IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 23, 2018, accepted November 16, 2018, date of publication November 29, 2018,

date of current version December 27, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2883975

Android Malware Permission-Based Multi-Class
Classification Using Extremely Randomized Trees

FAHAD ALSWAINA™ AND KHALED ELLEITHY ", (Senior Member, IEEE)

Computer Science and Engineering Department, University of Bridgeport, Bridgeport, CT 06604, USA

Corresponding author: Fahad Alswaina (falswain@my.bridgeport.edu)

ABSTRACT Due to recent developments in hardware and software technologies for mobile phones, people
depend on their smartphones more than ever before. Today, people conduct a variety of business, health,
and financial transactions on their mobile devices. This trend has caused an influx of mobile applications
that require users’ sensitive information. As these applications increase so too have the number of malicious
applications that steal users’ sensitive information. Through our research, we developed a reverse engineering
framework (RevEng). Within RevEng, the applications’ permissions were selected, and then fed into machine
learning algorithms. Through our research, we created a reduced set of permissions by using extremely
randomized trees that achieved high accuracy and a shorter execution time. Furthermore, we conducted
two approaches based on the extracted information. Approach one used binary value representation of the
permissions. Approach two used the features’ importance; we represented each selected permission (in
approach one) by its weighted value instead of the binary value. We conducted a comparison between the
results of our two approaches and other related work. Our approaches achieved better results in both accuracy
and time performance with a reduced number of permissions.

INDEX TERMS Malware application, reverse engineering, machine learning, static analysis, android

permissions, android security.

I. INTRODUCTION

Due to recent developments in hardware and software tech-
nologies for mobile phones, people depend on their smart-
phones more than ever before. As of 2017, more than
407 million mobile devices were sold as reported by Gart-
ner; devices that operate on Android represented 86% of
the total market [1]. Although this popularity is beneficial
to Google’s operating system, Android, this popularity has
encouraged malicious developers to target Android users.
F-Secure, a cybersecurity corporation, has reported that more
than 99% of total malware attacks on mobile devices have
targeted Android devices [2]. These attacks include any
software or a piece of code, called a payload, that per-
formed harmful activities and therefore comprised the con-
fidentiality, integrity, or availability of the victims’ data or
resources [3]-[6].

Alongside researchers in both academia and the indus-
try, Google has devoted significant attention to security
issues in Android’s software stack’s components, especially
at the application level, such as in license and application
verification, security vulnerability, and intrusion detection.
Nevertheless, as smartphones advance and incorporate high-
resolution cameras and online services such as banking

and GPS, so too increases the number of malicious applica-
tions (or malware apps); users’ data and resources are always
at risk.

As defined by Google, there are 17 categories of mal-
ware, including spyware and backdoor attacks, which are
categorized based on the malware’s behavior [7]. A malware
could secretly be embedded in a set of deceptive applications
and can be identified by finding specific files, or similar
app’s characteristics (i.e. signature or requested permissions),
on the set. This set containing the malware’s files is identified
as a family of the malware [8].

For instance, the DroidDream, also known as RootCager,
was discovered in 2011 in the official Android market,
GooglePlay. DroidDream family is a Trojan that collects
the mobile device’s ID/serial number and other related
information by requesting administrator access on the
device. This Trojan can be detected by locating the two
code files rageagainstthecage and exploid in the fam-
ily members [9]-[12]. This family is one example of
advanced and sophisticated malware. In order to pro-
tect the system’s resources, Android, like Linux, uses
a security system that employs a forced access control
mechanism.

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 6, 2018

Personal use is also permitted, but republication/redistribution requires IEEE permission.

76217

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8042-1598
https://orcid.org/0000-0001-9239-5035

IEEE Access

F. Alswaina, K. Elleithy: Android Malware Permission-Based Multi-Class Classification

A. ANDROID ACCESS CONTROL

Android uses a security system that employs a forced access
control mechanism. It requires apps to request permissions
prior to utilizing any of the system’s resources [13]. All of the
permissions must be declared inside an XML file called the
AndroidManifest where essential information on the app and
its components are located (i.e., package name and version
number, activities and intents, content providers, broadcast
receivers, services, and permissions). Prior to Android ver-
sion 6, the user was required to give a full access to everything
that an app requested at the time of the installation. This is
risky because, besides the average user’s lack of knowledge
about the permissions requested, is that an app can deceive
the user by requesting permissions unrelated to the app’s
main functionality. A malware app, then, can leverage that
by accessing the device’s resources to perform its malicious
acts [14]-[16].

In Android, there are more than 300 permissions, each
of which has a level of protection considered either nor-
mal or dangerous [17]. A designation of normal implies low
risk to isolated resources. All permissions with normal level
are automatically granted to the app by the system without the
user’s consent (i.e., SET_WALLPAPER). Permissions catego-
rized as dangerous, however, have a higher risk on the user’s
data and the device (i.e., ANSWER_PHONE_CALLS). For
this reason, dangerous permissions require the user’s consent
prior to installation in order for access to be granted to the
application [17]. This paper examines the permissions that
malware families request as a feature of our static analysis.

B. PROBLEM STATEMENT

Classifying malware families is an important approach for
anti-virus companies (AVs). AVs, as well as other researchers,
try to find new malware that does not correlate to previ-
ously found malware. Nevertheless, malicious developers try
to find ways to bypass the AVs’ detection by both closely
studying the behavior of AVs and also by applying various
techniques to get around their detection techniques, such as
code obfuscation.

With this track of research, AVs will be able to match new
malware faster by applying the same malware signatures that
they detect and then adopting patches that they developed for
previously identified malware. Moreover, this research will
support malware researchers in their effort to study undiscov-
ered malware.

C. CONTRIBUTION OF THE PAPER

This paper has proposed a novel framework, i.e., RevEng,
that classifies 1,233 samples of malware. Our framework
identifies an optimal, highly accurate set of permissions out
of all of the permissions provided by an Android operating
system. We employed the feature’s ranking algorithm used
in Extremely Randomized Trees. Our set of permissions is
tested on six classifiers to assign malware to their malware
families. RevEng achieved a high prediction accuracy rate,

76218

higher than that found by other related work. To evaluate our
approach, we listed a detailed comparison with StomDroid’s
framework results [18]. In summary, the proposed contribu-
tions of this paper are as follows:

e Reverse engineering tool. We designed and imple-
mented a RevEng that reverse-engineers malware data
sets based on their families and extracts the permissions
from apps.

o Multi-class classification. We targeted a multi-class
classification problem to assign a detected malware
sample to previously studied and dissected malware
families.

o Candidate subset. The proposed approach was able to
identify a minimal subset of features with higher accu-
racy and a minimum execution time as compared to other
related work. The candidate subset is listed in Table. 6.

The remainder of the paper is organized as follows:
Section II surveys the related work. We present our frame-
work in Section III. Section IV shows the experimental setup
and the implementation. Section V discusses the results.
Finally, in Section VI, we conclude the paper.

Il. RELATED WORK

Continuous advancements in machine learning contribute
notably to security, especially in malware. There are two
methods of classification based on the feature (attribute) of an
observation: binary and multi-class. A binary classification is
based on predicting an observation in one of two classes. With
a multi-class classification, though, an observation is classi-
fied into one class, out of multiple classes (more than two).
For instance, in malware detection using binary classification,
a classifier categorizes an app as malware or benign. When
multi-class classification is used, the classifier instead assigns
the app into one of at least three classes (i.e., spyware, rootkit,
ransomware, etc.). The data set used in a binary classification
is a collection of both benign and malware applications, while
in multi-class classifications, the data set contains malware
families and their samples.

Malware detection using machine learning algorithms
(MLA) analyzes the malware to perform feature collection.
In general, there are two main types of analyses. Dynamic
(or behavioral) analysis studies the malware while the appli-
cation is in the execution state. This analysis is effective in
monitoring an application’s activities in a controlled envi-
ronment (sandbox) [19] and in understanding all commu-
nications within the device (i.e., communication between
the app’s components or IPC) and outside the device (i.e.,
networks traffic). Static analysis focuses on examining and
collecting malware app attributes (i.e., callback sequence [20]
and application programming interface (API) calls) while
the application is in a static state. This analysis presents an
advantage in its execution speed and low cost to detect the
malware [21], since it does not require the app to be executed.

Several researchers have addressed general security risks
on mobile devices, such as privacy, vulnerability, and

VOLUME 6, 2018

F. Alswaina, K. Elleithy: Android Malware Permission-Based Multi-Class Classification

IEEE Access

information leakage [22]-[28]. Other related works have
been published on detecting or classifying malware apps
using the following analysis techniques: static [29]-[31],
dynamic [32], [33], or a combination of both
techniques [18], [34]-[36].

In Drebin [29], the authors proposed a light framework
capable of running on mobile devices; Drebin analyzed apps
statically and gathered many features, such as the applica-
tion’s requested permissions and API calls. Analyzed apps
were then classified, using machine learning, into benign
class or malicious class. RNPDroid [37] is a framework for
risk mitigation based on analyzing the application’s permis-
sions. The authors identified four risk factors: high, medium,
low, or no risk. Based on the factors, the app is binarily
classified as malicious or benign using statistical analyses
such as ANOVA and T-test. The framework was tested on the
MODroid [38] data set with 400 samples. In [39], the authors
proposed an MLDP model to rank permissions requested
by the malicious app. This model used association rules to
select a set of features and then used SVM for binary clas-
sification. Their SVM was trained with 5,000 different types
of malware from 178 malware families and 5,000 types of
benign software. Although the authors used malware families
in their classification, the actual focus was not on multi-class
classification. The effectiveness of MLDP was compared
to 135 set of permissions. MalDozer [40] is a detection and
multi-class classification framework based on API calls made
by the application. Their framework studied the behavior of
the application from its API calls’ sequence and pattern. Mal-
Dozer used Deep Learning to classify malware applications
into families.

Droid-Sec [36] used MLA and a deep learning classifier;
it collected 200 features using static as well as dynamic
analyses. The framework in [41] studied the dependency
between the user’s inputs (triggers) and the number of sen-
sitive operations generated from apps’ critical function calls.
The framework used static and dynamic analyses to classify
the app binarily. Their approach was tested on 482 malware
and 708 benign apps. StormDroid [18] collected four sets of
features: permissions, API calls, sequence, and the activities
of the app; the framework used real-time stream processing
and applied binary classification using machine learning to
classify the app as benign or malicious.

The previous works gathered as many features as possible
to achieve high accuracies, neglecting the overall perfor-
mance overhead by increasing the number of features. This is
especially important because some of the features collected
might not have had a direct relationship to the malware being
studied. As mentioned earlier, the number of applications
available has increased significantly; therefore, there is a
need to find a proper and minimum set of features to help
researchers in detecting and classifying malware apps.

lll. FRAMEWORK
RevEng consists of four main components that include
the Dataset, Family, App, and Analysis components.

VOLUME 6, 2018

TABLE 1. List of abbreviations used in the article.

Abbreviation Meaning

RevEng Reverse Engineering Framework

AV Anti-virus

API Application Programming Interface

SF Selected Features

SFcand Selected Features Candidate C SF

MBcand Binary Matrix of SFcand

Mweand Weighted Matrix of SFcand

AAPT Android Asset Packaging Tool

SDK Software Development Kit

p Permission

w Feature’s Weight

ExF Extracted Features Values (0’s and 1’s for binary)
MLA Machine Learning Algorithm (Classifier)

SVM Support Vector Machine Algorithm (Classifier)
ID3 Decision Tree Algorithm - ID3 (Classifier)

RF Random Forest Algorithm (Classifier)

NN Neural Network Algorithm (Classifier)

KN K-nearest Neighbors Algorithm (Classifier)
ET Extremely Randomized Trees Algorithm (Classifier)
TP True Positive

TN True Negative

FP False Positive

FN False Negative

Each component parses and collects information on the data
set. The Dataset, Family, and App components are included
in the preprocessing stage, whereas the Analysis component
is used in the processing stage. To explain our framework,
we used the term extracted features to indicate the result of
collecting the selected features from the application; this is
not to be confused with feature extraction terminology.

In the following section, we identify the functionality of
each component in our RevEng framework and their interac-
tions in order to classify malware apps and predict malware
families.

The following is a general flow of the framework. More
details are added in the following section. The list of abbre-
viations used in the manuscript is provided in Table. 1.

1) The Dataset is needed to parse and maintain informa-
tion about the malware families in the data set. The
component takes the data set and assigns each family to
a Family component to be processed. At the end of the
preprocessing stage, the Dataset processes the results
of each Family component, constructs, and prepare the
input matrices (Mpegng and Myyeqnqg) for the Analysis
component in the processing stage.

2) The Family component processes one malware family
and builds a list of all apps in the family. The com-
ponent maintains and removes any duplicates of an
application by calculating the hash value. Each member
of the malware family is assigned to an App component
to be processed. In the end, the Family component
processes the result obtained from each App component
and passes them back to the Dataset.

3) The App component represents a malware app.
It reverse-engineers the malware application, extracts
the features and passes them back to the Family
component.

76219

IEEE Access

F. Alswaina, K. Elleithy: Android Malware Permission-Based Multi-Class Classification

Dataset
component

Family
component

App
component

= ~ 4 3

i~ ' N

N e FamilyName; 3 g AppName; Q‘

j :

Datasetloc o AppsList; .

P W3 ppsList; : e AppPackage; N P2
amiliesList = PermissionsUnion; S Permissions; ~ .

SFcand 3 Permissionsinter; = ExtractedFeatures; g

> 2 2

S =

etc = « etc \‘é etc 2

g N Y N 5

S ~)

Ky Y

QO : an object of a component

ij €N

t = No. of families

y = No. of apps

u = No. of permissions

p - an Android permission

FIGURE 1. The contents of components and the relation between them.

4) The Analysis component is where the framework
applies MLA to generate, train, and validate classifi-
cation models. Then uses the data from the Dataset to
predict the malware families.

A. FRAMEWORK COMPONENTS

Dataset: This component contains general information
about the data set such as FamiliesList (a list of families in the
data set), SFcanq (a candidate subset of selected features SF),
Mpcana (a two-dimensional binary matrix result from apply-
ing SFcand)s Mweana (a two dimensional weighted matrix
result from applying the weight of each features in SFcgnq),
and NoOfThreads (number of threads set for framework effi-
ciency; the default is 4).

Family: This component contains detailed information on
a malware family. Parameters such as FamilyName (name of
the family), AppList (a list of apps in the malware family),
PermissionsUnion (a set of all permissions declared in the
malware family), and PermissionsInter (the intersection set of
all permissions declared in the malware family) are collected
by this component.

App: This component is responsible for reverse engineer-
ing a malware app. It extracts information such as AppName
(the application file’s name in the data set), AppPackage (the
application’s package name), Permissions (a list of permis-
sions declared in the malware app), and ExtractedFeatures (a
binary array result from applying feature selection in SFcgnq)-

Analysis: This component consists of several machine
learning algorithms or classifiers (MLAs). Each MLA creates
a model with pre-set hyperparameters. These hyperparame-
ters are elected and tuned based on trial and error to produce
optimal results in our experiments. The MLAs’ models are
trained, validated, and tested on the Mp.gs and Mweand
that are produced by the Dataset component as inputs to
each model in order to classify each input into its predicted

76220

malware family. In this component, we take advantage of the
Scikit Learn libraries [42] to implement machine learning
algorithms. Fig. 1 demonstrates the Dataset, Family, and App
components’ data structure with pseudo-code.

B. FEATURES

The features used are the app’s permissions as requested by
the malware apps (samples). The focus is on finding the
optimal set of permissions, a set that gives high accuracy, out
of all of the permissions provided by an Android operating
system. To accomplish this, one of the ensemble classifiers,
called Extremely Randomized Trees (ET), [43] was utilized.
ET, like Random Forest (RF) [44], is based on building a
large collection (forest) of decision trees (DT). Each DT uses
the whole set to build the tree and, for each split, finds the
optimal cut-point based on information gain. RF develops
each tree by selecting a random set of data and a random set
of features. The target class of the observation predicted is
based on the majority vote. For ET, the algorithms add more
randomness to RF such that on each split in a tree, instead
of selecting the optimal cut-point, ET selects a feature at
random. In addition, ET ranks the importance of each feature
using Gini importance [45].

Features Reduction: The SF here is the permissions feature
used in StormDroid [18]. In order to extract the important
features, we run an ET algorithm on the SF. As a result,
each feature in SF is assigned an importance value between
zero and one, based on the information that the attribute
provides in ET’s DT. All features with zero importance have
been excluded, since such features either do not help classify
malware into families or have some dependency between fea-
tures. By collecting all features greater than zero, we have a
Candidate Selected Features set (SFcang), which is a reduced
set of features as shown in Fig. 2. The ultimate SFcyuq
contains 42 out of 59 permissions. The SFc,,q chosen, with

VOLUME 6, 2018

F. Alswaina, K. Elleithy: Android Malware Permission-Based Multi-Class Classification

IEEE Access

ET

IMPORTANCE(F;)> ()

SF

F; : IMPORTANCE(F))
| e F, : IMPORTANCE(F;)
Fyp o © IMPORTANCE(F ;)
SF Cand

FIGURE 2. Extraction of the important features from SF and generating SF -

ACCESS_WIFI_STATE
WRITE_APN_SETTINGS
PROCESS_OUTGOING_CALLS
INSTALL_PACKAGES
WRITE_SMS

SET WALLPAPER

Permission

ACCESS_COARSE_LOCATION
ACCESS_FINE_LOCATION
READ_LOGS

CHANGE_WIFI_STATE

Importance

FIGURE 3. Top 10 permissions based on their importance.

their importance, are included in Appendix Table. 6. The top
10 permissions with high importance are shown in Fig. 3.

Our analysis of the data set shows that certain permis-
sions are requested by many malware families. For exam-
ple, INTERNET (which permits opening a network socket)
is requested by more than 82% of the malware families;
READ_PHONE_STATE (which permits a reading of the
device’s phone number, a status of ongoing calls, and phone
accounts in the device) is requested by more than 60.5%
of the malware families; and ACCESS_NETWORK_STATE
(which permits querying into the status of the network, such
as if the device is connected to a network) is requested by
more than 42.5% of the malware families. These permissions
are also the top three permissions in both [12] and [18].
For this reason, these permissions are not critical in order
to identify and classify one malware family from another.
Therefore, the ET classifier assigns a very low importance
to such features, as shown in Table. 6.

C. DATA PREPROCESSING

Upon beginning the execution of the framework, the Dataset
component is initialized (Dataset.Init) with the data set. Once
the component is ready, RevEng starts loading and parsing
the data set by executing Dataset.Load. In order to start

VOLUME 6, 2018

creating the families’ objects, RevEng forks a number of
threads (NoOfThreads) assigned in the initialization during
the execution of Dataset.Run as illustrated in Fig. 4.

Multi-threading utilizes the processor and increases the
reverse engineering process of the applications as illustrated
in Fig. 5. All objects of the Family component—in this case,
malware families—are inserted in a list (i.e., Q). Each thread
processes one object as a task, (i.e., #;). Each task initializes a
family (Family.Inif), loads a family’s contents, and starts pars-
ing a family’s application (Family.Parse) as shown in Fig. 4.
Family.Parse initializes the App component (App.init) and
parses the component (App. Parse).

The App.Parse method, in turn, extracts from the appli-
cation information such as the package name and all per-
missions in the manifest file, and then checks the existence
of each permission in SF in the app’s list of permissions.
To extract the package name and the declared permissions
in the app’s manifest file, we used the Android Asset Pack-
aging Tool (AAPT), which is part of the Android Software
Development Kit (SDK). AAPT is a utility with powerful
features that decompiles the package’s permissions listed
in the Application manifest XML file; it can also extract
the resources’ table. The items’ indices in ExF,4 (extracted
features) and SF (selected feature) are in the same order.
If an app A has a feature p | p € SF in index i, then
ExF4(i) = 1, otherwise ExF' (i) = 0, and so on.

ExFa(i) = 1 1fpeé/\p€SF,
0 otherwise

Each App’s ExF is cascaded back to the app’s family and

then to the Dataset components as shown in Fig. 6.

SF = (p1 - Dj ..pn)
ExFy = (ExF(l) .. ExF(j) .. ExF(n))

The Dataset joins all the ExFs in Mp.4,q for analysis as
illustrated in Fig. 6. The size of Mpcguq 1S m X n, where
m = 1, 233 (total number of samples) and n = 42 (number
of permissions in SFcy,q) as shown previously in Fig. 2.

wij = pjj X importance(SFcanqlj])
i=1,2, .. |samples|, j=1,2,..|SFcana| (1)

In order to generate the Weighted Candidate Matrix
Mwecana, €ach element is calculated as in (1). Each p;; value

76221

IEEE Access

F. Alswaina, K. Elleithy: Android Malware Permission-Based Multi-Class Classification

Input: datasetLocation as DL,
NoOfThreads as NT
Output: matrix as M

Dataset:
Init(DL, NT):
<[nitialize local variables>

Load():
<Parse the data set & locate the families>

Run():
Jforeach familyi in dataset.families:
IF familyiInit(FL, SL=4) THEN
start thread; from ThreadPool(NT)
thread; exec familyi.Parse()

Input: familyLocation as FL,
sizeLimit as SL
Output: familyName, appList,
appPermissions, appExF

Family:
Init(FL, SL)

<Initialize local variables>

Build AppList

IF |apps| < SL THEN
Return 0

ELSE:

Return 1

Parse():

foreach appi in family.apps:
appi.Init(AL)
appi.Parse()

Input: appLocation as AL, SF

Output: permissions as PRs,
extractFeatures as ExF,
appPackage as AP

App:
Init(AL, SF):
<[nitialize local variables>

Parse():
Extract the AP
Retrieve PRs

// building ExF
Sforeach itemi in SF:
IF item in app. PRs THEN

ExFi =1
ELSE
ExFi=0

FIGURE 4. Pseudo-code of the Dataset, Family, and App components,
which show the main parts of the code.

in Mpcang is multiplied by the permission’s importance as
generated by ET for the permission’s index j. The Y matrix
contains the malware families (classes: ¢;) of each malware

76222

ThreadPool
QO 2¢
EE
\:; A oo C 9

FIGURE 5. Multi-threading processes of the list of tasks in queue.

TABLE 2. The data set used in RevEng. A list of malware families with
their samples.

Malware Family No of Samples Malware Family No of Samples

GingerMaster 4 jSMSHider 16
HippoSMS 4 ADRD 22
FakePlayer 6 YZHC 22
GPSSMSSpy 6 DroidKungFu2 30
Asroot 8 DroidKungFul 34
BeanBot 8 DroidDreamLight 46
Bgserv 9 GoldDream 47
Gone60 9 KMin 52
RogueSPPush 9 Pjapps 58
SndApps 10 Geinimi 69
Plankton 11 DroidKungFu4 96
zHash 11 BaseBridge 122
Zsone 12 AnserverBot 187
DroidDream 16 DroidKungFu3 309
Total 1,233

sample at row i in both Mpeang and Mweang. Mpeang and Y
matrices are shown below:

pi1 - p1j - Pin | C1
pit -+ Pij - Pin| Ci
Pml = Pmj " Pmn | Cm

~——
MBcand Y

The overall framework is shown in Fig. 7.

IV. EXPERIMENTAL SETUP

A. DATA SET

We relied on the data set provided by [18]. This data set
contained 49 malware families with a total of 1,260 applica-
tions. Each family differed in size between 1 and 300 appli-
cations. In this research, families that contained less than 4
applications have been excluded to maintain accurate results.
Table. 2 lists the malware families and their samples used
in our experiments, for a total of 1,233 applications in
28 families.

B. IMPLEMENTATION

The programming language Python was used in all of our
implementations. Python is supported by the research com-
munity in various fields, and it has rich libraries. Scikit-
Learn is one of the communities that has implemented
Machine Learning Algorithms [42]. In our Analysis com-
ponent, we used the following classifiers: Support Vector
Machine (SVM), Decision Tree (ID3), Random Forest (RF),

VOLUME 6, 2018

F. Alswaina, K. Elleithy: Android Malware Permission-Based Multi-Class Classification

IEEE Access

FIGURE 6. Preparation of Mg.q,q and Myyq,q4 matrices for processing.

= m
l'l l'l
malware
samples

FIGURE 7. RevEng framework.

95.54
95.46

|95>89
[o3.59

Accuracy

95.05

95.78

Pi . Pn
1110011 app; [11100.. 11| ExF,
amil o
P Jamily,
1110101 (class)) .
W Pi1 - Pin = . app; [11101.. 01] ExF,
s MBL‘amI =
R mxn .
L 5’” Pl - Pmn 00100.. 11 . app; [00100.. 11| ExF,
]. .n Y\\ famllym .
(class,,) ..
00100 01 app; [00100. 01] ExF;
[71 /)n
Preprocessing Processing Classifications
Tt T | ottt I «
; ; Results
| Family | | Analysis |
| | I |
I | | I
I | I Classifiers I t
| | | Training |
| o & |
Testin Mpeana
l Dataset App | Mpeana | € ! Results
| —p I,
I | I |
|
: generating matrices | Y : / \ : 3
I | | | —>
I I My,
| ‘ Mo | paggng svmr | Moo
| | | D3 NN | resuis
I Myeana My eana : | KN RF I
| Pir .- @jg... | |
| (...pmn) ((Urrm) | I I . .
| ¢ I | | iy
| Y(;) | | | Sfamily;
| Cm | | I
e e = 4 e e e e e = 4
oo o 6T n
TR 2 1B
[; ® 4.5+
- T
a 3T W Stormbroid
W stormbroid % 3T MBcand
MBcand g 254 3 @ MWcand
I MWcand -
24
1.5+
" 1y 2 e 2 e ..
g o 3% 2zgsg sezE 53
[f:l1 N i III———{"'] =t S S o s o o S o o

KN

NN

Bagging svM

Classifier

FIGURE 8. Comparison between StormDroid and our approach based on

classifiers’ accuracies.

Neural Network (NN), K-Nearest Neighbor (KN), and Bag-
ging, as implemented by [42].

Accuracy
Let S
C

(TP+TN)/(TP+TN +FP+FN)
a malware sample and

a malware family or class, then

TP(True — Positive) =
prediction : S € C, actual — classification : S € C

VOLUME 6, 2018

Bagging

Classifier

FIGURE 9. Comparison between StormDroid and our approach based on

time performance.

FP(False — Positive) =
prediction : S € Cactual — classification : S ¢ C

TN (True — Negative) =
prediction : S ¢ C, actual — classification : S ¢ C
FN(False — Negative) =

prediction : S ¢ C, actual — classification : S € C

(@)

76223

F. Alswaina, K. Elleithy: Android Malware Permission-Based Multi-Class Classification

IEEE Access

%I'L6
%001
%001
%001
%001
%001
%t 66
%688
%001
%001
%001
%86
%001
%001
%001
%001
%S °LE
%579
%E°€8
%001
%168
%606
%6°L6
%001
%001
%001
%001
%8°C6

(ATIANVA) SSVID TVNLOV

[SUnproAq

A4253g

joquvog

A2dD]JoYD.]

wpa.(Jp|on

[TEYS)

ENJBUnYplo4q

092uoxn)

AdSSINSSID

A2)SDJNL2BULE)

10g12442SUY

sddvlg

AOPIHSINS!

OHZX

smsoddiry

Uy

Ww24qp104J

JOOUS

N SUnypioAq

sddypug

WYBITUD2AGPIoAq

uoOIUD]J

PHASUNYPIOAT

ayav

auosy

Ysvgz

YSngdSan3oy

o
—

I

23p1igasng

[ngsunypioiq

a4283g

joguvag
A24v]JoyD,]
wWnaAJpP|on

a0

EnJ3unyproAq

092u0D

AdSSINSSID
A2ISDJAL123UIL)

10g.12442SUY

sddvlg

LPIHSIS! | —

DHZX
Swsoddir

Uy

WD2AJPI0AT | —

ZnSunypioaq

sddypug

T

S1uva.iqprosq |~

uopyuUv]d |

prASUNYPLOA

auo0sy
ysoyz

YSngdsandoy |e|en

a3pLigasng

(ATINVA) SSVID ddldo1addd

FIGURE 10. Confusion Matrix of One RF Execution.

VOLUME 6, 2018

76224

F. Alswaina, K. Elleithy: Android Malware Permission-Based Multi-Class Classification

IEEE Access

TABLE 3. Detailed performance (prediction accuracy and time) for each
classifier.

MBcand MWcand

Classifier | Worst Avg. Best Time | Worst Avg. Best Time
SVM 85.16 85.16 85.16 0.28 | 25.06 25.06 25.06 0.44
NN 95.78 95.78 9578 1.57 | 87.27 8727 8727 5.17
D3 94 9452 9473 0.06 | 94.08 94.42 94.89 0.06
KN 95.46 9546 9546 0.06 | 93.59 93.59 93.59 0.05
Bagging | 90.59 91.56 9221 021 | 90.11 91.09 92.05 0.18
RF 94.73 9581 96.27 0.08 | 9538 9599 96.43 0.08

C. EVALUATION

Cross-Validation: Since the number of malware families
is very low, as is the number of malware samples, we used
the cross-validation (or stratified k-fold) technique to split
and alternate between the training and testing sets. We set
up the number of folds (k=4) such that on each iteration,
the classifier used 75% of a family’s samples for training
and 25% for testing. In the processing stage, the Analysis
component is fed with Mpegng and Mweana. Each classifier
trains, validates, and tests the model on the two inputs using
the aforementioned setup. As a result of the analysis, we cal-
culated each classifier’s accuracy (2) and the execution time
in seconds.

V. RESULTS AND DISCUSSION
We conducted 100 experiments using Mpcang and Mweand
on each classifier. The experiment measured two factors: the
classifier’s prediction accuracy and the time performance.
For all total experiments on each classifier, we calculated the
worst, the best, and the average accuracy and the average exe-
cution time. Table. 3 shows the details of the experiments in
two main columns: the first and second column represent the
results of our approach with Mpcgnqg and Mycana , respectively.

The results show that using Mpcqnq, RE, KN, and NN
achieve high accuracy (average ~ 95.68% and standard devi-
ation &~ 0.19%) in comparison with other classifiers (such as
SVM, ID3, and Bagging). From the best selected classifiers,
we can see that RF achieves the highest prediction, on aver-
age, of 95.81%. In terms of time performance, KN and RF
complete their analyses in 0.06 seconds and 0.08 seconds,
respectively, while NN achieves the lowest performance.
SVM has the highest misclassification rate using Mpeand-

For Mycand, the results have higher variations than the pre-
vious approach. The top three classifiers are RF, KN, and ID3
(average ~ 94.66% and standard deviation =~ 0.21%). The
RF classifier also achieves the highest accuracy of 95.99%.
SVM produces the lowest accuracy score using this feature.
In terms of time performance, we can see that RF completed
the experiments in 0.08 seconds on average. KN completed
faster than the previous approach with an execution time
of 0.05 seconds.

Comparing our two approaches, Mpcana and Mwcand,
we can see that RF achieves the highest accuracy with a
rate of 95.99% using Mwcanqa, which was slightly higher than

VOLUME 6, 2018

TABLE 4. Classifiers’ average accuracies and time performance(s) for
100 experiments.

MBcand Mwecand StormDroid [18]

Classifier | Accuracy Time | Accuracy Time | Accuracy Time
SVM 85.16 0.28 25.06 0.44 80.05 0.36

NN 95.78 1.57 87.27 5.17 95.05 1.92
ID3 94.52 0.06 94.42 0.06 94.52 0.07
KN 95.46 0.06 93.59 0.05 95.54 0.08
Bagging 91.56 0.21 91.09 0.18 91.65 0.26
RF 95.81 0.08 95.99 0.08 95.97 0.08

TABLE 5. Comparison between classifiers in terms of the best accuracy
and best time performance.

MBcand Mwecand StormDroid [18]
Best Accuracy Time | Accuracy Time | Accuracy Time
Accuracy | 95.81 (RF) 0.08 | 95.99 (RF) 0.08 | 95.97 (RF) 0.08
Time |94.52 (ID3) 0.06 |93.59 (KN) 0.05 |94.52 (ID3) 0.07

when using Mpcanad, by 0.18%. RF’s took 0.08 seconds using
both approaches.

We applied StormDroid’s feature (59 permissions) [18] as
shown in Table. 4 and Fig. 8. We found that the RF classifier
produced the highest accuracy of 95.97% versus the other
classifiers. RF also completed in 0.08 seconds.

In Table. 5, we summarized our comparison based on
two categories: the classifiers’ highest accuracies and the
classifiers’ best time performances. Of all three approaches,
RF achieved the highest accuracy on Mw.qng Wwith a rate
of 95.99% in 0.08 seconds. For the best execution time,
we found that KN was the best on Mycqnq With 0.05 seconds
and an accuracy of 93.59%. Regarding time performance,
we can see that ID3 performed faster using Mpcqnq, although
the classifier had the exact same accuracy as in the related
work [18].

From our previous discussion, we concluded that Mwcqnq
achieved 0.02% better accuracy than StormDroid [18] with
an exactly equal execution time. The accuracy of the RF
classifier using all the three approaches is similar, in general.
However, minimizing the number of features from 59 to 42
(0.28% of features) means a reduction in the dimensionality.

In conclusion, our framework improved the accuracy.
Moreover, when using Mwcamq With KN, we achieved a
shorter execution time than the related work [18] with a
37.5% improvement as shown in Fig. 9. A sample confusion
matrix of our RF is presented in Appendix Fig. 10.

VI. CONCLUSION AND FUTURE WORK

Malware detection and analysis have been a problem for
many years. With the escalation in the number of applica-
tions, especially on mobile devices, researchers have studied
malware in-depth using various tools, such as machine learn-
ing. In this paper, we adopted machine learning to analyze and
identify malware features such as the permissions requested
by malware. Our focus in this paper was to find a small subset

76225

IEEE Access

F. Alswaina, K. Elleithy: Android Malware Permission-Based Multi-Class Classification

TABLE 6. List of SFcg,q with their importance (o > 0).

Permission Weight Permission Weight
CHANGE_WIFI_STATE 17.242% RESTART_PACKAGES 0.852%
READ_LOGS 12.695% CHANGE_NETWORK_STATE 0.786%
ACCESS_FINE_LOCATION 6.395% RECEIVE_MMS 0.624%
ACCESS_COARSE_LOCATION 4.865% BLUETOOTH 0.575%
SET_WALLPAPER 4.846% DELETE_PACKAGES 0.565%
WRITE_SMS 4.580% DISABLE_KEYGUARD 0.555%
INSTALL_PACKAGES 4.204% WRITE_SETTINGS 0.528%
PROCESS_OUTGOING_CALLS 4.089% CALL_PHONE 0.513%
WRITE_APN_SETTINGS 4.035% RECEIVE_WAP_PUSH 0.410%
ACCESS_WIFI_STATE 3.807% INTERNET 0.395%
RECEIVE_SMS 2.919% READ_EXTERNAL_STORAGE 0.381%
SEND_SMS 2.854% CLEAR_APP_CACHE 0.123%
ACCESS_NETWORK_STATE 2.794% WRITE_SYNC_SETTINGS 0.087%
READ_SMS 2.498% BLUETOOTH_ADMIN 0.086%
RECEIVE_BOOT_COMPLETED 2.265% READ_SYNC_SETTINGS 0.076%
READ_PHONE_STATE 1.901% ACCESS_MOCK_LOCATION 0.070%
READ_CONTACTS 1.871% RECORD_AUDIO 0.023%
VIBRATE 1.733% SYSTEM_ALERT_WINDOW 0.019%
MODIFY_PHONE_STATE 1.691% N/A -

MODIFY_AUDIO_SETTINGS 1.673% N/A -

WAKE_LOCK 1.624% N/A -

GET_ACCOUNTS 1.574% N/A -

BROADCAST_STICKY 1.168% N/A -

of permissions that could be used to classify applications
into their proper malware families. We utilized Extremely
Randomized Trees to further reduce the number of features
from 59 to 42 (by 0.28%). In our two approaches, we repre-
sented the selected features as binary values, Mpcgnq, and as
weighted values, Myqnq. We evaluated our approaches based
on the accuracy and time performance of six classifiers, and
we achieved both a higher accuracy by 0.02% (RF, 95.99%)
and a shorter time performance by 37.5% with KN over
StormDroid [18]. In future work, malware sensitive API calls
should be investigatedto identify a subset that will further
improve our framework’s ability to predict malware families.
We also recommend using deep neural network (DNN) clas-
sifier in the future. Because DNN performs better with large
data sets, AndroZoo [46] could be a good candidate for our
future experiments.

APPENDIX
See Table 6.

REFERENCES

[1]1 Gartner Says Worldwide Sales of Smartphones Recorded First Ever
Decline During the Fourth Quarter of 2017. Accessed: Apr. 1, 2018.
[Online]. Available: https://www.gartner.com/newsroom/id/3859963

[2] Another Reason 99% of Mobile Malware Targets Androids—Safe
and Savvy Blog by F-Secure. Accessed: Apr. 10, 2018. [Online].
Available: https://safeandsavvy.f-secure.com/2017/02/15/another-reason-
99-percent-of-mobile-malware-targets-androids/

[3]1 NCP—Checklist McAfee Antivirus 8.8 STIG. Accessed: Apr. 10, 2018.
[Online]. Available: https://nvd.nist.gov/ncp/checklist/479

[4] D. Moon, H. Im, J. D. Lee, and J. H. Park, “MLDS: Multi-layer defense
system for preventing advanced persistent threats,” Symmetry, vol. 6, no. 4,
pp. 997-1010, 2014.

[5] B. Gupta, D. P. Agrawal, and S. Yamaguchi, Handbook of Research
on Modern Cryptographic Solutions for Computer and Cyber Security.
Hershey, PA, USA: IGI Global, 2016.

76226

[6

—

[7

—

[8

—

9

—

(10]

[11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

T. Akhtar, B. B. Gupta, and S. Yamaguchi, ““Malware propagation effects
on SCADA system and smart power grid,” in Proc. IEEE Int. Conf.
Consum. Electron. (ICCE), Jan. 2018, pp. 1-6.

Android Security 2017 Year in Review. Accessed: Apr. 10, 2018. [Online].
Available: https://goo.gl/hiCgHQ

K. Griffin, S. Schneider, X. Hu, and T.-C. Chiueh, “Automatic generation
of string signatures for malware detection,” in Proc. Int. Workshop Recent
Adpv. Intrusion Detection. Springer, 2009, pp. 101-120.

C. Nachenberg, “A window into mobile device security,” Symantec Secur.
Response, pp. 4-9, 2011.

K. Dunham, S. Hartman, M. Quintans, J. A. Morales, and T. Strazzere,
Android Malware and Analysis. Boca Raton, FL, USA: CRC Press, 2014.
H. Pieterse and M. S. Olivier, “Android botnets on the rise: Trends and
characteristics,” in Proc. Inf. Secur. South Africa (ISSA), Aug. 2012,
pp. 1-5.

Y. Zhou and X. Jiang, “Dissecting Android malware: Characterization
and evolution,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2012,
pp. 95-109.

Y. Peng, M. Zhang, J. Zheng, and Z. Qian, ‘“Research on Android access
control based on isolation mechanism,” in Proc. 13th Web Inf. Syst. Appl.
Conf., Sep. 2016, pp. 231-235.

A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus, ‘‘Automatically secur-
ing permission-based software by reducing the attack surface: An appli-
cation to Android,” in Proc. 27th IEEE/ACM Int. Conf. Automated Softw.
Eng., 2012, pp. 274-2717.

S. Rastogi, K. Bhushan, and B. B. Gupta, “Measuring Android app repack-
aging prevalence based on the permissions of app,” Procedia Technol.,
vol. 24, pp. 14361444, 2016.

S. Rastogi, K. Bhushan, and B. B. Gupta, “Android applications repackag-
ing detection techniques for smartphone devices,” Procedia Comput. Sci.,
vol. 78, pp. 26-32, 2016.

Permissions Overview: Android Developers. Accessed: Apr. 10, 2018.
[Online]. Available: https://developer.android.com/guide/topics/
permissions/index.html

S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu, “StormDroid: A streamin-
glized machine learning-based system for detecting Android malware,” in
Proc. 11th ACM Asia Conf. Comput. Commun. Secur., 2016, pp. 377-388.
Cuckoo Sandbox Book. Accessed: Apr. 15, 2018. [Online]. Available:
https://cuckoo.sh/docs

S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev, “Static control-
flow analysis of user-driven callbacks in Android applications,” in Proc.
IEEE/ACM 37th IEEE Int. Conf. Softw. Eng. (ICSE), vol. 1, May 2015,
pp. 89-99.

VOLUME 6, 2018

F. Alswaina, K. Elleithy: Android Malware Permission-Based Multi-Class Classification

IEEE Access

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]
[43]
[44]

[45]

P. Faruki et al., “Android security: A survey of issues, malware penetration,
and defenses,” IEEE Commun. Surveys Tuts., vol. 17, no. 2, pp. 998-1022,
2nd Quart., 2015.

J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh, “Cells: A virtual
mobile smartphone architecture,” in Proc. 23rd ACM Symp. Oper. Syst.
Princ., 2011, pp. 173-187.

A. R. Beresford, A. Rice, N. Skehin, and R. Sohan, “MockDroid: Trad-
ing privacy for application functionality on smartphones,” in Proc. 12th
Workshop Mobile Comput. Syst. Appl., 2011, pp. 49-54.

E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in Android,” in Proc. 9th Int. Conf. Mobile
Syst., Appl., Services, 2011, pp. 239-252.

M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach, “Quire:
Lightweight provenance for smart phone operating systems,” in Proc.
USENIX Secur. Symp., vol. 31,2011, p. 23.

M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “PiOS: Detecting privacy
leaks in iOS applications,” in Proc. NDSS, 2011, pp. 177-183.

W. Enck et al., “TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” ACM Trans. Comput. Syst.,
vol. 32, no. 2, p. 5, 2010.

1. Forain et al., “Endpoint security in networks: An openmp approach for
increasing malware detection speed,” Symmetry, vol. 9,n0.9, p. 172,2017.
D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon, and K. Rieck,
“DREBIN: Effective and explainable detection of Android malware in
your pocket,” in NDSS, 2014, pp. 23-26.

I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas, “Opcode
sequences as representation of executables for data-mining-based
unknown malware detection,” Inf. Sci., vol. 231, pp. 64-82, May 2013.
G. Jacob, P. M. Comparetti, M. Neugschwandtner, C. Kruegel, and
G. Vigna, “A static, packer-agnostic filter to detect similar malware sam-
ples,” in Proc. Int. Conf. Detection Intrusions Malware, Vulnerability
Assessment. Springer, 2012, pp. 102-122.

Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “‘Hey, you, get off of my market:
Detecting malicious apps in official and alternative Android markets,” in
Proc. NDSS, Feb. 2012, vol. 25. no. 4, pp. 50-52.

M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto,
“Novel feature extraction, selection and fusion for effective malware
family classification,” in Proc. 6th ACM Conf. Data Appl. Secur. Privacy,
2016, pp. 183-194.

T. Blising, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak,
“An Android application sandbox system for suspicious software detec-
tion,” in Proc. 5th Int. Conf. Malicious Unwanted Softw. (MALWARE),
Oct. 2010, pp. 55-62.

A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware
detection,” in Proc. 23rd Annu. Comput. Secur. Appl. Conf. (ACSAC),
Dec. 2007, pp. 421-430.

Z.Yuan, Y. Lu, Z. Wang, and Y. Xue, “‘Droid-sec: Deep learning in Android
malware detection,” ACM SIGCOMM Comput. Commun. Rev., vol. 44,
no. 4, pp. 371-372, 2014.

K. Sharma and B. B. Gupta, “Mitigation and risk factor analysis of Android
applications,” Comput. Elect. Eng., vol. 71, pp. 416-430, Oct. 2018.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0045790618305494

M. Damshenas, A. Dehghantanha, K.-K. R. Choo, and R. Mahmod,
“M0droid: An Android behavioral-based malware detection model,” J. Inf.
Privacy Secur., vol. 11, no. 3, pp. 141-157, 2015.

J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An, and H. Ye, “Significant
permission identification for machine-learning-based Android malware
detection,” IEEE Trans. Ind. Informat., vol. 14, no. 7, pp. 3216-3225,
Jul. 2018.

E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “MalDozer: Auto-
matic framework for Android malware detection using deep learning,”
Digit. Invest., vol. 24, pp. S48-S59, Mar. 2018.

K. O. Elish, D. D. Yao, B. G. Ryder, and X. Jiang, “A static assurance
analysis of Android applications,” Tech. Rep., 2013.

F. Pedregosa et al., ““Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825-2830, Oct. 2011.

P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Mach. Learn., vol. 63, no. 1, pp. 3-42, 2006.

L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5-32,
2001.

sklearn.tree.ExtraTreeClassifier. Accessed: Apr. 18, 2018). [Online].
Available: http://scikit-learn.org/stable/modules/generated/sklearn.tree.
ExtraTreeClassifier.html

VOLUME 6, 2018

[46] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “AndroZoo:
Collecting millions of Android apps for the research community,” in
Proc. IEEE/ACM 13th Work. Conf. Mining Softw. Repositories (MSR),
May 2016, pp. 468-471.

FAHAD ALSWAINA received the B.S. degree
in computer science and information systems
from King Saud University, Riyadh, Saudi Ara-
bia, in 2005, and the M.Sc. degree from Cali-
fornia Lutheran University, Thousand Oaks, CA,
USA, in 2011. He is currently pursuing the Ph.D.
degree in computer science and engineering with
the University of Bridgeport (UB), Bridgeport, CT,
USA.

From 2005 to 2006, he was a Software Engineer

/ el

at King Abdulaziz City for Science and Technology, Riyadh. He has been a
Ph.D. Teaching Assistant with the School of Engineering and is a member
of the Wireless and Mobile Communications Laboratory, UB. His research
interests include malware analysis, cybersecurity, data science, and artificial
intelligence.

KHALED ELLEITHY received the B.Sc. degree in
computer science and automatic control and the
M.S. degree in computer networks from Alexan-
dria University in 1983 and 1986, respectively, and
the M.S. and Ph.D. degrees in computer science
from the Center for Advanced Computer Studies,
University of Louisiana at Lafayette, in 1988 and
1990, respectively. He is currently the Associate
Vice President for graduate studies and research
with the University of Bridgeport. He is also a
Professor of computer science and engineering. He supervised hundreds
of senior projects, M.S. theses, and Ph.D. dissertations. He developed and
introduced many new undergraduate/graduate courses. He also developed
new teaching/research laboratories in his area of expertise. He has authored
over 350 research papers in national/international journals and conferences
in his areas of expertise. His research interests include wireless sensor
networks, mobile communications, network security, quantum computing,
and formal approaches for design and verification. He has been a member
of the ACM since 1990, a member of the ACM Special Interest Group on
Computer Architecture since 1990, a member of the Honor Society of the
Phi Kappa Phi University of South Western Louisiana Chapter since 1989,
a member of the IEEE Circuits and Systems Society since 1988, a member
of the IEEE Computer Society since 1988, and a Lifetime Member of the
Egyptian Engineering Syndicate since 1983. He is a member of the technical
program committees of many international conferences as recognition of
his research qualifications. He is also a member of several technical and
honorary societies. He is a Senior Member of the IEEE Computer Society. He
was a recipient of the Distinguished Professor of the Year at the University
of Bridgeport for academic year 2006-2007. He is an editor or co-editor for
12 books published by Springer.

His students received over 20 prestigious national/international awards
from the IEEE, the ACM, and the ASEE. He was the Chair Person of
the International Conference on Industrial Electronics, Technology, and
Automation. He was the Co-Chair and the Co-Founder of the Annual Interna-
tional Joint Conferences on Computer, Information, and Systems Sciences,
and Engineering virtual conferences 2005-2014. He served as a guest editor
for several international journals.

76227

	INTRODUCTION
	ANDROID ACCESS CONTROL
	PROBLEM STATEMENT
	CONTRIBUTION OF THE PAPER

	RELATED WORK
	FRAMEWORK
	FRAMEWORK COMPONENTS
	FEATURES
	DATA PREPROCESSING

	EXPERIMENTAL SETUP
	DATA SET
	IMPLEMENTATION
	EVALUATION

	RESULTS AND DISCUSSION
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	FAHAD ALSWAINA
	KHALED ELLEITHY

