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ABSTRACT Real datasets are often distributed nonlinearly. Although many least squares support vector
machine (LS-SVM) methods have successfully modeled this kind of data using a divide-and-conquer
strategy, they are often ineffective when nonlinear data are subject to noise due to a lack of robustness within
each sub-model. In this paper, a robust clustered LS-SVM is proposed to model this type of data. First, the
clustering method is used to divide the sample data into several sub-datasets. A local robust LS-SVM model
is then developed to capture the local dynamics of the corresponding sub-dataset and to be robust to noise.
Subsequently, a global regularization is constructed to intelligently coordinate all local models. These new
features ensure that the global model is smooth and continuous and has a good generalization and robustness.
Through the use of both artificial and real cases, the effectiveness of the proposed robust clustered LS-SVM

is demonstrated.

INDEX TERMS Robust LS-SVM, robust modeling, cluster, noise, nonlinearly distributed data.

I. INTRODUCTION
Many systems cannot be characterized according to specific
models, but can be characterized by a model through data
analysis [1]-[4]. These systems are often strongly nonlinear
and work in a large operating region, which leads to nonlinear
distribution of their data in clusters due to limited clusters
divided. In particular, the systems are often hybrid, composed
by many nonlinear dynamic sub-processes or sub-systems
that have different physical rules. This means that the data
of these systems or processes incorporate many nonlinear
dynamic behaviors and these nonlinear dynamic behaviors
are often nonlinear in different clusters. In this way, these data
are often distributed nonlinearly and contaminated by noise
from different sources including sampling errors, modeling
errors, measurement errors, and operational errors. For exam-
ple, in the semiconductor packaging industry, the curing pro-
cess requires multiple thermal zones for different temperature
settings and heat transfer is very complex, including conduc-
tion, convection, and radiation. As a practical system, noise
from heat loss due to the opening and closing of the oven
door, etc., is inevitable [5], [6]. Modeling this kind of system
has been a challenge in the machine learning community.
Many data-driven methods have been developed to model
such systems in recent years. A well-known modeling method

is the support vector machine (SVM) [7], which is a maximal
margin classifier derived under the framework of structural
risk minimization (SRM). In order to improve the modeling
performance of the standard SVM, many methods are devel-
oped for various applications, including the v-SVM [8], [9],
the linear programming SVM [10], the least squares SVM
(LS-SVM) [11], the twin SVM [12], the fisher-regularized
SVM [13], and the fuzzy SVM [14]. Among these, the
LS-SVM is a particularly popular data-driven tool, with great
success in applications due to its simple learning algorithm
and low computation cost [15]-[17]. It takes into account
both structural risk and empirical risk and is more compu-
tationally attractive as a method for solving a set of linear
equations.

The standard LS-SVM method can effectively model a
nonlinear system [18]. However, it may not be applicable
to strongly nonlinear systems working in a large operat-
ing region. To address this issue, a ‘“‘divide-and-conquer”
method [19]-[21] is often adopted. One common strategy
is to employ a series of different kernels to represent local
information during classification [22]-[26]. As multiple ker-
nels are selected, the simplest way to combine them is by
averaging. However, in real-world applications, it may be
inappropriate to assign the participant kernels with the same
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weight [27]. An alternative approach is the clustered SVM
method [28], [29], which first divides the data into subsets
using the clustering method. The sequences of local LS-SVM
models are applied to capture local information, and then
a final estimation is obtained by combining the outputs of
all the sub-models. Although these ““divide-and-conquer”
methods can model nonlinearly distributed data, they typi-
cally neglect the relationships between local models which
are prone to local minima. The clustered SVM model with
global weighting [30], [31] is the exception. In each cluster,
a linear support vector machine model is trained to avoid
over-fitting of each local model, a global regularization is
added to coordinate the sub models. However, less attention
is paid at the robustness of each sub-model, thus the overall
model is sensitive to noise. An effective LS-SVM method is
still needed for better modeling of nonlinear data.

Recently there has been focus on improving the robust-
ness of the LS-SVM method [32]-[50]. One approach is to
directly eliminate the samples that are likely outliers [42].
First, a threshold would be set through the training error
of all the samples. Then, constraints in the regression prob-
lem may guarantee the outliers are eliminated during the
training procedure. For example, a simplification SVM algo-
rithm was presented to reduce the number of support vec-
tors [35], [51], and a hybrid robust SVM for removing outliers
in training data was proposed [32]. However, it is difficult
to determine such a threshold unless there is sufficient prior
knowledge of the training samples. Another approach using
probabilistic SVM methods isolated the noise characteristics
of the underlying training data and included them in the
model [33], [34], [36], [45]. Instead of estimating the specific
model output, the probabilistic SVM methods aim at devel-
oping a confidence interval of the model output. For exam-
ple, a Dempster-Shafer theory-based LS-SVM method was
presented to improve the robustness of modeling [24], [45]
and the confidence intervals of the LS-SVM for regression
were derived [33]. Another common approach is the fuzzy
SVM method [14], [24], [37]-[41], [43], [44], which assigns
different weights to different samples. If a sample is judged
as noise, it is given a small weight. In this way, the impact
of noise can be reduced effectively and the robustness of
the model can be improved. For example, a kernel fuzzy
c-means clustering-based fuzzy SVM algorithm was devel-
oped to deal with the classification problems with outliers
or noises [46], and a heuristic strategy for automatically
generating fuzzy memberships of training data was also pre-
sented [37]. Although these methods can improve the robust-
ness of the LS-SVM, they have not yet been used to analyze
data with a nonlinear distribution.

In this paper, the innovation of this paper lies in a robust
clustered LS-SVM method is proposed to model data with
a nonlinear distribution subject to noise. Unlike existing
LS-SVM methods, the proposed method considers both the
nonlinear distribution of the data and the influence of noise,
as well as the robustness of each sub-model, and pro-
vides a global coordination for all sub-models using global
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regularization. First, the clustering method [52], [58], [59]
is used to divide the sample data into several sub-datasets.
A local robust LS-SVM captures the local dynamics of the
sub-dataset and accommodates for noise. A global regulariza-
tion is then constructed to coordinate all local models, ensur-
ing that the global model integrates all local sub-models in a
way that is smooth, continuous, and robust. Finally, in order
to prove the robustness of the proposed method, we use the
nonzero mean Gaussian noise and uniform noise to verify the
experimental results. The robustness of this method is that the
model can be well predicted when the model is subjected to
the noise or the outlier. This method can effectively model
nonlinear data subject to noise.

Il. TRADITIONAL LS-SVM

Interpreting data from practical experiments are often dif-
ficult because of both the inherent process complexity and
the noise in data recording. Here, the curing process for chip
manufacture [6] is used as an example to demonstrate com-
mon modeling problems. As shown in Figure 1, two heaters
are embedded in the heating block and heated by the same
power supply, which in turn heats the integrated circuit (IC)
placed on the lead frame (LF). The working plate moves up
and down to modify the thermal conditions at the IC. There
is also a system at the bottom of the oven to rapidly cool the
unit. The oven is filled with nitrogen to prevent oxidation. The
heat transfer during the curing process is very complex since
it includes conduction, convection, and radiation. In addition,
some of the boundary conditions are unknown and noise is
inevitable from heat loss through events such as opening and
closing the oven door. This kind of system can be described
as follows:

y=f(x, ¢ (D

where x and y are the input and output of the system, respec-
tively, f is an unknown nonlinear function, and ¢ may be
either random Gaussian or non-Gaussian noise.

Heating block _ - Heater Heating Heater logk

Power

Plate moving

Lead frame

FIGURE 1. Snap curing oven system.

This unknown system is often represented by the following
LS-SVM model:

y=o'¢px) +b )

where ¢ is an unknown projection function that maps the
inputs to a higher dimensional feature space, and @ and b are
the weight vector and bias, respectively.
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This model can be derived by solving the following opti-
mization problem from the given training set {x;, yl}?j: 1

N
) 1 2 14 2
w@ézl J(w, b, e)) = 3 loll” + 5 ;el

st.yi=w ¢ +b+e, I=1,...,N (3)

where e is the modeling error and y is the regularization
parameter used to control the trade-off between the approxi-
mation accuracy and the model complexity. In order to solve
Eq. (3), the following Lagrangian function is constructed:

L(w, b, e;; 1) = J(w, b, ep)

N
— Z a(@ ¢ +b+e—y) (4)

I=1
where o; is the Lagrange multipliers. The conditions for
optimization are given by:

oL N

— =0 0=} wp()

80) 1=1

oL N

—=0—-> > =0

glz i=1 (5)
—:O—)al:yel lzl,,N
861

oL T

8—=O—>a) ox)+b+e—y =0, I=1,...,N
o

By solving Eq. (5), @; and b can be obtained. As a result,
the LS-SVM model becomes:

N
y= ZazK(x,xz)er (0)
=1

With
K(x,x1) = o) p(xy)

Although the standard LS-SVM method presented here has
been successfully applied, it is less robust to noise and outlier
since it assumes that all data have the same importance. More-
over, it does not consider the possible nonlinear distribution
of data. Thus, the development of an effective LS-SVM for
nonlinear data with noise is needed.

IIl. ROBUST CLUSTERED LS-SVM METHOD

Here a robust clustered modeling methodology, as indicated
in Figure 2, is proposed for modeling data with a nonlinear
distribution that is also subject to noise [60]. The data are first
divided into many clusters. The sub-models are then trained
to capture the main feature of each cluster and are robust to
noise by assigning samples with different weights using data
distribution information. The continuity and smoothness of
the global model are also ensured by coordinating these sub-
models. This new method improves the traditional clustered
LS-SVM methods, which pay no attention to the robustness
of the local models. As a result, a more robust model with
better global performance can be developed, even for data
with a nonlinear distribution and subject to noise.
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FIGURE 2. Robust clustered modeling methodology.

Based on the robust clustered modeling methodology,
arobust clustered LS-SVM method (Figure 3) is proposed for
modeling of nonlinear data with noise. This method integrates
the advantages of clustering, local robust LS-SVM modeling,
and global regularization. It improves the model robustness
within each cluster and guarantees continuity and smoothness
of the global model between clusters. First, the clustering
method divides the sample data. Local robust LS-SVM mod-
eling is then developed to capture the local dynamics of each
cluster. Model robustness is also improved by using data
distribution information. Finally, a global regularization is
constructed to ensure that the integration of all local models
is smooth and continuous and accurately represents the data.
The details of this proposed robust clustered LS-SVM method
are discussed in the following sections.

Dataset
Data
distribution

Data
distribution

|
| Global Regularization |

Weighted . l .

Real output

Weighted | |

Real output Error

4

Global model

FIGURE 3. Robust clustered LS-SVM method.

A. DATA CLUSTERING

In many applications, many systems are often strongly non-
linear and work in a large operating region. In particular,
the systems are often hybrid, composed by many nonlinear
dynamic sub-processes or sub-systems that have different
physical rules in different operating region. For example,
the dynamic response during the forging process varies over
time as the pistons of the driving cylinders move with or
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without the deformation load of the forging. Even when mov-
ing with the deformation load, the dynamic behavior of the
hydraulic press machine (HPM) depends on the position and
velocity of the work plate. In addition, each working region
has nonlinear dynamics due to nonlinear deformation load,
nonlinear hydraulic driving force, and other factors. In this
sense, many processes have different models as working at
different positions and velocities. Thus, models in this kind
of processes may be differentiated according to positions
or velocities. This means that the k-means might be able
to separate a dataset mixed by several nonlinear models as
taking position or velocity into account.

Given a dataset, the dataset is divided into k (k < N)
groups, S = {S1, S2, ..., Sk}. Here, the widely used k-means
Clustering algorithm [52] is employed. And the cluster num-
ber k is decided according to the prior system knowledge
or experts’ knowledge from the actual industrial processes.
It obtains the clusters by minimizing the following objective
function:

N &k
T=Y"3 ralla — will?
I=1 i=1
With

21 = (x1, y1) @)

In Eq. (7), when a data point z; is assigned to the ith
category, rj; is 1, otherwise ry; is 0; u; represents the center
of the ith category, and ||z; — ;|| represents the distance
between the data point z; and the cluster center ;.

The following iterative approach is generally used to solve
this optimization problem:

Step 1: In the initial dataset, k data points are randomly
selected to represent the initial group centers,
namely, {1, 42, ..., (i}

Step 2: Remaining data points are assigned to the group
with the shortest distance from the group center.

Step 3: After all the data points are assigned, new centers
of the k groups are calculated.

Step 4: Step 2 and Step 3 are repeated until the centers do
not move.

In this way, a dataset can be divided into k sub-clusters and
each sub-cluster includes part of the dataset.

B. LOCAL LS-SVM MODEL

Since the data of many strongly nonlinear systems or pro-
cesses are nonlinearly distributed in clusters due to limited
clusters divided, a nonlinear LS-SVM is used to represent the

feature of each sub-cluster. For the ith i = 1,2, ..., k) sub-
cluster, the following LS-SVM model is employed:
Vi = o] ¢i(x) + b; ®)

where x; and y; are the input and output of the ith local sub-
cluster, w; and b; are the local weight vector and local bias
term, respectively, and the nonlinear function ¢; maps the
input space to a higher dimensional feature space.
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In this way, the features of each cluster can be represented
accurately by a LS-SVM model.

C. ROBUST GLOBAL LS-SVM MODEL

A robust global LS-SVM modeling method is then proposed,
which considers the robustness of the local LS-SVM model at
each cluster along with the global modeling performance for
all clusters. Given the training dataset {x;;, yij}i=1,... k:j=1,....n»
where x;; and y;; are the jth input and output in the ith cluster,
respectively, the optimization problem becomes:

k k
.9 2, A 2
min —E [lewi]| +—§ [lwi — wl]
w,0;,ej 2 4 : 2 4 N
= 1=

k n
4 2
1YY
i=1 j=1
s.t.yj = of i) + bi + ey,
i=1,....k; j=1,...,n ©)]

where @ denotes the global weight vector that connects all
the local models from all clusters, ejj is the modeling error,
6 is the error weight, and §, A, and y are the regularization
parameters. Here, the error weight 60;; is defined as follows:

bj=e (10)

where d;; is the Euclidean distance between the data point and
its cluster center, and o is the width of a Gaussian function.
For a data point with a very short Euclidean distance to the
cluster center, the error weight 6;; is close to 1. As the point
moves further from the cluster center, the error weight 6;;
moves toward 0. When the data point is placed on the cluster
center, its error weight 6;; is equal to 1.

In Eq. (9), the global weight vector w establishes a bridge
among local models of different clusters, thereby different
local models can affect with each other, and the continuity
and smoothness between the local models can be achieved
by coordinating these sub-models using the global weight
vector w. In this way, the connection between local and global
modeling is constructed. Moreover, the robustness is achieved
by assigning samples with different weights using data distri-
bution information. As a result, a more robust model can be
developed with better global performance, even for data with
anonlinear distribution and subject to noise. Specifically, this
new objective function has the following features:

k
Q % > ;i ||2 is the local regularization term, which avoids
i=1
over-fitting of the local LS-SVM models.
k
Q % Z llwi — w||? is the global regularization term, where

thg\lzveight vector of each local LS-SVM model aligns
with the global weight vector. This global weight vec-
tor is used to coordinate all local LS-SVM models
in order to achieve a better global modeling perfor-
mance. Through this process, the interaction, continuity,

VOLUME 6, 2018



X. Lu et al.: Robust Clustered SVM With Applications to Modeling of Practical Processes

IEEE Access

and smoothness between the clusters can be considered
together. The global weight vector may improve the
global generalization of the model.

Q Z Z Que is the global error term that is used to
i=1j=1
improve the regression accuracy and robustness. In this

term, the modeling error of each training point aligns
with a corresponding error weight. It is well-known that
noise samples found in training data are typically sep-
arated from the main data. This feature is often seen in
data distributions where noisy samples are farther away
from the center of each cluster. Samples that are close to
the cluster center should be less contaminated by noise
and are considered important. Data points that are far
from the cluster center are considered noise. The error
weight is thus derived from the data distribution that is
constructed using the Euclidean distance between each
sample and its cluster center. The further the distance is,
the smaller the error weight is and the less importance
the sample is assigned, otherwise the error weight is
larger and the sample is considered more important.
Therefore, the error weight inherently contains noise
information, which can improve the robustness of the
model.

This new objective function improves modeling robust-
ness by giving smaller error weights to noise data. Then,
through the combination of local models, the global model
may be more robust due to the local robust models. Moreover,
the connection of global weight vector to local models could
improve the continuity and smoothness of global model.
Thus, the proposed method has a better global modeling
performance and is robust to noise.

In this proposed method, the local models are not trained
only using data of the local cluster; they are achieved using all
the data by solving Eq.(9). The details of the solving process
of Eq.(9) are presented below.

Let v; = w; — w, then the objective function Eq. (9) may
be rewritten as:

k
.6 2
min —E lvi + w||© +
w,viej 2 4 .
=

k n
DI

i=1 j=1
sty = (v + o) ilxy) + b + ey,
i=1,...,k;j=1,....n (11)

Vo + )T, VT,
T
., «/Xv,{] , Eq. (11) can be further expressed as follows:

+2 Z Z elfeu

z]]l

A k
5 2 il
i=1

Then, define @ = [\/S(w +o)T, ...,

mm - ||a)||

s.t.yij = &)Tgb(x,:/) +bi+e; i=1,...

12)
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where ¢ represents a new mapping function used to guarantee
LBTgZ(xij) = a)lT ¢i(x;j). Eq.(12) has the same form as that of the
original LS-SVM and, thus, it has the same solving process as
that of the original LS-SVM. To solve the optimization prob-
lem with constraints, a Lagrangian function is constructed:

k n
0 2+g2291jei2j

N 1
U(w, ajj, bi, ejj) = > lloll
i=1 j=1

k n
= 2>y {@T @) + b+ ey — vy (13)

i=1 j=1

Here, a;; is the Lagrange multipliers.
The conditions for optimization are given by:

or
_—Oﬁw_zzal](p(xlj)—o
00 i=1j=1
ol
—=0—>y9ijeij—aij=0
Be,-j (14)
or T~
—=0-w <p(xij)+bi+e,-j—yij=0
dajj
or . )
5—0—>J§al]_0 i=1,...,k;j=1,...,n
From Eq. (14), we have:

n

Za,,:o, i=1,....k;j=1,....n

(15)

Z Z apq¢(qu) @(xz]) + b; +

0 0.4 =i
p=1¢g=1

ij
Then, a kernel function K is defined as:

k; j,q=1,...,n
(16)

K (xij, %pg) =00 §xpg), 1, p=1, ...,

The kernel function K is positive and needs to satisfy the
Mercer condition. The typical options include linear kernel,
radial basis function (RBF) kernel, polynomial kernel, and
multilayer perceptron. Here, the RBF kernel functions will be
employed, since it has well ability to approximate nonlinear
behavior and is easy to be trained due to fewer parameters
required to optimization.

Finally, the Lagrange multipliers a;; and bias term b; can
be easily solved from Eq. (15). The resulting LS-SVM model
is as follows:

k n
5= aiK(x.x;) +b; (17)

i=1 j=I

D. COMPLEXITY ANALYSIS

According to [53], the computational complexity of an m-by-
n-order matrix is about m - n. The computational complexity
of multiplying an m|-by-n-order matrix and an n-by-m;-order
matrix is about m; - my - (n — 1). Following this, the compu-
tational complexity of the generalized inverse of an m-by-n-

order matrix would be 4n3 + 4m2n + 4mn? — 4n® — m* — mn,

75147



IEEE Access

X. Lu et al.: Robust Clustered SVM With Applications to Modeling of Practical Processes

which is equal to 12n® — 6n? (ifm = n). Given a dataset
{xi,yi}’_, .xi € R™, the computational complexity of a
polynomial kernel function on this dataset is approximately
n2(m — 1)+ 2n2(n — 1) + n2.

Thus, for a dataset {x;,y;}}_; ,x; € R" andy; € R?,
the computational complexity of the traditional LS-SVM
method may be calculated:

O(Traditional LS-SVM)

=nPm—1D)+20*n—D+n*+n*+ 120+ 1)°
—6(n+ 12>+ m+1)-d-(n+1-1)
~ 140 + 294+ m+dn® + 4+ dn+6 (18)

In comparison, the computational complexity of the robust
clustered LS-SVM method applied to the same dataset
divided into k clusters is estimated as follows:

O(Robust Clustered LS-SVM)

2 M non no 2

= k2 ((2m = D) +2GPG = D+ () +n

+ 1204+ k)P =6+ k)’ +(m+k)-d-(n+k—1)
%(12+%)n3+(36k—7+m+d)n2

+(36k> — 12k + 2dk — d)n + 12k> — 6k + dk* — dk
(19)

Analyzing Eqs. (18) and (19) shows the computational
complexities of the traditional LS-SVM and the robust clus-
tered LS-SVM can be approximated to 0(14n3) and O((12 +
%)n3), respectively. Besides, this robust clustered LS-SVM
should include the complexity of the K-Means clustering. The
time complexity of the K-Means clustering is about O(nkt),
where ¢ is the iteration number. Thus, the total complexity
of the robust clustered LS-SVM is about O((12 + %)n3 +
nkt). Since both k and ¢ are much smaller than n, and k is
always greater than 1, the computational complexity of the
proposed method is smaller than the traditional LS-SVM.
Also, the larger the sample number 7, the smaller the com-
putational complexity of the proposed method as compared
to the traditional LS-SVM.

E. SUMMARY
The proposed method includes the following key steps:

Step 1: Collect the training data;

Step 2: Cluster the samples and derive the error weights;

Step 3: Construct local models for all clusters;

Step 4: Solve the optimization problem (9) and Eq. (15) to
obtain the Lagrange multipliers a;; and bias term b;,
upon which the robust LS-SVM model is derived as
Eq. (17).

IV. CASE STUDIES

In this section, the modeling performance of the proposed
robust clustered LS-SVM is evaluated and compared
with those of the traditional LS-SVM [11], the fuzzy
LS-SVM [14], the clustered LS-SVM [28], the local linear
method [30], and the weighted LS-SVM [33] by using one
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FIGURE 4. Model on testing samples.

mathematical case and three real cases. The kernel function
parameters and the regularization parameters d, A, and y are
determined according to the cross-validation algorithm [57].
The root mean square error (RMSE) is defined as:

RMSE =

1 N
~ 2 01— (20)
=1

where N denotes the number of data samples, and y; and y;
are the actual output and model output, respectively.

A. EXAMPLE 1
Data are generated from the following function:
y = ((I15x1 — 1) - x2) exp(x2/5) + ¢ 21

where ¢ is the Gaussian noise with variance Var(e) = 0.1,
and x; and x; are randomly taken within the interval [0 5].
The concrete steps of the proposed method are described as
follows. First, 90 samples were generated from the above
function. 60 samples were randomly selected as the training
samples and the remaining samples were used as test sam-
ples. According to the Majority-rule consensus method [54],
a method for choosing the size of the subsets, the training
samples were divided into three clusters and based on the
within-class distance, the error weight 6 was determined.
Three sub-models were constructed based on these clusters
and the global model was built by solving the optimiza-
tion problem (11) based on these sub-models. From that,
the model was achieved as Eq. (17). Finally, the remaining
30 samples were used to verify the ability to generalize the
built model. From Figure 4, it is clear that the model output
approximates the test data well. Thus, the robust clustered
LS-SVM method can be used to quantify this system.

The proposed method was also compared with the other
five approaches. The comparison of results is shown in
Figure 5, where absolute errors on the 30 test samples are
shown, except that of the local linear method because its mean
is larger than 70. The RMSEs of the different methods are
listed in Table 1. From these results, it can be seen that the
proposed method is more general and robust than the other
methods investigated.

Moreover, 50 repetitive experiments were conducted, and
the RMSE and its statistic information were estimated.
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TABLE 1. Comparison of RMSEs between different methods on the exponential function.

Method Proposed Fuzzy Clustered Traditional Local linear Weighted
etho method LS-SVM LS-SVM LS-SVM method LS-SVM
RMSE 4361 5.331 6.580 10.505 72.168 4.656
Mean + variance ~ 4.459+0.013  5.436+0.017 6.395+0.157  10.182+0.088  71.332+ 1.434  4.584+0.016
Training time(s) 0.0313 0.0401 0.0211 0.0383 0.0118 0.0323
TABLE 2. Comparison of RMSEs between different methods under different variances on the exponential function.
Var(e)
Method 0.2 0.3 0.4 0.5 0.6
Proposed RMSE 4431 4.137 4382 4.720 4.486
method Meantvariance  4.453+0.028  4.481+0.012  4.528+0.033  4.396+0.074  4.497+0.066
Fuzzy RMSE 5.507 5.424 5.233 5.476 5.347
LS-SVM  Meantvariance  5.420+0.029  5.43240.016  5.401£0.029  5.344+0.066  5.541+0.067
RMSE 5.745 6.704 6.427 5.567 6.598
Clustered
LS-SVM .
Meantvariance  6.084+0.189  6.608+0.186  6.272+0.236  6.260+0.223  6.126+0.142
» RMSE 9.876 10.512 10.426 10.708 10.402
Traditional
LS-SVM .
Meantvariance  10.382+0.078  10.381+0.112  10.482+0.058  10.460+0.043 10.411+0.113
Local RMSE 72.883 73.915 74.056 76.484 75.198
linear
method ~ Meantvariance  71.684+1.563 71.713+1.365 73.473+1.654 74.854+1.270 74.953+1.344
Weighted RMSE 4.589 4319 4511 4.716 4.619
LS-SVM  Meantvariance ~ 4.54740.028  4.483£0.013  4.69140.026  4.85320.069  4.706+0.070

—¥— Traditional LS-SVM
35 Fuzzy LS-SVM

—6— Clustered LS-SVM
30 —6— Weighted LS-SVM |
—+— Proposed method

Absolute error
8

Samples

FIGURE 5. Comparison of absolute errors between different methods.

These results are shown in Table 1. Also, the comparison
of complexity is analyzed by the training time of model,
where the analysis of the complexity includes clustering anal-
ysis. The complexity of the six approaches was compared
and is shown in Table 1, where the mean of the training
time was calculated. Table 1 also shows that the proposed
method reduces the complexity as compared to the traditional
LS-SVM, the weighted LS-SVM and the fuzzy LS-SVM
methods. Although the local linear method has the shortest
training time, it has an inferior modeling accuracy because

VOLUME 6, 2018

it does not consider the relationship between local models.
Taking into consideration both modeling accuracy and com-
plexity, the proposed robust clustered LS-SVM method is
more effective than the other methods examined.

Finally, to examine the model response to different levels
of noise, we selected Var(e) from the range [0.2, 0.3, 0.4,
0.5, 0.6]. For each Var(e), 30 test samples were taken, and
the RMSEs and their statistic information from different
modeling methods were calculated (Table 2). In each case,
the proposed method showed smaller RMSE and statistical
values than the other five approaches in comparison. Thus,
even when the sample is subject to noise, the proposed robust
clustered LS-SVM is more general and robust than the other
models examined.

B. EXAMPLE 2

This dataset from the UCI Machine Learning Reposi-
tory [55], [56] was collected from a Combined Cycle
Power Plant while the plant was working under a full load.
It contains the hourly average ambient variables Tempera-
ture (T), Ambient Pressure (AP), Relative Humidity (RH),
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and Exhaust Vacuum (EV), which are used to predict the net
hourly electrical energy output (EP) of the plant.

In this test, 5400 observations were selected randomly
from the dataset. Noise randomly taken from [0 10] was
mixed into 5400 observations. Of these, 3600 observa-
tions were used as training samples to construct the model,
and the remaining observations were used as test data
to verify the model. In order to improve the quality of
Figure 6, only 120 randomly selected modeling results are
displayed. Figure 6 shows that the proposed model captures
the experimental system well.

500

real output
4901 ~~~" model output
480
470 3
£ 460
© |
450 !
g [
\ i
440 1R
\
430 y
420 . . . . .
20 40 60 80 100 120
Samples

FIGURE 6. Model on testing samples.

Finally, the comparison of the complexities of the six
approaches is shown in Table 3. For each model, 50 exper-
iments were conducted and the mean of the training time,
RMSEs and their mean and variance were calculated.
As shown, the proposed method reduces the complexity
compared to the traditional LS-SVM, the weighted LS-SVM
and the fuzzy LS-SVM methods. Although the local linear
method has the shortest training time, it is not accurate
because it does not consider the relationship between local
models. A comprehensive assessment of both modeling accu-
racy and complexity shows that the proposed method is faster
and more efficient than the other five methods.

C. EXAMPLE 3

The robust clustered LS-SVM model was examined using a
physical experiment regarding the thermal curing of chips
in a snap oven [5-6]. The snap oven, as shown in Figure 7,
uses four heaters to heat the chips. A thermocouple is used to
measure the temperature. As previously described, the curing
thermal process is complex.

Chamber
Chamber |8

Computer

Leadframe

FIGURE 7. Snap curing oven system.

In this experiment, 2800 temperature data points were
collected with a sampling interval At=10s, and four random

75150

input signals were used to drive the heaters. Noise randomly
taken from [0 10] was mixed into real temperature data. For
example, the input signal of one of the heaters is shown
in Figure 8. 1867 data points were used for training and
the remaining 933 points data were used for testing and
validation. In order to improve the quality of Figure 9, only
100 randomly selected data points are displayed. As shown,
the proposed modeling method follows both the training and
test samples closely. Thus, the proposed method successfully
models the curing thermal process.

Input signal

[] 500 1000 1500 2000 2500
t(At=10')

FIGURE 8. Input signals of heater h2.
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FIGURE 9. (a) Model verification on training samples; (b) Model
verification on testing samples.

Lastly, the proposed method was compared to the other
five approaches to model the snap oven. The comparison
of results is shown in Table 4, where the test error of the
proposed method is smaller than those of the other five
methods in comparison. The complexity of each of the six
approaches was calculated as the mean training time over 50
repetitive experiments. As shown in Table 4, the proposed
method reduces the complexity as compared to the traditional
LS-SVM, the weighted LS-SVM and the fuzzy LS-SVM
methods. Again, the local linear method has the shortest
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IEEE Access

X. Lu et al.: Robust Clustered SVM With Applications to Modeling of Practical Processes

TABLE 3. Comparison of RMSEs between different methods on the combined cycle power plant.

Method Proposed Fuzzy Clustered Traditional Local linear Weighted
etho method LS-SVM LS-SVM LS-SVM method LS-SVM
RMSE 5.216 5.318 5.464 5.442 5.575 5.223
Mean + variance 5.116 + 0.006 5.512+0.005 5.438 £0.029 5.331+£0.013 5.471 +£0.022 5.184 +0.008
Training time(s) 127.542 237.016 61.351 237.436 30.365 236.755
TABLE 4. Comparison of RMSEs between different methods on the curing thermal process.
Method Proposed Fuzzy Clustered Traditional Local linear Weighted
etho method LS-SVM LS-SVM LS-SVM method LS-SVM
RMSE 3.013 3.557 3.393 7.441 3.706 3.168
Mean = variance 2.980 +0.197 3.500+0.217 3.328+£0.175 7.576 £ 1.464 3.681+£0.186 3.094 +0.266
Training time(s) 25.938 47.104 10.827 45.400 5.561 44.629

training time; however, it is less accurate than the robust
clustered LS-SVM method. The proposed method improves
the accuracy of the other five methods without increasing
complexity.

D. EXAMPLE 4

The practical hydraulic actuator, as shown in Figure 10,
was used to validate the proposed method. The hydraulic
actuator consists of two cylinders: a driving cylinder and a
load cylinder. The load cylinder simulates nonlinear defor-
mation force from an arbitrary work piece by adjusting the
pressure within the cylinder. The flow in the cylinders and
the velocity response of the piston are regarded as input and
output, respectively. Pressure data were collected using the
pressure sensors installed at the inlet of the cylinders. The
displacement sensor was installed at the transverse column.

" ot doad cylinder

suide rail o« -
SIS driving cylinder

operating platform

FIGURE 10. Practical hydraulic actuator.

In this experiment, noise randomly taken from [0 0.5] was
mixed into the real output data, and the first 809 data points
were used to train the model, while the remaining 404 data
points were used to examine the model generalization. The
flows of the two cylinders are described in Figure 11. Training
and testing results are shown in Figure 12.

It is clear that the proposed approach successfully
approximates the output of the practical system. The robust

VOLUME 6, 2018
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FIGURE 11. (a) Flow of driving cylinder; (b) Flow of load cylinder.

200 400

clustered LS-SVM method was compared with the other
five approaches using the same dataset. The comparison of
the results shown in Table 5 indicates that the error of the
proposed method is much smaller than those of the other five
methods. Thus, the robust clustered LS-SVM method is more
general and robust.

Finally, the complexity of each of the six approaches was
calculated as the mean training time over 50 repetitive exper-
iments. As shown in Table 5, the proposed method reduces
the complexity as compared to the traditional LS-SVM,
the weighted LS-SVM and the fuzzy LS-SVM methods.
Although the local linear method has the shortest train-
ing time, it has a lower accuracy than the robust clustered
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TABLE 5. Comparison of RMSEs between different methods on the hydraulic driving process.

Method Proposed Fuzzy Clustered Traditional Local linear Weighted
etho method LS-SVM LS-SVM LS-SVM method LS-SVM
RMSE 0.083 0.089 0.096 0.101 0.090 0.089
Mean + variance 0.081+ 0.090+ 0.090+ 0.116+ 0.094+ 0.087+
2.944x107 2.918x107 3.064x10° 3.168x10° 3.058x10° 2.918x10°
Training time(s) 2.776 4.364 1.218 4.339 0.741 4.358
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FIGURE 12. (a) Model verification on training samples; (b) Model
verification on testing samples.

LS-SVM method. Thus, the proposed method improves the
accuracy of the other five methods without increasing com-
plexity.

V. CONCLUSION

A novel robust clustered LS-SVM method is proposed for
modeling nonlinearly distributed data with noise. Unlike the
traditional clustered LS-SVM method which is sensitive to
noise, the proposed method is robust and considers both
local and global generalizations. The proposed solution gen-
erates a robust model of each cluster while maintaining a
smooth and continuous global model, thus it generates an
accurate, robust, and global generalization. Through the use
of both simulated and real datasets, the proposed LS-SVM
method demonstrated superior performance in comparison to
the original LS-SVM, the fuzzy LS-SVM, the clustered LS-
SVM, the local linear modeling, and the weighted LS-SVM
methods.
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