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ABSTRACT The robust and efficient detection of infrared small target is a key technique for infrared search
and track systems. Several robust principal component analysis (RPCA)-basedmethods have been developed
recently, which have achieved the state-of-the-art performance. However, there are still two drawbacks: 1) the
false alarm ratio would raise under the heavy background clutters and noises and 2) these methods are
usually time-consuming and not suitable for real-time processing. To solve this problem, an infrared patch-
tensor (IPT) model based on weighted tensor nuclear norm is proposed in this paper. First, the infrared
image is transformed into the IPT. Considering the sum of nuclear norms adopted in the IPT model is not the
convex envelope of the tensor rank, and the solution is substantially suboptimal. The tensor nuclear norm is
adopted to recover the underlying low-rank background tensor and sparse target tensor, and the computation
complexity can be reduced dramatically with the help of the tensor Singular Value Decomposition.Moreover,
to further suppress the background clutters, a weight tensor is incorporated with tensor nuclear norm to
preserve the background edges better. Then, the separation between target and background is formulated
as a convex weighted tensor RPCA model. Finally, the proposed model can be solved by the alternating
direction method of multipliers. Extensive experiments demonstrate that the proposed model outperforms
the other state-of-the-arts in terms of performance and efficiency.

INDEX TERMS Infrared patch-tensor model, small target detection, weighted tensor robust principal
component analysis.

I. INTRODUCTION
Infrared small target detection is one of the key techniques for
various applications, such as infrared search and track (IRST)
systems and space-based surveillance systems (SBSS), where
accuracy, robustness and efficiency are indispensable. Nev-
ertheless, the infrared targets are always very small and
dim without known shape in consequence of long imag-
ing distance. Moreover, small targets are usually buried in
a complex background clutters with low signal-to-clutter
ratio (SCR), including heavy cloud clutter, sea clutter and
pixel-sized noises. Therefore, the infrared small target detec-
tion is a challenging problem and has attracted much research
attention [1]–[3].

A. RELATED WORK
Many state-of-the-art small infrared target detection
approaches have been developed in recent years, and these
methods can be classified into two categories, namely,

the single-frame detection methods and sequential detection
methods.

The sequential detection methods usually use the spatial
and temporal information of a number of frames simul-
taneously to detect target. One of representative classical
methods is three-dimensional (3D) matched filters [4], which
can detect targets with the prior knowledge of target shape
and velocity. And a new double directional filter was pro-
posed in [5] to improve the performance of weak target
detection. Then an improved 3D directional filters [6] fur-
ther improved the performance. Recently, a joint spatial-
temporal sparse recovery method was proposed in [7], where
both the motion and morphological feature of the targets are
characterized simultaneously. And a spatial-temporal local
contrast filter [8] analyzed the fluctuation of target signal in
temporal domain and spatial domain. To reduce the compu-
tational complexity, an idea of only using temporal features
was proposed in [9]. In addition, some sequential detection
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methods were developed to suppress the background clutters
and enhance the small targets in singe frame, then multiframe
accumulation is adopted to delete non-target residuals, such
as an method based on support vector machines (SVM) [10].

This kind of methods can achieve satisfactory performance
with static or slowly changing backgrounds and consistent
target trajectory in the infrared sequence. Nevertheless, these
preset assumptions fail in many applications, such as anti-
ship missiles and airplanes targets. The background would
change rapidly and the target motion might be discontin-
uous between frames in consequence of the relative high
velocity of targets to imaging systems [11]. Compared with
the sequential detection methods, the single-frame target
detection methods have some superiorities. It requires both
less prior knowledge and computational complexity. There-
fore, the single-frame target detection methods have attracted
much attention recently. The existing single-frame target
detection methods can be classified into four types: the fil-
tering methods using spatial information, the human visual
system (HVS) based methods, binary classification-based
methods and robust principal component analysis (RPCA)
based methods.

The first type of methods attempt to predict the background
component and extract targets based on spatial consistency
assumption. The representative methods include Top-Hat
filter [12], 2D least mean square (TDLMS) filter [13], Max-
Median filter [14] and other methods [15], [16]. However,
the strong edges and clutter could not be wiped out by these
methods since they also break the spatial consistency like
targets.

The human visual system (HVS) based methods are devel-
oped recently, where the small target is regarded as the
salient point in contrast to background. Some representative
method [17]–[19] measured the saliency of targets by dif-
ferent filters. In [20], the local contrast measure (LCM) is
adopted to quantify the saliency, and some works [21], [22]
have been proposed to improve the performance. However,
the performance of thesemethods would degrade for complex
background cases that the clutters are similar to the target in
saliency map.

The binary classification-based methods transformed the
original infrared image into mixture of features and then
the targets can be discriminated by trained classifiers. Some
representative works are listed as follows: artificial neural
networks [23], SVM basedmethod [24], and so on [25]. Nev-
ertheless, the performance of these methods depends heav-
ily on the features selecting and sufficient training samples,
which restrict its potential use in practical applications.

The RPCA based methods assume that the background
and target are low-rank component and sparse component,
respectively. And these methods model the sparse and low-
rank components recovery as a RPCA problem [26]–[30].
In the seminar work of infrared image-patch (IPI) model [31],
the original infrared image is transformed into patch-image
by sliding window. Then the separation problem between
target and background is modeled as a RPCA problem.

IPI model has achieved satisfying performance in some
scenarios. However, this method still would remain some
background clutters in target image due to quantify target
sparsity by l1 norm. To address this problem, a weighted
IPI model was proposed in [32] by adding the column-wise
weight to l1 norm. But it is time-consuming to compute
the column-wise weights. To further improve the perfor-
mance, a non-negative IPI model by minimizing the partial
sum of singular values (NIPPS) was proposed in [33]. How-
ever, the performance of NIPPS is sensitive to the energy
constrain ratio, and the prior knowledge of rank is hard
to estimate firstly in real application. An reweighted WIPI
model (ReWIPI) was proposed in [34] by incorporating the
weighted nuclear norm to suppress the background better.
Nevertheless, the computation complexity is much more than
other low-rank based model. To utilize more spatial correla-
tionships, a reweighted infrared patch-tensor (RIPT) model
using both nonlocal and local priors was proposed in [11].
The original images are transformed into a tensor by sliding
window. And the small target detection is achieved by solving
the low-rank tensor recovery problem. However, the existing
low-rank based methods are time-consuming, which cannot
meet the real-time processing requirements.

B. MOTIVATION
The infrared patch-tensor (IPT) model was proposed in [11]
with both nonlocal and local priors, and this model
has achieved a state-of-the-art performance for single-
frame small target detection. In [11], to minimize the
3-way background image tensor B, a convex surrogate
Trucker-rank CTrank (B) is defined as the Sum of Nuclear
Norms (SNN) [35], i.e., CTrank (B) =

∑
i

∥∥B(i)∥∥∗, i =
1, 2, 3, where B(i) is the mode-i unfold matricization of ten-
sorB. Nevertheless, the SNN used in the IPTmodel is not the
convex envelope of

∑
i rank

(
B(i)

)
[36]. Therefore, the above

model is still substantially suboptimal. And a great deal of
matrix SVD decomposition operations increase computation
complexity.

Another motivation is that the performance of vanilla
nuclear norm minimization based methods, i.e., IPI model
and RIPT model, could degrade when the amount of back-
ground patches containing strong edges might be deficient
in practical infrared images. In this case, the deficient edge
samples are also considered as sparse component globally,
like true targets, due to the rare and sparse background struc-
tures’ effects [11], which would raise the false alarm rate.
Although the RIPT model exploited the local structure prior
by incorporating the weight tensor to l1 norm to measure
the sparsity, and it does overcome this dilemma to a certain
extent, it is only applicable for some specific types of strong
edges. Guo et al. [34] analyzed that the l1 norm based sparsity
measure is not the direct reason for this problem, which
demonstrated that the performance of weighted l1 norm based
method [11] is suboptimal. And the intrinsic reason is that the
vanilla nuclear norm is only suitable for the cases of sufficient
edge samples. To solve this problem, the weighted nuclear

VOLUME 6, 2018 76141



Y. Sun et al.: IPT Model With Weighted Tensor Nuclear Norm for Small Target Detection in a Single Frame

TABLE 1. Metamathematical notations.

norm minimization (WNNM) [37] method was adopted in
ReWIPI [34] to suppress the deficient simple edges in tar-
get image by penalizing the larger singular values with
smaller weights. The WNNM has excellent performance in
image denoising [37], and it was used in ReWIPI model to
preserve the background edge in the low-rank component,
namely, the background patch image. The ReWIPI model has
achieved better performance than vanilla nuclear norm based
methods [31] for infrared small target detection. Motivated
by the satisfying background suppression performance of
WNNM method, a weighted tensor nuclear norm is also
adopted to further suppress the strong edges in our model,
which is a natural generalization of the weighted matrix
nuclear norm for tensor case.

Therefore, a weighted tensor nuclear normwith reweighted
infrared patch-tensor (WNRIPT) model is proposed in this
paper for better infrared small target detection performance
in a single frame. Our main contributions of this work are
summarized as follows:

1) Motivated by the tensor nuclear norm [38]–[40], which
is to recover a tensor of low tubal rank, the solution
to the convex TRPCA model can perfectly recover
the low-rank background component and sparse target
component.

2) Equipped with the tensor-SVD (t-SVD) factorization,
the computation of t-SVD can be more efficient than
matrix SVD decomposition used in [11], so that the
proposed WNRIPT method can be more efficient than
RIPT model.

3) Noting that the performance of vanilla nuclear norm
minimization would degrade when the strong edge
samples are insufficient. The weighted tensor nuclear
norm minimization [34], [37] is extended for tensor
case, which can further suppress the strong edges.

The experimental results demonstrate the superiority of
WNRIPT method for background suppression and target
detection task over the existing state-of-art methods. And the
proposed model is more efficient and suitable for real-time
application.

The remainder of this paper is structured as follows.
Section II gives some notations and briefly introduce the
IPT model. The proposed model is described in Section III.
Section IV provides extensive experiments on synthetic and
real infrared images to validate the effectiveness of proposed
method. We conclude this work in Section V.

II. NOTATIONS AND IPT MODEL
In this section, we introduce several mathematical notations
and IPT model firstly.

A. NOTATIONS
The mathematical notations used in this paper are defined in
table 1.

B. IPT MODEL
Generally, a single infrared small target image can be
formulated as:

fD = fB + fT + fN (1)

where fD, fB, fT and fN represent the original image, back-
ground image, target image and noise image, respectively.
And the IPT model propsed in [11] used a window sliding
from top left to the bottom right over original image, and
the image patches are staked into a 3D tensor. Model (1) is
transformed into tensor form:

D = B+T +N (2)

where D,B,T ,N ∈ Rn1×n2×n3 are the original patch-
tensor, background patch-tensor, target patch-tensor and
noise patch-tensor, respectively. n1 and n2 are the patch height
and width, n3 is the patch number.
The background image is usually considered to change

slowly, so there are high correlation property among its local
and nonlocal patches. And the low-rank property of all mode-
i, i = 1, 2, 3 unfolding matrices of the 3-way background
patch-tensor was analyzed in [11], i.e., the singular values of
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all the unfolding matrices decrease to zero rapidly. The low-
rank property of these unfolding matrices are depicted as:

rank
(
B(i)

)
≤ ri (3)

where ri, i = 1, 2, 3 is a constant to describe the complexity
of the background image.

The small target usually occupies only several pixels, so it
is relatively small to the whole image. The target patch-tensor
is an extremely sparse tensor, which can be depicted as:

‖T ‖0 ≤ k (4)

where k is a integer determined by the number and size of the
small target.

The noise is assumed to be additive white Gaussian noise,
and the Frobenius norm of the noise patch tensor satisfies
‖N ‖F ≤ δ. Based on the IPT model, the infrared small target
detection task can be formulated to the following problem:

min
B,T
‖B‖∗ + λ‖T ‖0, s.t. B + T = D (5)

where λ is a weighting parameter.
The above problem is a NP-hard problem. And the

SNN [35] was adopted in [11], i.e., CTrank (B) =∑
i

∥∥B(i)∥∥∗, i = 1, 2, 3. And the ‖T ‖0 is replaced by
‖T ‖1 to make the above problem tractable. Besides, `1
norm of the target patch-tensor was incorporated with weight
tensor W , including the local structure weight WLS
and sparsity enhancing weight Wk

SE. The reweighted IPT
model (RIPT) can be formulated as below [11]:

min
B,T

3∑
i=1

∥∥B(i)∥∥∗+λ‖WT � T ‖1, s.t. B+T = D (6)

whereWT =WLS �Wk
SE.

III. THE PROPOSED MODEL
Motivation part has pointed out that SNN is not the convex
envelop of

∑
i rank

(
B(i)

)
, the solution of model (6) is sub-

stantially suboptimal to model (5). In this section, we adopt
the new tensor nuclear norm [38]–[40], which can perfectly
recover the low-rank background patch-tensor and sparse
target patch-tensor.

A. TENSOR NUCLEAR NORM
To improve the target detection performance, we incorporate
the novel tensor nuclear norm [38]–[40] to solve model (5).

Some definitions of tensor are introduced in this subsection
firstly. For tensorA ∈ Rn1×n2×n3 , we denote Ā ∈ Cn1×n2×n3

as the result of Discrete Fourier Transformation (DFT) on
A along the third dimension: Ā = fft (A, [ ], 3). Con-
versely, we can compute A from Ā by inverse FFT: A =
ifft
(
Ā, [ ], 3

)
. And we denote Ā ∈ Rn1n3×n2n3 as a block

diagonal matrix with its ith block on the diagonal as the

ith frontal slice Ā(
i)
of Ā:

Ā = bdiag
(
Ā
)
=


Ā(

1)

Ā(
2)

. . .

Ā(
n3)


where bdiag( ) is an operator that transforms the tensor to the
block diagonal matrix. And we have a following important
property for Ā(

i)
[41]:Ā

(1)
∈
n1×n2

conj
(
Ā(

i)
)
= Ā(

n3−i+2)
, i = 2, · · · ,

⌊
n3 + 1

2

⌋
(7)

Definition 1 (T-Product [42]): Let tensor A ∈ Cn1×n2×n3

and B ∈ Cn1×l×n3 . Then the t-productA∗B is defined to be
a tensor of size n1 × l × n3:

A ∗B = fold (bcirc (A) · unfold (A)) (8)

where bcirc (A) is the block circulant matrix of size n1n3 ×
n2n3, which is defined as:

bcirc (A) =


A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)
...

...
. . .

...

A(n3) A(n3−1) · · · A(1)


Definition 2 (F-Diagonal Tensor [42]): A ∈ Rn1×n2×n3

tensor is called f-diagonal if each of its frontal slices is a
diagonal matrix.
Definition 3 (T-SVD [38]): Let A ∈ Rn1×n2×n3 . Then it

can be factorized as:

A = U ∗ S ∗ V∗ (9)

whereU ∈ Rn1×n1×n3 , whereV ∈ Rn2×n2×n3 are orthogonal,
and S ∈ Rn1×n2×n3 is an f-diagonal tensor.
Definition 4 (Tensor Tubal Rank [38]): Let A ∈

Rn1×n2×n3 and A = U ∗ S ∗ V∗, the tensor tubal rank of
A is defined as the number of nonzero singular tubes of S,
which is defined as follow:

rankt (A) = # {i,S (i, i, :) 6= 0}

Definition 5 (Tensor Nuclear Norm [38]): Let A = U ∗
S ∗ V∗ be the t-SVD of A ∈ Rn1×n2×n3 . The tensor nuclear
norm is defined as:

‖A‖∗ = 〈S,I〉 =
r∑
i=1

S (i, i, 1)

=
1
n3

r∑
i=1

n3∑
j=1

S̄ (i, i, j) (10)

where r = rankt (A), and S (i, i, 1) is the entries on the
diagonal of the first slice of S, which have the decreasing
order property, i.e.,

S (1, 1, 1) ≥ S (2, 2, 1) ≥ · · · ≥ S
(
n(2), n(2), 1

)
≥ 0
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where n(2) = min (n1, n2). And the entries on the diagonal of
S̄ (:, :, j) are the singular values of Ā (:, :, j).

B. WEIGHTED BACKGROUND IMAGE
TENSOR NUCLEAR NORM
Noticing that the performance of nuclear norm minimiza-
tion would degenerate when the edge samples in back-
ground image patch is insufficient. To solve this deficiency,
we use the weighted tensor nuclear norm to further constrain
background patch-tensor, which is defined as:

‖B‖WB,∗ =
1
n3

r∑
i=1

n3∑
j=1

WB (i, i, j) S̄ (i, i, j) (11)

Wk+1
B (i, i, j) =

1

S̄k
(i, i, j)+ εB

(12)

where k is the iteration reweighted counter, S̄ (:, :, j) are the
singular values of B̄ (:, :, j), which can be obtained by t-SVD.
εB is a positive constant. And Wk+1

B ∈ Rr×r×n3 is a weight
tensor for tensor nuclear norm in (k + 1) th iteration.

C. THE PROPOSED MODEL
Based on the above analysis, we can generalize a novel
reweighted infrared patch-tensor model based on weighted
tensor nuclear norm (WNRIPT), which can be formulated as:

min
B,T
‖B‖WB,∗+λ‖WT � T ‖1, s.t. B+T = D (13)

D. SOLUTION OF WNRIPT MODEL
In this section, we incorporate the Alternating Direction
Method of Multipliers (ADMM) [43] and the inexact aug-
mented Lagrangian multiplier (IALM) [44] method to solve
the proposed model. Model (13) can be reformulated as
follow:

L (B,T ,Y, µ) = ‖B‖WB,∗ + λ‖WT � T ‖1
+
µ

2
‖B+T −D‖F + 〈Y,B+T −D〉

(14)

where Y ∈ Rn1×n2×n3 denote the Lagrangian multiplier
tensors, and µ is a positive penalty scalar.
The above problem (14) can be minimized by solving two

subproblems by ADMM, the (B,T ,Y) are solved alterna-
tively as follows:

Bk+1
= argmin

B
‖B‖Wk

B,∗

+
µk

2

∥∥∥∥B − (D − T k
−

(
µk
)−1

Yk
)∥∥∥∥2

F
(15)

T k+1 = argmin
B

λ‖Wk � T ‖∗

+
µk

2

∥∥∥Bk −

(
D −Bk − (µk)

−1Yk

)∥∥∥2
F

(16)

Yk+1
= Yk

+ µk
(
Bk+1

+ T k+1
−D

)
(17)

The problem (15) can be solved by tensor singular value
thresholding (t-SVT) [38], [40], [45], which is described

in Algorithm 1, and the calculation times of matrix SVD
operations can be reduced by almost half with property (7).

Bk+1
= D

(µk)
−1Wk

B

(
D − T k

−

(
µk
)−1

Yk
)

(18)

Algorithm 1 Solve (18) by t-SVT

Input: Y ∈ Rn1×n2×n3

Output: Dµ (Y)
1. Compute Ȳ = fft (Y, [ ], 3)
2. Perform matrix SVT operator on each frontal slice
of Ȳ by
for i = 1, · · · ,

⌈
n3+1
2

⌉
do

[U, S,V ] = SVD
(
Ȳ (

i)
)

W̄ (i)
= U · (S− µ)+ · V

∗

end for
for i =

⌈
n3+1
2

⌉
+ 1, · · · , n3 do

W̄ (i)
= conj

(
W̄ (n3−i+2)

)
end for

3. Compute Dµ (Y) = ifft
(
¯W, [ ], 3

)
And problem (16) can be solved by element-wise shrinkage

operator [46]:

T k+1
= F

(µk )
−1λWk

T

(
D −Bk − (µk)

−1Yk

)
(19)

Finally, the detailed solving process is described in
Algorithm 2.

E. DETECTION PROCEDURE
The detailed detection procedure is described as follows:

1) The original infrared image fD is transformed into a
patch-tensorD ∈ Rn1×n2×n3 by using a slidingwindow
of size n1 × n2.

2) The local structure weighted target patch-tensor WLS
are constructed from corresponding local structure fea-
ture map [11].

3) The patch-tensor fD is decomposed into background
patch-tenorB and target patch-tenorT byAlgorithm 1.

4) The background image fB and target image fT are
reconstructed from background patch-tenor B and tar-
get patch-tenor T by the uniform average of estima-
tors (UAE) reprojection scheme [47].

5) Finally, the target can be segmented by the adaptive
threshold [31]:

tup = max (υmin, µ+ kσ) (20)

where µ and σ are the mean and standard deviation
of the target image fT , respectively. k and υmin are
constant determined experientially. A pixel at (x, y) can
be segmented as target if fT (x, y) > tup.

IV. EXPERIMENTS
In this section, we conduct experiments using infrared images
from different scenarios. And four state-of-the-art methods
are compared with the proposed method.
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Algorithm 2 Solve (13) by ADMM
Input: image tensor data D, parameter λ
Initialize: B0

= T 0
= Y0

= 0, W0
B = I , W0

SE = I ,
W0

T =WLS �W0
SE , µ0 = 1e − 3,µmax = 1e7, k = 0,

ε = 1e− 8, ρ = 1.1
While: not converged do
Step 1:Update Bk+1 by

Bk+1
= D

(µk)
−1Wk

B

(
D − T k

−

(
µk
)−1

Yk
)

Step 2: Update T k+1 by

T k+1
= F

(µk )
−1λWk

T

(
D −Bk − (µk)

−1Yk

)
Step 3: Update Yk+1 by

Yk+1
= Yk

+ µk
(
Bk+1

+ T k+1
−D

)
Step 4: Update Wk+1

B by

Wk+1
B (i, i, j) =

1

S̄k
(i, i, j)+ εB

Step 5: Update Wk+1
T by

for (i, j, p) ∈ [1, . . . , n1]× [1, . . . , n2]× [1, . . . , n3] do

Wk+1
SE (i, j, p) = δ

(
T k (i, j, p)

)
endWk+1

=WLS �Wk+1
SE

Step 6:Update µk+1 by

µk+1 = min
(
ρµk , µmax

)
Step 7: Check the convergence conditions∥∥∥Bk+1

−Bk
∥∥∥
∞

≤ ε,

∥∥∥T k+1
− T k

∥∥∥
∞

≤ ε,∥∥Bk+1
+ T k+1

−D
∥∥
∞
≤ ε

or rankt
(
T k+1)

= rankt
(
T k)

Step 8: Update k = k + 1
end While
Output: Bk , T k

A. EXPERIMENTAL SETTINGS
1) DATASETS
Firstly, the proposed model is tested on some real infrared
images to validate its background suppression ability. And
the scenarios are varying from flat background with salient
targets to complex background with heavy clutters, and the

targets of the latter scenario are extremely dim. In the follow-
ing experiments, we focus on the real datasets with complex
background and dim targets, and the detailed characteristics
of five real infrared sequences are described in Table 2.

2) METRICS
The most important metrics of evaluating the detection per-
formance are the detection probability Pd and false-alarm
rate Fa, which are defined as following [12]:

Pd =
number of true detections
number of actual targets

(21)

Fa =
number of false detections

number of images
(22)

And the receiver operating characteristic (ROC) curves shows
the tradeoff between Pd and Fa. In addition, if a target
simultaneously meet two requirements: (i) the result and
a ground truth have overlap pixels; (ii) the pixel distance
between centers of the ground truth and the result is within
a threshold [31], it is considered to be true detection.

Then, the local signal-to-noise ratio gain (LSNRG), back-
ground suppression factor (BSF), signal to clutter ratio
gain (SCRG) [11] metrics are adopted to evaluate the back-
ground suppression ability of methods in this section. Since
LSNRG, BSF and SCRG need to be computed in a local
neighborhood region. We adopt a variable neighboring area
with respect to the target [31]. Let the size of the target
be a × b, the size of its neighborhood region is (a+ 2d) ×
(b+ 2d), where d is the width of neighboring area and we
set d = 20, as described in Fig. 1. Then the three metrics are
defined as follows:

LSNRG =
LSNRout

LSNRin
(23)

where LSNRout and LSNRin are the LSNR values before
and after processing, and LSNR = PT

/
PB. PT and PB are

the maximum pixel value of the target and neighborhood,
respectively. BSF is defined as below:

BSF =
σin

σout
(24)

where σin and σout are the standard variances of background
neighborhood before and after processing. And the SCRG is
defined as the ratio of signal-to-clutter ratio (SCR) before and
after processing:

SCRG =
SCRout

SCRin
(25)

TABLE 2. Characteristics of five real infrared sequences.
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FIGURE 1. The neighboring background rectangle of a small target.

the local SCR is defined as follows [48]:

SCR =
|µt − µb|

σb
(26)

where µt is the average pixel value of the target region,
µb and σb denote the average pixel value and the standard
deviation of the neighborhood region.

Note that the computation of LSNRG, BSF and SCRG
includes standard deviation which may be close to zero when
the suppressed background is very clean. In this case, these
metrics may approach to infinity. To address this problem,
another metric, namely contrast gain (CG) is also adopted to
evaluate the ability to enlarge gray value difference between
background and small targets, which is helpful to extract true
targets and defined as follows [49]:

CG =
CONout

CONin
(27)

where CONin and CONout are the contrast (CON) of
the original and result images, respectively, and CON is

defined as:

CON = |µt − µb| (28)

where µt and µb are the same as those in Eq. (26).
In general, higher values means better background sup-

pression ability for the above three metrics. And it should be
noted that these three metrics only evaluate the suppression
ability in local neighboring area, but not globally.

3) BASELINES AND PARAMETER SETTINGS
To further evaluate the propose method, we compare the
performance of WNRIPT with four state-of-the-art meth-
ods. Considering that the RPIT outperforms many methods
in [11], including TDLMS [13], three HVS-based methods
(PFT [50], MPCM [22], WLDM [51]), and three low-rank
methods ( PRPCA [26], WIPI [32], NIPPS [33]). For briefly,
our focus is put on the comparison with RIPT method.
So we choose two traditional filtering-based methods (Max-
Median [14], Top-Hat [12]) and the two low-rank method
IPI [31], and RPIT [11]. Table 3 gives the detailed parame-
ter settings. To make this a fair comparison, the IPI [31] is
solved by ADMM. All the tested methods are implemented
in MATLAB 2014a on a laptop of 2.6 GHz and 4GB RAM.

B. VALIDATION OF WNRIPT
In this section, the proposed method are validated for its
robustness to different scenes, including single target scene,
multiple targets scene and noisy cases.

1) PERFORMANCE OF SINGLE TARGET SCENE
In Fig.2, five real single target infrared images are given in
the first row, and their corresponding separated target images

TABLE 3. Detailed parameter setting for tested methods.

FIGURE 2. Single target scenes. The first row of (a)-(e) are five original infrared images for experiments. The second row
of (a)-(e) are corresponding separated target images by the WNRIPT model.
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FIGURE 3. Multiple target scenes. The first row of (a)-(e) are five original infrared images for experiments. The second row of (a)-(e)
are corresponding separated target images by the WNRIPT model.

FIGURE 4. The first and third rows of (a)-(e) are images contaminated by additive white Gaussian noise with standard deviation
of 10 and 20 for experiments. The second and forth rows of (a)-(e) are corresponding separated target images by the WNRIPT model.

are presented in the second row. For observing conveniently,
the targets are labeled with red boxes. It can be shown from
Fig.2 that the background clutters are suppressed perfectly
and each target is detected successfully.

2) PERFORMANCE OF MULTIPLE TARGETS SCENE
The first row of Fig.3 give five multiple targets scenes. A tar-
get is embedded into the background images as follows:

fD (x, y) =


max (pTr (x − x0, y− y0) , fB (x, y))

x ∈ (1+ x0, am+ x0)

y ∈ (1+ y0, bn+ y0)

fB (x, y) otherwise
(29)

where Tr denotes resizing the targets with size of am × bn
by using the bicubic interpolation.(x0, y0) is the position of
the left upper corner of the target image in the background
image produced randomly, p is weight of the target image
also produced randomly within the range [h, 255], h is the
maximum value of the whole image [31]. And it can be seen
from the second row of Fig.3 that the background clutters
are suppressed clearly, leaving the true targets the only sole
component.

3) PERFORMANCE OF NOISY CASES
The robustness to noise of a small target detection is another
key metric for evaluating the method. We test the perfor-
mance of our method in the noisy cases with different noise
level, the first and third rows of Fig.4 are infrared images
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FIGURE 5. ROC curves for Sequences 1-5 with respect to different patch sizes, sliding steps and weighting parameters. Row 1: Different patch
sizes. Row 2: Different sliding steps. Row 3: Different weighting parameters. (a) Sequence 1. (b) Sequence 2. (c) Sequence 3. (d) Sequence 4.
(e) Sequence 5.

contaminated by additive white Gaussian noise with stan-
dard deviation of 10 and 20. And it can be seen from the
corresponding second and fourth rows in Fig.4, the proposed
model can still detect the dim target in severe noise cases.

C. PARAMETER ANALYSIS
To further analyze the influence of the parameters on perfor-
mance of the proposed method. In this subsection, we eval-
uate the related parameters, including the patch size, sliding
step and weighting parameter λ, which can affect the perfor-
mance. And the values of parameters can be finely tunned
for the optimal performance on different real infrared images.
We evaluate these parameters on Sequence 1-5 by the ROC
curves in Fig.5. It should be noted that the performances
obtained by tunning only one parameter with others fixed can
be suboptimal.

1) PATCH SIZE
Patch size is a decisive factor to the detection performance
and computation complexity. A larger patch size usually
can enhance the sparsity of the infrared small target. Nev-
ertheless, it would increase the computation complexity and
reduce the correlationship between the nonlocal background
component. In order to find a tradeoff between target spar-
sity, background correlationship and computation complex-
ity, we vary the patch size from 20 to 60 with 10 intervals and
give the ROC curves in the first row of Fig.5. We can obtain
the following conclusions from the results. First, the pro-
posed method is not very sensitive to varying patch size. The
performance of patch size among 30-60 is similar. Second,
we can observe the results of patch size 20 and 70, it can be
obtain that it’s not optimal to set patch size too small or too
large, because a too small patch size might cause high false-
alarm rate while a too large patch size keeps a low detection
probability.

2) STEP SIZE
The step size also has a great influence on the infrared image
patch tensor size. Obviously, a larger step size can reduce
the time of matrix SVD operation, namely, the computation
complexity. In this experiment, we fix the patch size as 60×60
and var the step size from 10 to 35with 5 intervals. The results
are shown in the second row of Fig.5. It can be concluded
that the performance of larger step size is better than that
of smaller one. Because a smaller step size is easier to raise
false alarms, especially for complex and noisy backgrounds,
namely, Sequence 2-5. However, we can also observe that the
performance step 35 is worse than that of step 30. Because
too large step size might reduce the correlationship between
background image patch-tensor and reduce detection
probability.

3) WEIGHTING PARAMETER
We set λ = L

/√
min (n1, n2) n3 in our method. But it should

be noted that it is possible to further improve the performance
by tunning λ more carefully. We vary L from 0.7 to 2.4, and
the results are shown in the third row of Fig.5. It can be
concluded that a larger λ can obtain low false-alarm ration
with acceptable performance. And the ROC curves of L =
0.7 and L = 1 suggest that it might not be suitable to set L
too small, because their false-alarm ration are higher than that
of other values of L.

D. COMPARISON WITH COMPETITIVE METHODS
In this subsection, the performance of the proposed model
is compared with four other state-of-the-art methods to vali-
date its superiority. The separated target images by 5 tested
methods are shown in Fig.6 for five representative frames
of real images, namely, Sequence 1-5. It can be observed
that the classical Max-Median filter can enhance the targets
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FIGURE 6. Separated target images of the representative frames in Sequence 1-5 by 5 tested methods. Row 1: 58th frame of
Sequence 1. Row 2: 38th frame of Sequence 2.Row 3: 18th frame of Sequence 3.Row 4: 59th frame of Sequence 4.Row 5: 98th frame
of Sequence 5. And (a)-(e) columns are the separated target images of (a) Max-median, (b) Top-hat, (c) IPI, (d) RIPT and
(e) WNRIPT methods.

of Sequence 1-2 and Sequence 5 from the first column of
Fig.6, however, many non-target pixels are enhanced simulta-
neously, which can cause high false-alarm ratios. And Max-
Median filter fails in Sequence 3-4 that the targets are buried
in clutters and noise. Top-Hat filter also does enhance the
targets in Sequence 1-4, but many non-targets and clutters
still remain in the target images. And it fails in Sequence 5.
In addition, Top-Hat filter is very sensitive to the real target
size. The unsatisfactory performance of the above two clas-
sical filter method is related to their strict preset target size,
which is usually unknown in real datasets.

For the last three low-rank assumption based methods,
the suppression of background clutters are relatively better
than that of filter methods. It can be observed from the third
column of Fig.6, the IPI model can detect all the targets in
Sequence 1-5. Nevertheless, the separated target images still
remain some background residuals in consequence of the
deficiency effects. And the performance of RIPT is better
than that of IPI, less background clutters remained in the
target images. However, we can observe from the results
on Sequence 2-5, a small amount non-target pixels are not
wiped out clearly. Based on theweighted tensor nuclear norm,

we can see that the non-target pixels are suppressed throughly
by the proposed model from the last column of Fig.6. For
example, the target separated by RIPT is dimmer than the
background residuals in the 18th frame of Sequence 3,
which could raise false-alarm ratio. And we can observe
the corresponding result by the proposed model, these
remaining residuals are wiped out clearly. So the proposed
model achieves the best performance in background clutters
suppression among 5 tested methods.

In addition, the quantitative evaluation indices are used to
compare the background suppression ability of the tested 5
methods. The results of 5 tested methods for the above repre-
sentative frames in Sequence 1-5 are shown in Table 4 and 5.
It can be concluded that the proposed method gets the highest
score for all tested images and indices. And it should be noted
that Inf are quite common for low-rank basedmethods, which
denotes that the target neighborhood regions are suppressed
to zero.

To further demonstrate the superiority of the proposed
method over other methods, the ROC curves of Sequence 1-5
by 5 methods are provided for comparison in Fig.7. We can
conclude that the performance of low-rank based method are
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TABLE 4. Quantitative evaluation of the tested methods for the representative images of sequence 1-3.

TABLE 5. Quantitative evaluation of the tested methods for the representative images of sequence 4-5.

FIGURE 7. ROC curves of detection results of five real infrared Sequences. (a) Sequence 1. (b) Sequence 2. (c) Sequence 3. (d) Sequence 4.
(e) Sequence 5.

TABLE 6. Algorithm complexity and computational time comparisons of different methods.

FIGURE 8. Comparison of iteration rate and tubal rank of separated target images by RIPT and WNRIPT. (a) Sequence 1. (b) Sequence 2.
(c) Sequence 3. (d) Sequence 4. (e) Sequence 5.

better than filter-based methods. The performance of RIPT
method is better than IPI method. And the proposed method
can achieve the highest detection probability than other meth-
ods for the same false-alarm ratio, which means it achieves
the best performance.

E. ALGORITHM COMPLEXITY AND COMPUTATION TIME
The proposed model is equipped with the tensor nuclear
norm and solved by ADMM, which can be guaranteed
to converge [38]. The computation complexity and com-
putation time for the above five representative frames in
Sequence 1-5 with different methods are shown in Table 6.
For Max-Median and Top-Hat filter methods, L denotes

the size of the structure element, and the image size is
M × N . And for low-rank based methods, the computa-
tion complexity are mainly derived from the matrix SVD.
For a patch-image with size of m × n, the computation
cost of matrix SVD is O(mn2). For the image-patch ten-
sor methods, let the input image tensor D ∈ Rn1×n2×n3 .
The RIPT method needs to compute SVD of three matrix,
namely, mode-1, mode-2 and mode-3 unfolding of input
image tensor, and the corresponding matrix size are n1 ×
(n2 · n3), n2 × (n1 · n3) and n3 × (n1 · n2). The computa-
tion complexity of SVD are n1n2n3 (n1n2 + n2n3 + n1n3).
Considering the iteration number k , the cost of RIPT
method is O (kn1n2n3 (n1n2 + n2n3 + n1n3)). For the
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proposed method, with the help of the property (7),
it only needs to computing FFT and

⌈
n3+1
2

⌉
SVDs of

n1 × n2 matrices in each iteration, the whole complexity
is O(kn1n2n3(logn3 + (n2

⌈
(n3 + 1)

/
2
⌉
)
/
n3)), which can

reduce the computational complexity dramatically.
Another important factor is the iteration number k .

We compare iteration numbers and the tensor tubal rank of
target image-patch tensor separated by RIPT and WNRIPT
on the above five representative frames in Sequence 1-5.
From Fig.8, it can be observed that the WNRIPT equipped
with weighted tensor nuclear norm can converge with less
iteration numbers and achieve smaller tensor tubal rank. The
intrinsic reason is that the solution obtained by SNN is subop-
timal. So the proposed model is more efficient than IPI and
RIPT methods, which means WNRIPT is more suitable for
real-time application.

V. CONCLUSION
To further improve the performance of infrared small target
detection and background clutters suppression, a WNRIPT
model is developed in this paper. By incorporating a weighted
tensor nuclear norm, the low-rank background and sparse
target separation problem is modeled as a tensor robust prin-
cipal component model, which can be solved very efficiently
by ADMM and t-SVT. Experimental results validate the
superiority of our proposed method over other competitive
methods in background suppression and target detection, and
the proposed method is much more efficient than other low-
rank based methods, which shows the potential for real-time
application.
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