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ABSTRACT Due to recent developments in hardware and software technologies for mobile phones, people
depend on their smartphones more than ever before. Today, people conduct a variety of business, health,
and financial transactions on their mobile devices. This trend has caused an influx of mobile applications
that require users’ sensitive information. As these applications increase so too have the number of malicious
applications that steal users’ sensitive information. Through our research, we developed a reverse engineering
framework (RevEng). Within RevEng, the applications’ permissions were selected, and then fed into machine
learning algorithms. Through our research, we created a reduced set of permissions by using extremely
randomized trees that achieved high accuracy and a shorter execution time. Furthermore, we conducted
two approaches based on the extracted information. Approach one used binary value representation of the
permissions. Approach two used the features’ importance; we represented each selected permission (in
approach one) by its weighted value instead of the binary value. We conducted a comparison between the
results of our two approaches and other related work. Our approaches achieved better results in both accuracy
and time performance with a reduced number of permissions.

INDEX TERMS Malware application, reverse engineering, machine learning, static analysis, android

permissions, android security.

I. INTRODUCTION

Due to recent developments in hardware and software tech-
nologies for mobile phones, people depend on their smart-
phones more than ever before. As of 2017, more than
407 million mobile devices were sold as reported by Gart-
ner; devices that operate on Android represented 86% of
the total market [1]. Although this popularity is beneficial
to Google’s operating system, Android, this popularity has
encouraged malicious developers to target Android users.
F-Secure, a cybersecurity corporation, has reported that more
than 99% of total malware attacks on mobile devices have
targeted Android devices [2]. These attacks include any
software or a piece of code, called a payload, that per-
formed harmful activities and therefore comprised the con-
fidentiality, integrity, or availability of the victims’ data or
resources [3]-[6].

Alongside researchers in both academia and the indus-
try, Google has devoted significant attention to security
issues in Android’s software stack’s components, especially
at the application level, such as in license and application
verification, security vulnerability, and intrusion detection.
Nevertheless, as smartphones advance and incorporate high-
resolution cameras and online services such as banking

and GPS, so too increases the number of malicious applica-
tions (or malware apps); users’ data and resources are always
at risk.

As defined by Google, there are 17 categories of mal-
ware, including spyware and backdoor attacks, which are
categorized based on the malware’s behavior [7]. A malware
could secretly be embedded in a set of deceptive applications
and can be identified by finding specific files, or similar
app’s characteristics (i.e. signature or requested permissions),
on the set. This set containing the malware’s files is identified
as a family of the malware [8].

For instance, the DroidDream, also known as RootCager,
was discovered in 2011 in the official Android market,
GooglePlay. DroidDream family is a Trojan that collects
the mobile device’s ID/serial number and other related
information by requesting administrator access on the
device. This Trojan can be detected by locating the two
code files rageagainstthecage and exploid in the fam-
ily members [9]-[12]. This family is one example of
advanced and sophisticated malware. In order to pro-
tect the system’s resources, Android, like Linux, uses
a security system that employs a forced access control
mechanism.
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A. ANDROID ACCESS CONTROL

Android uses a security system that employs a forced access
control mechanism. It requires apps to request permissions
prior to utilizing any of the system’s resources [13]. All of the
permissions must be declared inside an XML file called the
AndroidManifest where essential information on the app and
its components are located (i.e., package name and version
number, activities and intents, content providers, broadcast
receivers, services, and permissions). Prior to Android ver-
sion 6, the user was required to give a full access to everything
that an app requested at the time of the installation. This is
risky because, besides the average user’s lack of knowledge
about the permissions requested, is that an app can deceive
the user by requesting permissions unrelated to the app’s
main functionality. A malware app, then, can leverage that
by accessing the device’s resources to perform its malicious
acts [14]-[16].

In Android, there are more than 300 permissions, each
of which has a level of protection considered either nor-
mal or dangerous [17]. A designation of normal implies low
risk to isolated resources. All permissions with normal level
are automatically granted to the app by the system without the
user’s consent (i.e., SET_WALLPAPER). Permissions catego-
rized as dangerous, however, have a higher risk on the user’s
data and the device (i.e., ANSWER_PHONE_CALLS). For
this reason, dangerous permissions require the user’s consent
prior to installation in order for access to be granted to the
application [17]. This paper examines the permissions that
malware families request as a feature of our static analysis.

B. PROBLEM STATEMENT

Classifying malware families is an important approach for
anti-virus companies (AVs). AVs, as well as other researchers,
try to find new malware that does not correlate to previ-
ously found malware. Nevertheless, malicious developers try
to find ways to bypass the AVs’ detection by both closely
studying the behavior of AVs and also by applying various
techniques to get around their detection techniques, such as
code obfuscation.

With this track of research, AVs will be able to match new
malware faster by applying the same malware signatures that
they detect and then adopting patches that they developed for
previously identified malware. Moreover, this research will
support malware researchers in their effort to study undiscov-
ered malware.

C. CONTRIBUTION OF THE PAPER

This paper has proposed a novel framework, i.e., RevEng,
that classifies 1,233 samples of malware. Our framework
identifies an optimal, highly accurate set of permissions out
of all of the permissions provided by an Android operating
system. We employed the feature’s ranking algorithm used
in Extremely Randomized Trees. Our set of permissions is
tested on six classifiers to assign malware to their malware
families. RevEng achieved a high prediction accuracy rate,
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higher than that found by other related work. To evaluate our
approach, we listed a detailed comparison with StomDroid’s
framework results [18]. In summary, the proposed contribu-
tions of this paper are as follows:

e Reverse engineering tool. We designed and imple-
mented a RevEng that reverse-engineers malware data
sets based on their families and extracts the permissions
from apps.

o Multi-class classification. We targeted a multi-class
classification problem to assign a detected malware
sample to previously studied and dissected malware
families.

o Candidate subset. The proposed approach was able to
identify a minimal subset of features with higher accu-
racy and a minimum execution time as compared to other
related work. The candidate subset is listed in Table. 6.

The remainder of the paper is organized as follows:
Section II surveys the related work. We present our frame-
work in Section III. Section IV shows the experimental setup
and the implementation. Section V discusses the results.
Finally, in Section VI, we conclude the paper.

Il. RELATED WORK

Continuous advancements in machine learning contribute
notably to security, especially in malware. There are two
methods of classification based on the feature (attribute) of an
observation: binary and multi-class. A binary classification is
based on predicting an observation in one of two classes. With
a multi-class classification, though, an observation is classi-
fied into one class, out of multiple classes (more than two).
For instance, in malware detection using binary classification,
a classifier categorizes an app as malware or benign. When
multi-class classification is used, the classifier instead assigns
the app into one of at least three classes (i.e., spyware, rootkit,
ransomware, etc.). The data set used in a binary classification
is a collection of both benign and malware applications, while
in multi-class classifications, the data set contains malware
families and their samples.

Malware detection using machine learning algorithms
(MLA) analyzes the malware to perform feature collection.
In general, there are two main types of analyses. Dynamic
(or behavioral) analysis studies the malware while the appli-
cation is in the execution state. This analysis is effective in
monitoring an application’s activities in a controlled envi-
ronment (sandbox) [19] and in understanding all commu-
nications within the device (i.e., communication between
the app’s components or IPC) and outside the device (i.e.,
networks traffic). Static analysis focuses on examining and
collecting malware app attributes (i.e., callback sequence [20]
and application programming interface (API) calls) while
the application is in a static state. This analysis presents an
advantage in its execution speed and low cost to detect the
malware [21], since it does not require the app to be executed.

Several researchers have addressed general security risks
on mobile devices, such as privacy, vulnerability, and
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information leakage [22]-[28]. Other related works have
been published on detecting or classifying malware apps
using the following analysis techniques: static [29]-[31],
dynamic [32], [33], or a combination of both
techniques [18], [34]-[36].

In Drebin [29], the authors proposed a light framework
capable of running on mobile devices; Drebin analyzed apps
statically and gathered many features, such as the applica-
tion’s requested permissions and API calls. Analyzed apps
were then classified, using machine learning, into benign
class or malicious class. RNPDroid [37] is a framework for
risk mitigation based on analyzing the application’s permis-
sions. The authors identified four risk factors: high, medium,
low, or no risk. Based on the factors, the app is binarily
classified as malicious or benign using statistical analyses
such as ANOVA and T-test. The framework was tested on the
MODroid [38] data set with 400 samples. In [39], the authors
proposed an MLDP model to rank permissions requested
by the malicious app. This model used association rules to
select a set of features and then used SVM for binary clas-
sification. Their SVM was trained with 5,000 different types
of malware from 178 malware families and 5,000 types of
benign software. Although the authors used malware families
in their classification, the actual focus was not on multi-class
classification. The effectiveness of MLDP was compared
to 135 set of permissions. MalDozer [40] is a detection and
multi-class classification framework based on API calls made
by the application. Their framework studied the behavior of
the application from its API calls’ sequence and pattern. Mal-
Dozer used Deep Learning to classify malware applications
into families.

Droid-Sec [36] used MLA and a deep learning classifier;
it collected 200 features using static as well as dynamic
analyses. The framework in [41] studied the dependency
between the user’s inputs (triggers) and the number of sen-
sitive operations generated from apps’ critical function calls.
The framework used static and dynamic analyses to classify
the app binarily. Their approach was tested on 482 malware
and 708 benign apps. StormDroid [18] collected four sets of
features: permissions, API calls, sequence, and the activities
of the app; the framework used real-time stream processing
and applied binary classification using machine learning to
classify the app as benign or malicious.

The previous works gathered as many features as possible
to achieve high accuracies, neglecting the overall perfor-
mance overhead by increasing the number of features. This is
especially important because some of the features collected
might not have had a direct relationship to the malware being
studied. As mentioned earlier, the number of applications
available has increased significantly; therefore, there is a
need to find a proper and minimum set of features to help
researchers in detecting and classifying malware apps.

lll. FRAMEWORK
RevEng consists of four main components that include
the Dataset, Family, App, and Analysis components.
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TABLE 1. List of abbreviations used in the article.

Abbreviation Meaning

RevEng Reverse Engineering Framework

AV Anti-virus

API Application Programming Interface

SF Selected Features

SFcand Selected Features Candidate C SF

MBcand Binary Matrix of SFcand

Mweand Weighted Matrix of SFcand

AAPT Android Asset Packaging Tool

SDK Software Development Kit

p Permission

w Feature’s Weight

ExF Extracted Features Values (0’s and 1’s for binary)
MLA Machine Learning Algorithm (Classifier)

SVM Support Vector Machine Algorithm (Classifier)
ID3 Decision Tree Algorithm - ID3 (Classifier)

RF Random Forest Algorithm (Classifier)

NN Neural Network Algorithm (Classifier)

KN K-nearest Neighbors Algorithm (Classifier)
ET Extremely Randomized Trees Algorithm (Classifier)
TP True Positive

TN True Negative

FP False Positive

FN False Negative

Each component parses and collects information on the data
set. The Dataset, Family, and App components are included
in the preprocessing stage, whereas the Analysis component
is used in the processing stage. To explain our framework,
we used the term extracted features to indicate the result of
collecting the selected features from the application; this is
not to be confused with feature extraction terminology.

In the following section, we identify the functionality of
each component in our RevEng framework and their interac-
tions in order to classify malware apps and predict malware
families.

The following is a general flow of the framework. More
details are added in the following section. The list of abbre-
viations used in the manuscript is provided in Table. 1.

1) The Dataset is needed to parse and maintain informa-
tion about the malware families in the data set. The
component takes the data set and assigns each family to
a Family component to be processed. At the end of the
preprocessing stage, the Dataset processes the results
of each Family component, constructs, and prepare the
input matrices (Mpegng and Myyeqnqg) for the Analysis
component in the processing stage.

2) The Family component processes one malware family
and builds a list of all apps in the family. The com-
ponent maintains and removes any duplicates of an
application by calculating the hash value. Each member
of the malware family is assigned to an App component
to be processed. In the end, the Family component
processes the result obtained from each App component
and passes them back to the Dataset.

3) The App component represents a malware app.
It reverse-engineers the malware application, extracts
the features and passes them back to the Family
component.
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FIGURE 1. The contents of components and the relation between them.

4) The Analysis component is where the framework
applies MLA to generate, train, and validate classifi-
cation models. Then uses the data from the Dataset to
predict the malware families.

A. FRAMEWORK COMPONENTS

Dataset: This component contains general information
about the data set such as FamiliesList (a list of families in the
data set), SFcanq (a candidate subset of selected features SF),
Mpcana (a two-dimensional binary matrix result from apply-
ing SFcand)s Mweana (a two dimensional weighted matrix
result from applying the weight of each features in SFcgnq),
and NoOfThreads (number of threads set for framework effi-
ciency; the default is 4).

Family: This component contains detailed information on
a malware family. Parameters such as FamilyName (name of
the family), AppList (a list of apps in the malware family),
PermissionsUnion (a set of all permissions declared in the
malware family), and PermissionsInter (the intersection set of
all permissions declared in the malware family) are collected
by this component.

App: This component is responsible for reverse engineer-
ing a malware app. It extracts information such as AppName
(the application file’s name in the data set), AppPackage (the
application’s package name), Permissions (a list of permis-
sions declared in the malware app), and ExtractedFeatures (a
binary array result from applying feature selection in SFcgnq)-

Analysis: This component consists of several machine
learning algorithms or classifiers (MLAs). Each MLA creates
a model with pre-set hyperparameters. These hyperparame-
ters are elected and tuned based on trial and error to produce
optimal results in our experiments. The MLAs’ models are
trained, validated, and tested on the Mp.gs and Mweand
that are produced by the Dataset component as inputs to
each model in order to classify each input into its predicted
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malware family. In this component, we take advantage of the
Scikit Learn libraries [42] to implement machine learning
algorithms. Fig. 1 demonstrates the Dataset, Family, and App
components’ data structure with pseudo-code.

B. FEATURES

The features used are the app’s permissions as requested by
the malware apps (samples). The focus is on finding the
optimal set of permissions, a set that gives high accuracy, out
of all of the permissions provided by an Android operating
system. To accomplish this, one of the ensemble classifiers,
called Extremely Randomized Trees (ET), [43] was utilized.
ET, like Random Forest (RF) [44], is based on building a
large collection (forest) of decision trees (DT). Each DT uses
the whole set to build the tree and, for each split, finds the
optimal cut-point based on information gain. RF develops
each tree by selecting a random set of data and a random set
of features. The target class of the observation predicted is
based on the majority vote. For ET, the algorithms add more
randomness to RF such that on each split in a tree, instead
of selecting the optimal cut-point, ET selects a feature at
random. In addition, ET ranks the importance of each feature
using Gini importance [45].

Features Reduction: The SF here is the permissions feature
used in StormDroid [18]. In order to extract the important
features, we run an ET algorithm on the SF. As a result,
each feature in SF is assigned an importance value between
zero and one, based on the information that the attribute
provides in ET’s DT. All features with zero importance have
been excluded, since such features either do not help classify
malware into families or have some dependency between fea-
tures. By collecting all features greater than zero, we have a
Candidate Selected Features set (SFcang), which is a reduced
set of features as shown in Fig. 2. The ultimate SFcyuq
contains 42 out of 59 permissions. The SFc,,q chosen, with
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FIGURE 2. Extraction of the important features from SF and generating SF -

ACCESS_WIFI_STATE
WRITE_APN_SETTINGS
PROCESS_OUTGOING_CALLS
INSTALL_PACKAGES
WRITE_SMS

SET WALLPAPER

Permission

ACCESS_COARSE_LOCATION
ACCESS_FINE_LOCATION
READ_LOGS

CHANGE_WIFI_STATE

Importance

FIGURE 3. Top 10 permissions based on their importance.

their importance, are included in Appendix Table. 6. The top
10 permissions with high importance are shown in Fig. 3.

Our analysis of the data set shows that certain permis-
sions are requested by many malware families. For exam-
ple, INTERNET (which permits opening a network socket)
is requested by more than 82% of the malware families;
READ_PHONE_STATE (which permits a reading of the
device’s phone number, a status of ongoing calls, and phone
accounts in the device) is requested by more than 60.5%
of the malware families; and ACCESS_NETWORK_STATE
(which permits querying into the status of the network, such
as if the device is connected to a network) is requested by
more than 42.5% of the malware families. These permissions
are also the top three permissions in both [12] and [18].
For this reason, these permissions are not critical in order
to identify and classify one malware family from another.
Therefore, the ET classifier assigns a very low importance
to such features, as shown in Table. 6.

C. DATA PREPROCESSING

Upon beginning the execution of the framework, the Dataset
component is initialized (Dataset.Init) with the data set. Once
the component is ready, RevEng starts loading and parsing
the data set by executing Dataset.Load. In order to start
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creating the families’ objects, RevEng forks a number of
threads (NoOfThreads) assigned in the initialization during
the execution of Dataset.Run as illustrated in Fig. 4.

Multi-threading utilizes the processor and increases the
reverse engineering process of the applications as illustrated
in Fig. 5. All objects of the Family component—in this case,
malware families—are inserted in a list (i.e., Q). Each thread
processes one object as a task, (i.e., #;). Each task initializes a
family (Family.Inif), loads a family’s contents, and starts pars-
ing a family’s application (Family.Parse) as shown in Fig. 4.
Family.Parse initializes the App component (App.init) and
parses the component (App. Parse).

The App.Parse method, in turn, extracts from the appli-
cation information such as the package name and all per-
missions in the manifest file, and then checks the existence
of each permission in SF in the app’s list of permissions.
To extract the package name and the declared permissions
in the app’s manifest file, we used the Android Asset Pack-
aging Tool (AAPT), which is part of the Android Software
Development Kit (SDK). AAPT is a utility with powerful
features that decompiles the package’s permissions listed
in the Application manifest XML file; it can also extract
the resources’ table. The items’ indices in ExF,4 (extracted
features) and SF (selected feature) are in the same order.
If an app A has a feature p | p € SF in index i, then
ExF4(i) = 1, otherwise ExF' (i) = 0, and so on.

ExFa(i) = 1 1fpeé/\p€SF,
0 otherwise

Each App’s ExF is cascaded back to the app’s family and

then to the Dataset components as shown in Fig. 6.

SF = (p1 - Dj ..pn)
ExFy = (ExF(l) .. ExF(j) .. ExF(n))

The Dataset joins all the ExFs in Mp.4,q for analysis as
illustrated in Fig. 6. The size of Mpcguq 1S m X n, where
m = 1, 233 (total number of samples) and n = 42 (number
of permissions in SFcy,q) as shown previously in Fig. 2.

wij = pjj X importance(SFcanqlj])
i=1,2, .. |samples|, j=1,2,..|SFcana| (1)

In order to generate the Weighted Candidate Matrix
Mwecana, €ach element is calculated as in (1). Each p;; value
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Input: datasetLocation as DL,
NoOfThreads as NT
Output: matrix as M

Dataset:
Init(DL, NT):
<[nitialize local variables>

Load():
<Parse the data set & locate the families>

Run():
Jforeach familyi in dataset.families:
IF familyiInit(FL, SL=4) THEN
start thread; from ThreadPool(NT)
thread; exec familyi.Parse()

Input: familyLocation as FL,
sizeLimit as SL
Output: familyName, appList,
appPermissions, appExF

Family:
Init(FL, SL)

<Initialize local variables>

Build AppList

IF |apps| < SL THEN
Return 0

ELSE:

Return 1

Parse():

foreach appi in family.apps:
appi.Init(AL)
appi.Parse()

Input: appLocation as AL, SF

Output: permissions as PRs,
extractFeatures as ExF,
appPackage as AP

App:
Init(AL, SF):
<[nitialize local variables>

Parse():
Extract the AP
Retrieve PRs

// building ExF
Sforeach itemi in SF:
IF item in app. PRs THEN

ExFi =1
ELSE
ExFi=0

FIGURE 4. Pseudo-code of the Dataset, Family, and App components,
which show the main parts of the code.

in Mpcang is multiplied by the permission’s importance as
generated by ET for the permission’s index j. The Y matrix
contains the malware families (classes: ¢;) of each malware
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FIGURE 5. Multi-threading processes of the list of tasks in queue.

TABLE 2. The data set used in RevEng. A list of malware families with
their samples.

Malware Family No of Samples Malware Family No of Samples

GingerMaster 4 jSMSHider 16
HippoSMS 4 ADRD 22
FakePlayer 6 YZHC 22
GPSSMSSpy 6 DroidKungFu2 30
Asroot 8 DroidKungFul 34
BeanBot 8 DroidDreamLight 46
Bgserv 9 GoldDream 47
Gone60 9 KMin 52
RogueSPPush 9 Pjapps 58
SndApps 10 Geinimi 69
Plankton 11 DroidKungFu4 96
zHash 11 BaseBridge 122
Zsone 12 AnserverBot 187
DroidDream 16 DroidKungFu3 309
Total 1,233

sample at row i in both Mpeang and Mweang. Mpeang and Y
matrices are shown below:

pi1 - p1j - Pin | C1
pit -+ Pij - Pin| Ci
Pml = Pmj " Pmn | Cm

~——
MBcand Y

The overall framework is shown in Fig. 7.

IV. EXPERIMENTAL SETUP

A. DATA SET

We relied on the data set provided by [18]. This data set
contained 49 malware families with a total of 1,260 applica-
tions. Each family differed in size between 1 and 300 appli-
cations. In this research, families that contained less than 4
applications have been excluded to maintain accurate results.
Table. 2 lists the malware families and their samples used
in our experiments, for a total of 1,233 applications in
28 families.

B. IMPLEMENTATION

The programming language Python was used in all of our
implementations. Python is supported by the research com-
munity in various fields, and it has rich libraries. Scikit-
Learn is one of the communities that has implemented
Machine Learning Algorithms [42]. In our Analysis com-
ponent, we used the following classifiers: Support Vector
Machine (SVM), Decision Tree (ID3), Random Forest (RF),
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FIGURE 6. Preparation of Mg.q,q and Myyq,q4 matrices for processing.

= m
l'l l'l
malware
samples

FIGURE 7. RevEng framework.
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FIGURE 8. Comparison between StormDroid and our approach based on

classifiers’ accuracies.

Neural Network (NN), K-Nearest Neighbor (KN), and Bag-
ging, as implemented by [42].

Accuracy
Let S
C

(TP+TN)/(TP+TN +FP+FN)
a malware sample and

a malware family or class, then

TP(True — Positive) =
prediction : S € C, actual — classification : S € C
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Bagging

Classifier

FIGURE 9. Comparison between StormDroid and our approach based on

time performance.

FP(False — Positive) =
prediction : S € Cactual — classification : S ¢ C

TN (True — Negative) =
prediction : S ¢ C, actual — classification : S ¢ C
FN(False — Negative) =

prediction : S ¢ C, actual — classification : S € C

(@)
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TABLE 3. Detailed performance (prediction accuracy and time) for each
classifier.

MBcand MWcand

Classifier | Worst Avg. Best Time | Worst Avg. Best Time
SVM 85.16 85.16 85.16 0.28 | 25.06 25.06 25.06 0.44
NN 95.78 95.78 9578 1.57 | 87.27 8727 8727 5.17
D3 94 9452 9473 0.06 | 94.08 94.42 94.89 0.06
KN 95.46 9546 9546 0.06 | 93.59 93.59 93.59 0.05
Bagging | 90.59 91.56 9221 021 | 90.11 91.09 92.05 0.18
RF 94.73 9581 96.27 0.08 | 9538 9599 96.43 0.08

C. EVALUATION

Cross-Validation: Since the number of malware families
is very low, as is the number of malware samples, we used
the cross-validation (or stratified k-fold) technique to split
and alternate between the training and testing sets. We set
up the number of folds (k=4) such that on each iteration,
the classifier used 75% of a family’s samples for training
and 25% for testing. In the processing stage, the Analysis
component is fed with Mpegng and Mweana. Each classifier
trains, validates, and tests the model on the two inputs using
the aforementioned setup. As a result of the analysis, we cal-
culated each classifier’s accuracy (2) and the execution time
in seconds.

V. RESULTS AND DISCUSSION
We conducted 100 experiments using Mpcang and Mweand
on each classifier. The experiment measured two factors: the
classifier’s prediction accuracy and the time performance.
For all total experiments on each classifier, we calculated the
worst, the best, and the average accuracy and the average exe-
cution time. Table. 3 shows the details of the experiments in
two main columns: the first and second column represent the
results of our approach with Mpcgnqg and Mycana , respectively.

The results show that using Mpcqnq, RE, KN, and NN
achieve high accuracy (average ~ 95.68% and standard devi-
ation &~ 0.19%) in comparison with other classifiers (such as
SVM, ID3, and Bagging). From the best selected classifiers,
we can see that RF achieves the highest prediction, on aver-
age, of 95.81%. In terms of time performance, KN and RF
complete their analyses in 0.06 seconds and 0.08 seconds,
respectively, while NN achieves the lowest performance.
SVM has the highest misclassification rate using Mpeand-

For Mycand, the results have higher variations than the pre-
vious approach. The top three classifiers are RF, KN, and ID3
(average ~ 94.66% and standard deviation =~ 0.21%). The
RF classifier also achieves the highest accuracy of 95.99%.
SVM produces the lowest accuracy score using this feature.
In terms of time performance, we can see that RF completed
the experiments in 0.08 seconds on average. KN completed
faster than the previous approach with an execution time
of 0.05 seconds.

Comparing our two approaches, Mpcana and Mwcand,
we can see that RF achieves the highest accuracy with a
rate of 95.99% using Mwcanqa, which was slightly higher than

VOLUME 6, 2018

TABLE 4. Classifiers’ average accuracies and time performance(s) for
100 experiments.

MBcand Mwecand StormDroid [18]

Classifier | Accuracy Time | Accuracy Time | Accuracy Time
SVM 85.16 0.28 25.06 0.44 80.05 0.36

NN 95.78 1.57 87.27 5.17 95.05 1.92
ID3 94.52 0.06 94.42 0.06 94.52 0.07
KN 95.46 0.06 93.59 0.05 95.54 0.08
Bagging 91.56 0.21 91.09 0.18 91.65 0.26
RF 95.81 0.08 95.99 0.08 95.97 0.08

TABLE 5. Comparison between classifiers in terms of the best accuracy
and best time performance.

MBcand Mwecand StormDroid [18]
Best Accuracy Time | Accuracy Time | Accuracy Time
Accuracy | 95.81 (RF) 0.08 | 95.99 (RF) 0.08 | 95.97 (RF) 0.08
Time |94.52 (ID3) 0.06 |93.59 (KN) 0.05 |94.52 (ID3) 0.07

when using Mpcanad, by 0.18%. RF’s took 0.08 seconds using
both approaches.

We applied StormDroid’s feature (59 permissions) [18] as
shown in Table. 4 and Fig. 8. We found that the RF classifier
produced the highest accuracy of 95.97% versus the other
classifiers. RF also completed in 0.08 seconds.

In Table. 5, we summarized our comparison based on
two categories: the classifiers’ highest accuracies and the
classifiers’ best time performances. Of all three approaches,
RF achieved the highest accuracy on Mw.qng Wwith a rate
of 95.99% in 0.08 seconds. For the best execution time,
we found that KN was the best on Mycqnq With 0.05 seconds
and an accuracy of 93.59%. Regarding time performance,
we can see that ID3 performed faster using Mpcqnq, although
the classifier had the exact same accuracy as in the related
work [18].

From our previous discussion, we concluded that Mwcqnq
achieved 0.02% better accuracy than StormDroid [18] with
an exactly equal execution time. The accuracy of the RF
classifier using all the three approaches is similar, in general.
However, minimizing the number of features from 59 to 42
(0.28% of features) means a reduction in the dimensionality.

In conclusion, our framework improved the accuracy.
Moreover, when using Mwcamq With KN, we achieved a
shorter execution time than the related work [18] with a
37.5% improvement as shown in Fig. 9. A sample confusion
matrix of our RF is presented in Appendix Fig. 10.

VI. CONCLUSION AND FUTURE WORK

Malware detection and analysis have been a problem for
many years. With the escalation in the number of applica-
tions, especially on mobile devices, researchers have studied
malware in-depth using various tools, such as machine learn-
ing. In this paper, we adopted machine learning to analyze and
identify malware features such as the permissions requested
by malware. Our focus in this paper was to find a small subset
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TABLE 6. List of SFcg,q with their importance (o > 0).

Permission Weight Permission Weight
CHANGE_WIFI_STATE 17.242% RESTART_PACKAGES 0.852%
READ_LOGS 12.695% CHANGE_NETWORK_STATE 0.786%
ACCESS_FINE_LOCATION 6.395% RECEIVE_MMS 0.624%
ACCESS_COARSE_LOCATION 4.865% BLUETOOTH 0.575%
SET_WALLPAPER 4.846% DELETE_PACKAGES 0.565%
WRITE_SMS 4.580% DISABLE_KEYGUARD 0.555%
INSTALL_PACKAGES 4.204% WRITE_SETTINGS 0.528%
PROCESS_OUTGOING_CALLS 4.089% CALL_PHONE 0.513%
WRITE_APN_SETTINGS 4.035% RECEIVE_WAP_PUSH 0.410%
ACCESS_WIFI_STATE 3.807% INTERNET 0.395%
RECEIVE_SMS 2.919% READ_EXTERNAL_STORAGE 0.381%
SEND_SMS 2.854% CLEAR_APP_CACHE 0.123%
ACCESS_NETWORK_STATE 2.794% WRITE_SYNC_SETTINGS 0.087%
READ_SMS 2.498% BLUETOOTH_ADMIN 0.086%
RECEIVE_BOOT_COMPLETED 2.265% READ_SYNC_SETTINGS 0.076%
READ_PHONE_STATE 1.901% ACCESS_MOCK_LOCATION 0.070%
READ_CONTACTS 1.871% RECORD_AUDIO 0.023%
VIBRATE 1.733% SYSTEM_ALERT_WINDOW 0.019%
MODIFY_PHONE_STATE 1.691% N/A -

MODIFY_AUDIO_SETTINGS 1.673% N/A -

WAKE_LOCK 1.624% N/A -

GET_ACCOUNTS 1.574% N/A -

BROADCAST_STICKY 1.168% N/A -

of permissions that could be used to classify applications
into their proper malware families. We utilized Extremely
Randomized Trees to further reduce the number of features
from 59 to 42 (by 0.28%). In our two approaches, we repre-
sented the selected features as binary values, Mpcgnq, and as
weighted values, Myqnq. We evaluated our approaches based
on the accuracy and time performance of six classifiers, and
we achieved both a higher accuracy by 0.02% (RF, 95.99%)
and a shorter time performance by 37.5% with KN over
StormDroid [18]. In future work, malware sensitive API calls
should be investigatedto identify a subset that will further
improve our framework’s ability to predict malware families.
We also recommend using deep neural network (DNN) clas-
sifier in the future. Because DNN performs better with large
data sets, AndroZoo [46] could be a good candidate for our
future experiments.

APPENDIX
See Table 6.
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