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ABSTRACT Low-dose computed tomography (LDCT) plays a critical role in the early detection of lung
cancer. Despite the life-saving benefit of early detection by LDCT, there are many limitations of this imaging
modality including high rates of detection of indeterminate pulmonary nodules. Radiomics is the process
of extracting and analyzing image-based, quantitative features from a region-of-interest which then can be
analyzed to develop decision support tools that can improve lung cancer screening. Although prior published
research has shown that delta radiomics (i.e., changes in features over time) have utility in predicting
treatment response, limitedwork has been conducted using delta radiomics in lung cancer screening. As such,
we conducted analyses to assess the performance of incorporating delta with conventional (non delta)
features using machine learning to predict lung nodule malignancy. We found the best improved area
under the receiver operating characteristic curve (AUC) was 0.822 when delta features were combined with
conventional features versus an AUC 0.773 for conventional features only. Overall, this paper demonstrates
the important utility of combining delta radiomics features with conventional radiomics features to improve
performance of models in the lung cancer screening setting.

INDEX TERMS Radiomics, delta radiomics, NLST, computed tomography.

I. INTRODUCTION
Lung cancer is the leading cause of cancer-related death in
the United States and worldwide [1]. In the United States
in 2018, there will be approximately 234,030 new cases of
lung cancer, accounting for about 13.5 percent of all cancer
diagnoses, and an estimated 154,050 deaths, accounting for
about 25.3 percent of all cancer deaths [2]. There has been
little improvement in lung cancer patient survival since most
lung cancers are diagnosed at a late stage where treatment
options are limited. As such, the majority of patients who are
diagnosed with lung cancer will die from their disease [3].

Medical imaging technology, specifically low-dose com-
puted tomography (LDCT), plays a critical role in the

early detection of lung cancer. Until recently, a screening
modality to detect early stage lung cancer has not existed.
The National Lung Screening Trial (NLST), a random-
ized clinical trial comparing LDCT versus standard chest
radiography (CXR), found that screening with LDCT was
associated with a significant 20 percent reduction in overall
mortality. Despite the life-saving benefit of early detection by
LDCT, there are many limitations of this imaging modality
including high rates of detection of indeterminate pulmonary
nodules (IPN).

Radiomics is the process of extracting and analyzing
image-based, quantitative features from a region-of-interest
(e.g., IPN, lung tumor, whole lung, etc.) which then can be
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analyzed to develop decision support tools [4]. These quanti-
tative image-based features characterize size, shape, volume,
and texture from the region-of-interest. With high-throughput
computing, it is now possible to extract radiomic features
from standard-of-care imaging such as LDCT. As such,
radiomic analysis could be leveraged to develop accurate and
non-invasive tools to improve nodule management in the lung
cancer screening setting.

Prior published research has shown that delta radiomics
(i.e., changes in features over time) have utility in predict-
ing treatment response for various cancers including col-
orectal cancer, liver cancer, and lung cancer [5]–[7]. For
example, intra-radiation therapy delta radiomics features
computed from PET images showed success in predicting
overall survival of lung cancer patients [8]. Additionally, delta
radiomics features from pre-treatment and post-treatment CT
images along with clinical data yielded improved prognostic
models [9].

In this study we utilized LDCT scans from the NLST to
generate delta radiomics from baseline and follow-up screen-
ing intervals with the goal of building models that predict
risk of cancer for IPNs. This paper begins by describing
the dataset in Section II. Section III describes the radiomics
feature sets. Section IV describes the classifiers and fea-
ture selectors. Section V outlines the experimental frame-
work. Section VI and Section VII present the results and
discussion respectively. Finally, Section VIII presents the
conclusions.

II. MATERIAL AND DATASET
This research was approved by the University of South
Florida Institutional Review Board. The LDCT images were
obtained through the National Cancer Institute (NCI) Cancer
Data Access System. The NLST study design and main find-
ings have been described previously [10]. Briefly, the NLST
was a randomized multi-center trial comparing screening
with LDCT versus CXR in high-risk individuals. Eligibility
criteria included current smokers or former smokers who
were 55 to 74 years of age with a minimum 30 pack-
year smoking history; former smokers had to quit smoking
within 15 years of enrollment [11], [12]. Participants received
a baseline (T0) screen and two follow-up screens approxi-
mately twelve months apart (T1 and T2).

In this analysis, we identified two cohorts of participants
from the NLST based on their screening history. All par-
ticipants had a T0 positive screen (i.e., a nodule >= 4
mm or other clinically significant abnormality) that was
not diagnosed as lung cancer. Cohort1 and Cohort2 are as
follows:

1) Cohort1 participants had a positive screen at T0 that
was diagnosed as a screen-detected lung cancer
(SDLC) after a positive screen at T1. Therefore,
Cohort1 participants had two screenings; and SDLC
diagnosis was about a year from initial screen (T0).

2) Cohort2 participants had a positive screen at T0 that
was not diagnosed as lung cancer and then a positive

FIGURE 1. Study design. Cohort 1 (Training Cohort) is the upper half and
Cohort 2 (Test Cohort) is the lower half. T0 was screen positive in both
cohorts. Cohort 1 lung cancer cases had a T1 positive screening
diagnosed as an SDLC. Cohort 2 had a T1 positive screen not diagnosed
as lung cancer, but a positive screen at T2 diagnosed as an SDLC.

screen at T1 which was not diagnosed as SDLC until
after a positive screen at T2. Therefore, Cohort2 partic-
ipants had three screenings; and SDLC diagnosis was
about two years from the initial screen (T0).

More details about the data set can be found in [13].
Cohort1 and Cohort2 screenings are illustrated in Fig. 1.
As described in [14], cancer-free cohorts (i.e., non-cancer
controls) had three positive screens (T0 to T2) that were not
diagnosed as lung cancer. The controls and lung cancer cases
were frequencymatched 2:1 on age, sex, and smoking history.
The exact ratio used here differs slightly because of data
errors (e.g., could not find the nodule in all scans). Details
of the demographics and clinical characteristics are described
in [13] and [14].

For each nodule of interest in the two cohorts, radiologists
from the Moffitt Cancer Center (Tampa, Florida) performed
3D image segmentation using Definiens Developer XD c©
software (Munich, Germany) [15], [16]. This semi-automated
segmentation relies on the radiologists to locate the nodule
and the Definiens software segments the nodule using a
single-click segmentation approach.

Based on our study design, Cohort 1 was used as the
Training Cohort and Cohort 2 was used as the Test Cohort.
The number of lung cancer cases and non-cancer controls for
each cohort are presented in Table 1.

TABLE 1. Number of lung cancer cases (LCC) and non-cancer controls
(NCC) for Cohort1 and Cohort 2.

III. FEATURE SETS
We utilized two sets of radiomic features: Definiens [20] and
Pyradiomics [18]. Additionally, we used a subset of Definiens
features that have been shown to be highly reproducible
(i.e., Rider stable features) [17] which are described below.
Delta features were calculated as described in III-D.
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TABLE 2. Number of features for each features set before and after concatenating delta-features .

Though the radiomic features in this paper have been
deployed previously, the underlying algorithms computing
such features are unique. Therefore, delta radiomics were cal-
culated for each feature set and subsequently used to explore
the effect of delta features on lung cancer prediction.

A. DEFINIENS FEATURES
Definiens Developer XD c© was utilized to extract 3D fea-
tures. The extracted features describe tumor characteristics
such as tumor size, tumor volume, tumor location, gray level
run-lengthmatrix (GLRLM), gray level co-occurrencematrix
(GLCM), pixel histogram, Laws, and wavelet features [19].
The total number of extracted Definiens tumor descriptors
was 219 features. A complete list of Definiens features is
found in [20].

B. RIDER STABLE FEATURES
Rider stable features are a subset of Definiens features that
have been previously shown to be reproducible [17], [20].
Following multiple test-retest experiments, these features
yielded a high concordance correlation coefficient measure
(CCC ≥ 0.90). There are 23 Rider stable features and the
complete list of Rider features is provided in [17].

C. PYRADIOMICS FEATURES
Using the Definiens segmentations, PyRadiomics tool
(version 1.2.0) [18]was used to extract PyRadiomics features.
In the PyRadiomics tool, features are computed using the
original image (i.e., raw image) and additional features are
computed after applying image operation filters (e.g., LoG
[Laplacian of Gaussian]). For this analysis, we only uti-
lized Pyradiomics features computed from the original
(non-transformed) images. The total number of Pyradiomics
features computed using the original image are 94 and include
shape, first-order, GLCM, GLRLM, and gray-level size zone
matrix features (GLSZM). A complete list of features and
algorithms to calculate the images are described in [21].

D. DELTA FEATURE COMPUTATIONS
Delta features were computed by calculating the difference
for a given feature from two serial screening intervals. For
example, delta radiomics for Cohort 1 was computed by
calculating the difference of features at T0 from the features
at T1 (C1T1 - C1T0). Delta radiomics for Cohort 2 was
computed for i) the difference between features at T0 and
features at T1 (C2T1 - C2T0), and ii) the difference of fea-
tures at T1 from features at T2 (C2T2 - C2T1). Fig. 2 and
Fig. 3 depict how the delta features were computed across
the various screening intervals.

FIGURE 2. Visualization of diagnosis experiment (Experiment 1), where
Cohort 1 T1 images quantitative features (SDLC) are used for training, and
Cohort 2 T2 images quantitative features (SDLC) are used for testing.
Orange circle is the baseline. Blue circle is second screen of Cohort2. The
color is just to visually differentiate between the baseline and second
screen when they are aligned under each other.

FIGURE 3. Visualization of risk prediction experiment (Experiment 2),
where Cohort 1 T1 images quantitative features (SDLC) are used for
training, and Cohort 2 T1 images quantitative features (follow-up
positive) are used for testing. Orange circles are the baseline.

Delta features were computed for the Definiens features,
the PyRadiomics features, and the Rider features. The com-
puted delta features were included with the original feature
sets for each feature in a feature set/subset. The total number
of features before and after concatenating delta features is
shown in Table 2.

IV. CLASSIFIERS AND FEATURE SELECTORS
The classifiers and feature selectors utilized were from the
Weka software implementation version 3.6.15 [22]. We used
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the following classifiers: Naive Bayes, Decision trees,
Random Forests, and Support Vector Machine (SVM).
Additionally, for each classifier, we used feature selection
algorithms to select the most predictive, and in some cases
non-redundant 5, 10, 15, and 20 features. Feature selection
algorithms used were: ReliefF, Symmetric uncertainty, and
Minimum Redundancy Maximum Relevance feature selec-
tor (mRMR). Briefly, here we describe each classifier and
feature selector.

A. NAIVE BAYES
Naive Bayes algorithm [23], is a simple and powerful algo-
rithm that is used to classify instances to a particular class. It is
based on Bayes’ theorem and assumes the independence of
features of a given class. Although, features aremostly depen-
dent on each other, the Naive Bayes classifier uses the inde-
pendence assumption (i.e., class conditional independence)
to reduce computation cost, and thus it called ‘‘naive’’ [24].
While its final probabilities are often imperfect, the highest
probability class is correct enough to make this a competitive
classifier.

B. DECISION TREES
Decision trees [25], comprise a set of classification algo-
rithms where a tree structure is constructed by a divide and
conquer based recursive method where each feature is used
in a potential test to split the instances at each node. Decision
trees are a top-down tree structure that have a root node, inter-
mediate nodes, and leaf nodes (decision nodes) connected
with branches. Purity is tested at each split, if a node is pure
(or close) no further split is performed. Each leaf node is
assigned to an appropriate class. To classify a new instance,
traversing the tree from root to leaf (target class) is performed
based on the outcome of each node test.

C. RANDOM FORESTS
Random forests [26] is an effective classifier that combines
multiple models to increase the overall classification accu-
racy. Classification models in random forests are decision
trees built on bagged sets of the original data, and the final
random forest classification is the voting result of all decision
trees. In this paper, the number of trees used for the random
forests classifier was 200 trees, and the total number of
feature candidates was set to log2(Number of features)+ 1.

D. SUPPORT VECTOR MACHINES
A support vector machine (SVM) [27], [28], is a supervised
classification algorithm that mainly separates instances of
two classes by fitting a hyperplane to maximize the margin
between the two classes. The hyperplane is defined by sup-
port vectors. In this paper, we used Libsvm with linear and
RBF kernels. Additionally, we used grid search to tune the
cost and gamma parameters.

E. RELIEFF FEATURE SELECTOR
ReliefF [29], is simple, fast, and effective feature selector
which ranks features. The higher the rank, themore predictive
the feature. This selector uses the nearest neighbor algorithm
to find near hits and near misses of the same and opposite
class and updates the rank accordingly. We have used ReliefF
to choose the top-ranked 5, 10, 15, and 20 features.

F. SYMMETRIC UNCERTAINTY FEATURE SELECTOR
Symmetric uncertainty feature selection algorithm (SU) is
a correlation based algorithm that selects relevant and non-
redundant features for classification based on a feature-
to-feature and a feature-to-class correlation measure [30].
SU ranks the features based on predictivity, and we have
selected the top-ranked 5, 10, 15, and 20 features.

G. MINIMUM REDUNDANCY MAXIMUM
RELEVANCE FEATURES SELECTOR
Minimum redundancy maximum relevance (mRMR)
[31], [32] is an incremental feature selection algorithm that
attempts to find a subset of features which have minimum
redundancy between them, and maximum relevance to the
class. We have used the mRMR ‘‘C langauge’’ implementa-
tion provided in [33]. Using mRMR, we have selected 5, 10,
15, and 20 features.

V. EXPERIMENTS
In this study, we tested the hypothesis that delta radiomics
improve lung cancer incidence prediction in the lung cancer
screening setting. As such, we performed two experiments
to test the impact of incorporating delta features with con-
ventional radiomic features (i.e., non-delta features extracted
from a single screening time-point) to predict future lung
cancer risk. The screening time-point refers to the year when
a nodule screening was conducted as shown in Fig. 1. The two
experiments differ by the test set (i.e., either C2T1 or C2T2),
while both experiments use the same train set (i.e., C1T1).
Fig. 2 and Fig. 3 depict the two experiments where orange
circles represent the baseline screening time-points while
empty circles represents screening time-points where features
were utilized.

Experiment 1 utilized diagnostic features for training and
testing. As such, the features from the lung cancer cases and
non-cancer controls were extracted from the same screening
screening time-point (Fig. 2). Specifically, we trained on
features to discriminate lung cancer nodules from non-cancer
nodules and then tested the model to discriminate lung cancer
nodules vs. non-cancer nodules.

For Experiment 2 we trained on diagnostic features and
tested their ability to predict cancer in the follow-up screening
interval (i.e., a risk predictionmodel). Specifically, we trained
on features to discriminate lung cancer nodules from non-
cancer nodules at the same screening time-point, and then
tested this model to predict lung cancer in the follow-up
interval (Fig. 3).
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In the next two subsections we discuss these two experi-
ments in more detail.

A. DIAGNOSTIC EXPERIMENT (EXPERIMENT 1)
In the diagnostic experiment, features were used to differ-
entiate cancers and non-cancers at different screening time-
points. Thus, a classification model was trained on features
from C1T1, and then the model was tested on C2T2. The
T0 screens were not used for training or testing as any cases
diagnosed at T0 were prevalent cancers and not incident
cancers. For the diagnostic experiment, the union of features
from C1T1 and delta features (C1T1-C1T0) were used for
training. Testing was performed on the union of features from
C2T2 and delta features (C2T2-C2T1). Fig. 2 illustrates train-
ing and testing for Experiment 1. Additionally, the diagnostic
model is described in Algorithm 1.

Algorithm 1 Diagnostic
Input: Cohort1 T0,T1 and Cohort2 T1,T2 Radiomics

features ∈ {Definiens,Rider,PyRadiomics}
Output: Diagnostic model
Compute Delta: Let Cohort1 T0, T1 be C1T0,C1T1,

and Cohort2 T1, T2 be C2T1, C2T2.
C1delta = C1T1− C1T0, and C2delta
= C2T2− C2T1

1) Initialization:
Let train set TrainnoDelta be C1T1 and TestnoDelta be
C2T2. Let train set (after union with delta) be
TrainwithDelta = union(C1T1,C1delta) and test set (after
union with delta) be TestwithDelta =
union(C2T2,C2delta).
2) Training and Testing:
A) Train a classifier on TrainnoDelta and test on
TestnoDelta and report accuracy and AUC.
B) Train a classifier on TrainwithDelta and test on
TestwithDelta and report accuracy and AUC.

B. RISK PREDICTION EXPERIMENT (EXPERIMENT 2)
In the risk prediction experiment, features were used to pre-
dict future cancer incidence. In this experiment, a classifica-
tion model was trained on diagnostic features from C1T1,
and then the model was tested to predict cancer incidence
using C2T1. Again, features from T0 were not used. For
the risk prediction experiment, the union of features from
C1T1 and delta features (C1T1- C1T0)were used for training.
Testing was done on the union of features from C2T1 and
delta features (C2T1-C2T0). Fig. 3 demonstrates training and
testing for Experiment 2. Additionally, the risk prediction
model is described in Algorithm 2.

VI. RESULTS
To obtain the performance of the trained models, Cohort
2 was used for testing. The number of cases in Cohort 2 from

Algorithm 2 Risk Prediction
Input: Cohort1 T0,T1 and Cohort2 T0,T1 Radiomics

features ∈ {Definiens,Rider,PyRadiomics}
Output: Risk prediction model
Compute Delta: Let Cohort1 T0, T1 be C1T0,C1T1,

and Cohort2 T0, T1 be C2T0, C2T1.
C1delta = C1T1− C1T0, and C2delta
= C2T1− C2T0

1) Initialization:
Let train set TrainnoDelta be C1T1 and TestnoDelta be
C2T1. Let train set (after union with delta) be
TrainwithDelta = union(C1T1,C1delta) and test set (after
union with delta) be TestwithDelta =
union(C2T1,C2delta).
2) Training and Testing:
A) Train a classifier on TrainnoDelta and test on
TestnoDelta and report accuracy and AUC.
B) Train a classifier on TrainwithDelta and test on
TestwithDelta and report accuracy and AUC.

which we obtained the accuracy and AUC performance
metrics of classifiers mentioned in Section IV is shown
in Table 1. The area under the Receiver Operating Character-
istic Curve AUROC (known as AUC) is a performance metric
that quantitatively describes the Receiver Operating Charac-
teristic (ROC) [34]. The ROC is a plot of the Sensitivity (i.e.,
true positive rate TPR) versus false positive rate FPR by using
different cutoff points [35], [36]. Sensitivity (TPR) and FPR
formulas are given in Equations 1, and 2 respectively; where
TP is the true positive cases (i.e., correctly classified positive
cases), FP is the false negative cases (i.e., negative cases
misclassified as positive), and P is the number of positive
cases in the test set (i.e., Cohort2), whereas, N is the number
of negative cases in the test set (i.e., Cohort2).

Sensitivity (TPR) =
TP
P

(1)

FPR =
FP
N

(2)

In the diagnostic experiment, when utilizing Definiens
conventional (non-delta) features with delta features,
the highest accuracy was 82.07%, and the highest AUC was
0.851 using the Random Forests classifier. Using a Random
Forests classifier, the highest accuracy of the model using
only Definiens features was 80.66%, and the highest AUC
was 0.833.When using Rider conventional features with delta
features, the highest accuracy was 83.96%, and the highest
AUC was 0.858 using a Random Forests classifier. The high-
est accuracy of the model using conventional Rider features
was 81.13%, and the highest AUC was 0.82 using a Random
Forests classifier. Using PyRadiomics conventional features
with delta features yielded a highest accuracy of 83.49% and
a highest AUC of 0.817 using a Random Forest classifier.
By comparison, the model only using conventional
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TABLE 3. Best results AUC and accuracy for diagnostic experiment and risk prediction experiment using conventional features only versus using
conventional features and delta features together. Statistically significant results at (p < 0.1) are proceeded by asterisk.

TABLE 4. Classifiers, quantitative features, and performance statistics for best AUC results of diagnostic model (Experiment 1) using Definiens features .

TABLE 5. Classifiers, features used, and performance statistics for best AUC of diagnostic experiment (Experiment 1) using RIDER features .

PyRadiomics features yielded a highest accuracy of 79.71%
and a highest AUC of 0.784 using a Random Forests classifier
with five top features selected by ReliefF feature selector.
Fig. 4a and Fig. 4b compare the best accuracy and AUC
of a model when using conventional features only versus
using both conventional features and delta features. The best
accuracy andAUC are also presented in Table 3. Additionally,
Table 4, Table 5, and Table 6 present the results of the diag-
nostic experiments using Definiens, Rider, and PyRadiomics
features sets.

In the risk prediction experiment, when utilizing Definiens
conventional features with delta features, the highest accu-
racy was 76.41%, and the highest AUC was 0.807 using a
Random Forests classifier. By comparison, the highest accu-
racy of the model using only Definiens features was 75%, and

the highest AUCwas 0.767 using a RandomForests classifier.
When using Rider conventional features with delta features,
the highest accuracy was 78.3%, and the highest AUC was
0.822 using a Random Forests classifier and ReliefF feature
selector to find the top twenty ranked features. The highest
accuracy of the model using only Rider features was 76.88%
using a Random Forests classifier, and the highest AUC was
0.773 using RandomForests on the top fifteen ranked features
selected by ReliefF features selector. The model that utilized
PyRadiomics conventional features with delta features had
a highest accuracy of 75.2% and an AUC of 0.731 using a
Random Forests classifier, whereas the model that utilized
only conventional PyRadiomics features yielded a highest
accuracy of 74.52% and a highest AUC of 0.713 using a Ran-
dom Forests classifier and the best fifteen mRMR selected
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TABLE 6. Classifiers, features used, and performance statistics for best AUC of diagnostic experiment (Experiment 1) using PyRadiomics features .

TABLE 7. Classifiers, quantitative features, and performance statistics for best AUC of risk prediction model (Experiment 2) using Definiens features .

FIGURE 4. Best (a) accuracy and (b) AUC of models for the diagnostic
experiment using conventional features (non-delta) only versus
conventional features combined with delta features.

features. Fig. 5a and Fig. 5b present the comparisons
between the best accuracy and AUC of models when using
conventional features only versus using conventional features
with delta features. Furthermore, Table 3 presents the best
accuracy and the best AUC of the risk prediction experiment.
Additionally, Table 7, Table 8, and Table 9 show detailed
results of the risk prediction experiment using Definiens,
Rider, and PyRadiomics features sets.

VII. DISCUSSION
This study sought to determine the impact of combining
delta features with conventional (non-delta) features for diag-

FIGURE 5. Best (a) accuracy and (b) AUC of models for risk prediction
experiment using conventional features (non-delta) only versus
conventional features combined with delta features.

nostic discrimination and lung cancer incidence prediction
in the lung cancer screening setting. While prior studies
have investigated the change of radiomics features during
therapy treatment to build prognostic models [9], [37]–[39],
there has been limited published data to date in the lung
cancer screening setting to predict future lung cancer inci-
dence from an IPN. The main finding of this paper is
that delta features incorporated with conventional features
improve lung cancer incidence prediction. Furthermore,
this improvement was observed across all features sets
which included Definiens, Rider features, and Pyradiomics
features.
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TABLE 8. Classifiers, features used, and performance statistics for best AUC of risk prediction model (Experiment 2) using RIDER features .

TABLE 9. Classifiers, features used, and performance statistics for best AUC of risk prediction model (Experiment 2) using PyRadiomics features.

Models trained on the Rider feature subset had the biggest
improvement of performance when delta features were com-
bined with conventional features for the diagnostic and risk
prediction experiments. A possible explanation is that the
Rider features have been shown to be highly reproducible
features, and as such, theymay be the most important in terms
of performance. Therefore, while selecting reproducible fea-
tures is critical for developing reproducible models, our
results demonstrate that incorporating delta features with
the reproducible conventional features (i.e., Rider features)
yields substantial improvements inmodel performance. In the
risk prediction experiment, after incorporating the Rider delta
features with conventional Rider features, six delta radiomics

features were selected by the ReliefF feature selector in addi-
tion to 14 Rider features fromwhich the highest improvement
of AUC was observed. Specifically, the AUC improved from
0.773 to 0.822 by including delta features with conventional
Rider features. These six delta Rider features included short
axis, longest diameter, asymmetry, the maximum distance
to border, mean, and standard deviation. Table 8 lists the
selected features where delta features are denoted with a post-
fix ‘‘delta’’. For the diagnostic experiment, the best model
was from Rider features which yielded an AUC from 0.82,
for conventional (non-delta) features only, to 0.858 when
delta features were combined with conventional (non-delta)
Rider features. Thismodel included all delta and conventional
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(non-delta) Rider features (i.e., 46 features).
As shown in Tables 4 through 9, results of each exper-

iment are provided for the best AUC, as AUC may be a
more discriminant metric for a model derived from machine
learning [40]. We list the best performing model’s results
on AUC for conventional (non-delta) features and when
combining delta features with conventional (non-delta) fea-
tures. Although improvements were found in all of our
experiments, none of the observed improvements in AUC
model performance reached statistical significance using
the significance test of the difference between the areas
under two ROC curves [34]. This could be because of
the relatively small size of the test set. The accuracy
of the diagnostic model using pyradiomics features was
statistically significantly different at p < 0.1 using the
Mcnemar statistical test [41], as shown in Table 3, where
a statistically significant result is denoted with asterisk.
Additionally, using the Wilcoxon signed rank test [42],
we found the accuracy and AUC results of the Diagnostic
model is statistically significant at p < 0.1.
The previous study by Hawkins et al. [14], showed that

using Rider features from the baseline predicts cancer inci-
dence with 76.79% accuracy and AUC of 0.81. However,
in our study, we did not use baseline features directly; rather,
we calculated delta features between the first follow-up
screening interval and baseline screen (i.e., C1T1 - C1T0 for
training and C2T1 - C2T0 for testing). Our sample size is
slightly smaller than the previous work because we have
removed cases from each cohort that do not exist in all
screens for the purpose of delta computation. Nevertheless,
incorporating delta features demonstrated improvements for
risk prediction compared to the Hawkins et al. study. Specif-
ically, using Rider delta features and Rider conventional
features yielded an AUC of 0.822 and accuracy of 78.3%.
We also noted improvements in model performance for the
diagnostic experiment when delta features were included;
however, Hawkins paper did not investigate diagnostic mod-
els. By using only nodule features to predict future can-
cer incidence, our findings broadly support the work of
other studies which suggest Delta radiomics improves predic-
tion models performance, although previous studies mostly
involve a combination of clinical data, pretreatment, intra-
treatment, and post-treatment features. Nodule size is used
clinically as an indicator of malignancy. A delta size feature
was calculated, but did not provide enough information alone
to enable the best prediction performance.

There are some limitations and some strengths of this
analysis. We conducted our analyses only on a small cohorts
of NLST because it is not feasible to segment and extract
radiomic features on the entire LDCT-arm of the NLST.
Our radiomic pipeline is well established and is efficient
for radiomic studies of lung cancer. However, nodule iden-
tification and segmentation is still a time bottleneck and
requires some radiologist intervention. Approaches for auto-
mated segmentation are actively being pursued which will
allow us to segment and extract radiomic features on large

numbers of LDCT scans. We acknowledge there were fewer
lung cancer cases in the training and testing sets. Despite the
analyses on a subset of cases and controls, the modest sample
size, nodule-size imbalance, we applied rigorous training
and testing analyses to identify radiomic features that are
predictive of lung cancer.

VIII. CONCLUSION
This paper investigated the impact of combining delta
radiomics features with conventional (non-delta) features
for diagnostic discrimination and to predict future nod-
ule malignancy. Our experiments confirm that delta fea-
tures can improve the performance of models derived from
machine learning. An important finding that emerged from
these experiments is the improvement of models perfor-
mance specifically among Rider features when delta and
conventional (non-delta) features were combined. Using
delta features in combination with conventional Rider fea-
tures, the highest AUC for the risk prediction experiment
(Experiment 2) was 0.822 versus 0.733 for the model with
only conventional Rider features. Additionally, our study con-
tains a diagnostic experiment (Experiment 1) where improve-
ment was also observed after combining delta features with
conventional features. Overall, this study demonstrated the
important utility of combining delta features with conven-
tional features to improve performance of models in the lung
cancer screening setting. Our future work includes apply-
ing deep learning to detect lung cancer using multiple lung
screenings [43].
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