plate spline (TPS) [41] transformation model, then the
transformed image It can be calculated using the model.
I ′t1 and I ′t2 is obtained by equal split of It and It2 according
to a certain ratio. (see Figure 1)

2) ESTABLISHING AND TRAINING THE DEEP NEURAL
NETWORKS FOR CHANGE DETECTION
Although the difference image method is well researched,
change detection is a comprehensive procedure that requires
careful consideration of many factors such as the nature of
change detection problems, image preprocessing, selection
of suitable variables and algorithms. DNN has brought in
profound and revolutionary changes to the realm of artifi-
cial intelligence, and achieved great improvements in many
domains such as computer vision, speech recognition and
natural language processing, etc. Therefore, we employ DNN
to train the pre-classification results and create a change
detection map from pre-processed image pair directly with-
out generating difference images. After pre-classification,
the neighborhood features of each pixel and its corresponding
pixel in another image are converted into a vector as inputs to
a neural network.

The Restricted Boltzmann Machine (RBM). RBM is a
stochastic neural network, which consists of two layers of
binary units: a visible layer v with n visible units and hidden
layer h with m hidden units. An example of this structure is
in Figure 5 with the hidden nodes indicated by blue circles
and the visible nodes indicated by white circles. A common
use for RBMs is to create features for use in classification.
The energy function of the RBMmodel for visible and hidden
units can be represented by the following:

E(v,h) = −ηT v− ςT h− hTWv (20)
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where η and ς are biases of the visible units and hidden
units, respectively. The matrix W denotes weights of the
connection between visible and hidden layer units, where
each matrix element is the conditional probability of the next
layer neuron conditioned on the previous layer neuron. The
joint probability distribution of visible units v and hidden
units h of the RBM is interpreted by

P(v,h) =
1
Z
eE(v,h) (21)

where Z =
∑

v′
∑

h′ e
E(v′,h′) is the partition function of the

system. The conditional distributions are:

P(hj = 1|v) = σ (ςj + vTW(:,j)) (22)

P(vi = 1|h) = σ (ηi +W(i,:)h) (23)

Previous studies [42], [43] that the updating rules for W,
η and ς during the training process with a learning rate γ
are the following:

1Wij = γ (〈vihj〉d − 〈vihj〉m) (24)

1ηi = γ (〈vi〉d − 〈vi〉m) (25)

1ςj = γ (〈hj〉d − 〈hj〉m) (26)

where 〈·〉d and 〈·〉m are the expectations under the distribu-
tion specified by the training input data and the theoretical
RBM model. Although computing 〈vihj〉d is straightforward,
〈vihj〉m is intractable due to the large number of possible
joint (v, h) configurations. ContrastiveDivergence (CD) algo-
rithm [42] is a learning procedure being used to approxi-
mate 〈vihj〉m. For every input, it starts a Markov Chain by
assigning an input vector to the states of the visible units and
attempts a small number of full Gibbs sampling steps. Result-
ing reconstructed visible units are applied to approximate the
expectation of the model distribution.

A deep neural network (DNN) [44] pre-trained via stack-
ing restricted Boltzmann machines (RBMs) demonstrates
high performance. Therefore, we utilize DNN to train net-
works using the features of images for detecting land cover
change. The process mainly contains the following three
steps: (1) neighborhood features of each pixel at the same
location on the image pair are fitted to the DNN; (2) RBMs
are then unrolled to create a deep neural network for training.
Note that CD training algorithm is used to pre-train each
RBM in the stack of RBMs via training data; (3) DNN is
fine-tuned by the backpropagation of error derivatives.

After the training, the deep neural network is established.
Next, I ′t1 and I

′
t2 can be inputted to the network and a robust

and contractive change map Smap will be built.

E. OUR ALGORITHM AND PARAMETER SETTINGS
Our method is summarized in Algorithm 1. There are five
groups of parameters in our method: (1) in the feature pre-
matching stage, treshold θ0 matically determined by selecting
the most reliable 128 pairs of feature points . Similarly, θ̃ is
determined by selecting the most reliable 64 pairs of feature
points; (2) in the inlier selection stage, the step-length ι is

Algorithm 1 Land Cover Change Detection Using
Multi-Temporal and Multi-Sensor Remote Sensing
Images in Mountainous Terrain
Input: The source point set A and the target point set B
Output: The transformed image It

1 Initialize θ0, θ̃ , ι, k , β, ω, δ2, W and λ;
2 Image Registration.
3 while not reach the maximum iteration number do
4 Correspondence Estimation:
5 Compute Cθcfd , Csc and Cmfd by equation (6), (7)

and (8), respectively;
6 Compute the posterior probability matrix P by

equation (15);
7 Compute the corresponding target point set Aψ

by equation (16);
8 Transformation Updating:
9 Construct the kernel matrix G and U;
10 Compute ψ by using equation (18);
11 Update σ 2

= ρσ 2;
12 Update the sensed image’s feature point set by

B = B+ Uψ ;
13 end
14 The transformed source point set B∗ is obtained in the

final iteration;
15 The transformed image It can be calculated using a

thin-plate spline (TPS) [41] transformation model that
is established by the backward approach [40].

16 Change Detection.
17 Pre-Classification:
18 Compute a similarity matrix s′ij by equation (9).
19 Set a global threshold value of similarity T .
20 Pre-Establishing and Training the Deep Neural

Networks:
21 The neighborhood features of each pixel and its

corresponding pixel in another image are converted into
a vector as inputs to DNN.

22 training.
23 Test:
24 I ′t1 and I

′
t2 can be inputted to the network.

25 A change detection map Smap will be obtained.

found by δ = (θ̃ − θ0)/10, the covariance parameters δ2;
(3) outlier balancing weight is initialized as 0.5; (4) in the
Gaussian radial basis function (GRBF), β is used to control
the spatial smoothness. Since we normalize the spatial coor-
dinates of the sensed image feature points to [-1.5, 1.5], β set
to 2; (5) in equation (15) and energy equation (18), δ2 are
initialized to 1 and 0.05 respectively.

III. EXPERIMENTS AND RESULTS
A. STUDY AREA AND DATA SOURCE
The study was mainly carried out in the ten key land con-
servation regions of Sichuan, Guizhou and Hunan China
(see Figure 6). The regions locate in the warm temperate zone
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FIGURE 6. Location of study area in mountainous terrain of southern China. Red dots represent ten key land conservation regions regions
of Sichuan, Guizhou and Hunan China. Note that Sichuan Province, China (Longitude range: 97o21′E to 108o33′E; Latitude range: 26o03′N
to 34o19′N). Guizhou Province, China (Longitude range: 103o36′E to 109o35′E; Latitude range: 24o37′N to 29o13′N). Hunan Province, China
(Longitude range: 111o53′E to 114o15′E; Latitude range: 27o51′N to 28o41′N).

TABLE 1. The experimental dataset (I) and (II).

and have four distinct seasons because of the continental
monsoon. These areas have a variety of land cover types
including cropland, building-up, forest, etc. Among these
land cover types, the most dominant one is cropland, which
can be easily affected by pseudo changes of phenological dif-
ferences. In addition, we also obtained some satellite remote
sensing data from other foreign mountainous terrain to verify
the applicability of the method.

We evaluate the performance of the proposal framework
on an available data set. The data set contains a total
of 6000 image pairs. To facilitate a fair comparison with other

methods, we divided this dataset into three pars, 3000 for
training, 1000 for validation and the remaining 2000 image
pairs for testing. In order to achieve better training effect, date
set is formed by two categories of remote sensing image pairs:

(1) 4000 image pairs are acquired by different type of
multi-sensor and multi-temporal satellites including Chinese
GF, Landsat. The details of dataset (I) and (II) are summarized
in Table 1. In this dataset, a same satellite generally follow
the same orbital paths with the same viewing angles and
passed over a certain spot on earth at the same local time
due to orbital mechanics. Therefore, image pairs acquired by
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the same satellite cannot contains lager viewpoint change.
However, image pairs acquired by different sensors suffer
serious scale change.

TABLE 2. The experimental dataset (III).

(2) 2000 image pairs are acquired by a small-sized UAV,
the DJI Phantom 4 Pro (DJI, Shenzhen, China) with a CMOS
camera, basically maintained the same flight altitude (around
50 ∼ 150 m) for collecting these images of the same location
at different times. The details of dataset (III) are shown
in Table 2. In this dataset, it was not easy to navigate the
aircraft along the planned lines since operation of small UAV
is always limited by air traffic constraints and monitoring
object, e.g., mountainous landforms are the rugged terrain
area, and in most seasons these areas often are overcast
and foggy. Thus, image pairs of the same scene have to be
captured from different viewpoints through multiple flight
routes so that a full coverage of the object surface can be
obtained. In addition, small UAVs cannot avoid the influence
of flight attitude (pitch, roll, yaw) in flight practices due to
its flight high, speed, airflow and other factors, which will
cause the acquired images to be squeezed, twisted, stretched
and offset relative to the target position of ground. Therefore,
these image pairs often contain large rotation angles.

B. EXPERIMENTAL DESIGN
To qualitatively evaluate the proposal framework results,
two kinds of experiments are conducted: image reg-
istration and change detection. The former uses some
state-of-the-art methods, such as SIFT [45], SURF [46],
CPD [21], GLMDTPS [24] and ZGL_CATE [28]. The lat-
ter adopts PCA_Kmeans [14], SSFA [15], LEGS [4] and
Semi_FCM [5] . In addition, we adopt two standards and
widely used evaluation metrics, precision-recall curve (PRC)
and root of mean square error (RMSE). These experiments
are performed on a PC with 2.5GHz Intel Core CPU, 8GB
memory.

1) IMAGE REGISTRATION ACCURACY TEST
The root of mean square error (RMSE) is used to quantify
the image registration accuracy. We manually construct at
least 15 pairs of corresponding points in each image pair as
landmarks. Note that all the landmarks are well-distributed
and selected the interest areas in which the surface features
are distinct, easily distinguished places or where the colour
contrast is large with nearby surface features. The related

formulations are as follows:

RMSE =

√√√√ 1
M

M∑
i=1

(bti − a
t
i ) (27)

The RMSE can well reflect the spatial deviation of cor-
responding landmarks in the sensed image and the ref-
erence image, respectively. Where M is the total number
of the selected landmarks, and bti is the landmark that
corresponds to ati ;

2) CHANGE DETECTION PRECISION TEST
A ground truth is compared to the change detection map to
measure the accuracy of the performance of change detection.
In precision-recall curve, the precision metric measures the
fraction of detections that are true positives and the Recall
metric measures the fraction of positives that are correctly
identified. Precision and Recall can be defined as:

Precision =
TP

TP+ FP
(28)

Recall =
TP

TP+ FN
(29)

where TP denotes true positives in which changed pixels are
detected correctly, FP denotes the false positives in which are
detected as changed when compared with the ground truth,
and FN denotes false negatives in which changed pixels are
detected as unchanged when compared with the ground truth,
respectively.

C. RESULTS AND DISCUSSION
1) RESULTS AND DISCUSSION OF IMAGE
REGISTRATION ACCURACY TEST
In this experiment, Table 3 shows quantitative comparisons
on image registrationmeasured using themean RMSE, where
it from left to right has a decreasing tendency. In addition,
Figures 7, 8 and 9 show results of image registration on six
representative image pairs. The results show that our method
reached the best performance in most cases, especially when
the appearance difference in the image pair is challenging.
Therefore, our method can be used widely since an efficient
change rule should have robust image registration. Moreover,
ZGL_CATE can yield a better performance. However its
drawback originates from the extracted feature points that
are not sensitive enough to multi-temporal images. CPD per-
forms unsatisfying in some cases. In contrast, GLMDTPS
can achieve better performance since it employs mixture
feature descriptor. However, GLMDTPS emphasizes one-to-
one correspondence relationship which is vulnerable under
the presence of outliers.

2) RESULTS AND DISCUSSION OF CHANGE
DETECTION PRECISION TEST
In this experiment, the effectiveness of the proposed frame-
work is evaluate by comparing the different change detec-
tion methods for PCA_Kmeans, SSFA, LEGS, Semi_FCM.
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TABLE 3. Experimental results on image registration. Quantitative comparisons on image registration measured using the mean RMSE are carried out.

FIGURE 7. Registration examples on two typical image pairs from dataset (I). (i) LakeOroumeih; (ii) Bastrop. Left: Image pair It1 and It2 acquired over
the same geographical area at two different time t1 and t2 by Landsat 8. Right: The first column until the end show the registration results of SIFT, SURF,
CPD, GLMDTPS, ZGL_CATE and Ours. For each method, the first row shows 5× 5 checkboard and the second row shows the transformed image It .

TABLE 4. Experimental results on change detection. Quantitative comparisons on change detection measured using the PRC are carried out.

The comparison results are depicted Figures 10, 11 and 12
and Table 4. As shown in Table 4, the average precision
of our method on dataset (I), (II) and (III) have reached
to (98.3%, 97.5%), (97.9%, 96.3%), (98.4%, 96.8%) . How-
ever, the average precision of PCA_Kmeans only reach
(78.3%, 77.4%), (73.2%, 72.9%), (76.8%, 77.9%). This is

mainly because our method adopts DNNs to directly create
a change detection map from pre-processed image pair by
bypassing the steps of filtering or generating a difference
image (DI). In contrast, PCA_Kmeans performs unsatisfy-
ing in some cases since it often have noisy result of not
considering the spatial relationship among image pixels.
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FIGURE 8. Registration examples on two typical image pairs from dataset (II). (iii) Guizou; (iv) Hunan. Left: Image pair It1 and It2 acquired over the
same geographical area at two different time t1 and t2 by Chinese GF1 and Chinese GF2 respecively respectively. Right: The first column until the end
show the registration results of SIFT, SURF, CPD, GLMDTPS, ZGL_CATE and Ours. For each method, the first row shows 5× 5 checkboard and the second
row shows the transformed image It .

FIGURE 9. Registration examples on two typical image pairs from dataset (III). (v) Sichuan; (vi) GuiZhou. Left: Image pair It1 and It2 acquired over the
same geographical area at two different time t1 and t2 by small UAV. Right: The first column until the end show the registration results of SIFT, SURF,
CPD, GLMDTPS, ZGL_CATE and Ours. For each method, the first row shows 5× 5 checkboard and the second row shows the transformed image It .

Moreover, SSFA and Semi_FCM can achieve better perfor-
mance. Since SSFA employs the slow feature analysis (SFA)
algorithm to extract the most temporally invariant component

from the multi-temporal images and transform the data into a
new feature space, DI can be better generated. The compared
methods in terms of PCA_Kmeans and SSFA, Semi_FCM
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FIGURE 10. Change detection examples on two typical image pairs from dataset (I). (i) LakeOroumeih; (ii) Bastrop. (i) Yanan, Sichuan Province;
(ii) Ansun, Guizhou Province. Left: I ′t1

and I ′t2
is the division of It and It2 according to a certain ratio. Right: The first column until the end show the

change detection results of PCK_Kmeans, SSFA, Ground Turth and Ours. (i) PCK_Kmeans (TP:23; FP:8; FN:7; Precision:76.7%; Recall: 75.2%), SSFA
(TP:25; FP:5; FN:5; Precision:83.3%; Recall: 83.3%), LEGS (TP:25; FP:3; FN:5; Precision:89.2%; Recall:83.3%), Semi_FCM (TP:24; FP:5; FN:6;
Precision:82.7%; Recall: 80.0%), Ours (TP:28; FP:0; FN:2; Precision:93.3%; Recall: 100%). (ii) PCK_Kmeans (TP:22; FP:7; FN:8; Precision:73.3%;
Recall: 75.9%), SSFA (TP:27; FP:4; FN:3; Precision: 90.0%; Recall: 87.1%), LEGS (TP:26; FP:3; FN:4; Precision:89.6%; Recall:86.7%),
Semi_FCM (TP:28; FP:4; FN:2; Precision:87.5%; Recall: 93.3%), Ours (TP:29; FP:2; FN:1; Precision:96.7%; Recall: 93.4%).

FIGURE 11. Change detection examples on two typical image pairs from dataset (II). (iii) Guizou; (iv) Hunan. Left: I ′t1
and I ′t2

is the division of It and It2
according to a certain ratio. Right: The first column until the end show the change detection results of PCK_Kmeans, SSFA, Ground Turth and Ours.
(iii) PCK_Kmeans (TP:21; FP:5; FN:9; Precision:70.0%; Recall: 80.8%), SSFA (TP:24; FP:2; FN:6; Precision:80.0%; Recall: 92.3%), LEGS (TP:24; FP:2; FN:6;
Precision:80.0%; Recall: 92.3%), Semi_FCM (TP:26; FP:4; FN:4; Precision:86.7%; Recall: 86.7%), Ours (TP:29; FP:1; FN:1; Precision:96.7%; Recall: 96.7%).
(iv) PCK_Kmeans (TP:23; FP:3; FN:7; Precision:76.7%; Recall: 88.4%), SSFA (TP:25; FP:6; FN:5; Precision: 83.3%; Recall: 80.6%), LEGS (TP:26; FP:3; FN:4;
Precision:89.6%; Recall:86.7%), Semi_FCM (TP:26; FP:4; FN:4; Precision:86.7%; Recall: 86.7%), Ours (TP:29; FP:2; FN:1; Precision:96.7%; Recall: 93.3%).

FIGURE 12. Change detection examples on two typical image pairs from dataset (III). (v) Sichuan; (vi)GuiZhou. Left: I ′t1
and I ′t2

is the division of It and
It2 according to a certain ratio. Right: The first column until the end show the change detection results of PCK_Kmeans, SSFA, Ground Turth and Ours.
(v) PCK_Kmeans (TP:19; FP:5; FN:11; Precision:63.3%; Recall: 79.1%), SSFA (TP:23; FP:2; FN:7; Precision:76.7%; Recall: 92.0%), LEGS (TP:27; FP:6; FN:3;
Precision:81.8%; Recall: 90.0%), Semi_FCM (TP:27; FP:6; FN:3; Precision:81.8%; Recall: 90.0%), Ours (TP:29; FP:1; FN:1; Precision:96.7%; Recall: 96.7%).
(vi) PCK_Kmeans (TP:20; FP:3; FN:10; Precision:66.7%; Recall: 86.9%), SSFA (TP:24; FP:5; FN:6; Precision: 80.0%; Recall: 77.4%), LEGS (TP:27; FP:6; FN:3;
Precision:81.8%; Recall: 90.0%), Semi_FCM (TP:28; FP:6; FN:2; Precision:82.3%; Recall: 93.3%), Ours (TP:28; FP:2; FN:2; Precision:93.3%; Recall: 93.3%).

use semi-supervised fuzzy C-means filter the pseudolabels
from the difference image. Since LEGS can effectively
capture local contrast, texture and shape information for

saliency detection, the complex relationship between dif-
ferent global saliency cues by local estimation and global
search. Therefore, LEGS also achieve better performance.
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IV. CONCLUSION
In this paper, a robust set of change detection framework
for land cover change in mountainous terrain is proposed,
which can detect multi-temporal remote sensing image pairs
acquired by different type of sensors. The superiority of our
framework can be summarized through three main contri-
butions as follows: 1) a multi-scale feature description is
generated using layers formed via a pretrained VGG net-
work; 2) a gradually increasing selection of inliers is realized
to estimate correspondence and transformations; 3) fuzzy
C-means classifier is adopted to generate a similarity matrix
between image pair of geometric correction, deep neural
networks (DNNs) are applied to directly create a change
detection map from pre-processed image pair by bypassing
the steps of filtering or generating a difference image (DI).
The proposed framework can provide a stable change rule for
monitoring land cover change from multi-temporal data. For
the purpose of experimental evaluation, dataset was mainly
collected in the ten key land conservation regions of Sichuan,
Guizhou and Hunan, China. Compared with five state-of-
the-art registration methods and four state-of-the-art change
detection methods, our method shows better performances in
most cases.

Future studies will be conducted in two directions:
(i) thematic applications of land cover changes, such as cul-
tivated land changes; (ii) different sourcing images, such as
image pair of combination of UAV image and satellite remote
sensing image. Indeed, combining different sourcing images
will identify more regions of change in many other typical
regions with various land cover types.
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