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ABSTRACT This paper is concerned with the protocol-based fault detection problem for a class of discrete
systems with mixed time delays and missing measurements under uncertain missing probabilities. The
phenomenon of missing measurements is characterized by a set of Bernoulli random variables, where each
sensor could have individual missing probability and the corresponding occurrence probability could be
uncertain. In order to mitigate the communication load of the network and reduce the incidence of the
data collisions in the engineering reality, the round-robin (RR) protocol is employed to regulate the data
transmission orders. The purpose of the addressed problem is to design a fault detection filter such that,
in the simultaneous presence of mixed time delays, missing measurements, and RR protocol mechanism,
the resulted filtering error system is asymptotically mean-square stable with a satisfactoryH∞ performance.
In particular, some sufficient conditions are derived in terms of certain matrix inequalities and the explicit
expression of the required filter parameters is proposed. Finally, a numerical example is employed to illustrate
the effectiveness of the designed fault detection scheme.

INDEX TERMS Discrete-time system, fault detection, mixed time-delays, missing measurements,
round-robin protocol, uncertain missing probabilities.

I. INTRODUCTION
The fault refers to the system performance beyond the
expected changes, which might lead to the system deviations
from normal operation.When the fault occurs, all or partial of
system parameters may exhibit different characteristics from
the normal states, and these differences contain a wealth of
fault information [1]–[4]. Accordingly, it should be noted
that there will lead to danger or disaster if the fault can-
not be promptly detected and repaired, such as economic
losses, environmental damage and even casualties [5]–[7].
As such, the fault must be diagnosed as early as possible
to avoid serious consequences. Recently, the fault detection
and fault estimation techniques are shown to be the effective
approaches to enhance the system reliability, which have
attracted considerable attention in many fields, see [8]–[10]

and the references therein. Generally, the main tasks of fault
detection include two parts: residual generation and residual
evaluation [11]–[13]. On one hand, the residual generation
refers to generate a residual signal based on the system’s
mathematical model and observable variables, which can
reflect the fault information. When no fault occurs, the value
of the residual signal is zero or near zero. When the fault
occurs, the residual signal should be changed greatly so that
the fault diagnosis system can detect the fault more sensi-
tively. On the other hand, the residual evaluation corresponds
to the analysis of the residual signal based on certain criterion,
where the threshold value and fault diagnostic logic can be
given according to the residual evaluation function. More-
over, the fault estimation process can be made to obtain the
exhaustive information of the faults, such as quantity, size and
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type, and provides relevant information for subsequent fault
tolerant control.

It is well recognized that the model-based fault detection
problems have been widely discussed in recent years since
the model-based fault detection filter method performs well
on the purpose of detecting fault signals. Until now, a great
number of outstanding results on fault detection problem have
been presented, see [14]–[17] and the references therein. As is
known to all, because of the speed limit of signal transmis-
sion and network congestion, the time-delay is commonly
inevitable in data transmission, which may reduce the system
performance or even lead to the instability of the whole sys-
tem [18]. Therefore, it is meaningful to investigate the fault
detection problem for systems with time-delays [19]–[24].
To mention a few, a fault detection filter has been designed
in [20] for a class of discrete-time systems with multiple
discrete time-delays as well as infinite distributed delays,
where new sufficient conditions have been derived such that
the fault detection dynamics system is exponentially stable
in the mean-square sense and the error between the residual
signal and the fault signal has been made as small as possible.
In [21], the effects from the time-varying delay and nonlinear
perturbations onto the event-based fault detection filtering
performance have been examined, and the explicit expression
of the desired filter gains has been presented in terms of the
feasible solution to certain matrix inequalities.

Due to the limited bandwidth of the communications net-
work, the data collisions are usually unavoidable, which
will lead to unexpected phenomena, such as communica-
tion delays, data disorders and so on [25]. Recently, some
communication protocols have been adopted to reduce the
communication load, such as the round-robin (RR) proto-
col, try-once-discard protocol [26]–[28]. The RR protocol
is a periodic scheduling scheme, where each node accesses
the communication network based on a cyclical order. Such
a protocol has received a lot of research attention, see
[29]–[31]. For instance, the H∞ fault detection algorithm has
been given in [29] for 2-D systems with random fractional
uncertainties under the RR protocol mechanism. It should
be noticed that the RR protocol has been widely utilized in
practical engineering, such as the ATM user-oriented satellite
system as well as the multiprocessor bus arbitration, which
makes it more realistic for us to discuss the influence of
the RR protocol on the fault detection problems for complex
dynamics systems. On the other hand, the missing measure-
ments sometimes occur due to the unreliability of the network
environments. Accordingly, many research results have been
published about the fault detection problem for systems with
missing measurements [32]–[34]. Specifically, the problem
of fault detection has been addressed in [33] for networked
control systems with signal quantization and packet dropouts,
where the corresponding fault detection problem has already
been converted into an H∞ filtering problem, and a suf-
ficient condition has been obtained to guarantee stochastic
stability of the fault detection system with a prescribed H∞
performance level. Nevertheless, few results can be applied

to deal with the fault detection problem subject to missing
measurements particularly the uncertain missing probabili-
ties [35]. Compared with the rich literatures on the issues of
state estimation and control under the RR protocol, to the best
of the authors’ knowledge, the fault detection problem for dis-
crete systems with mixed delays and missing measurements
under the RR protocol has not been fully discussed yet, which
constitutes the major motivation of the current paper.

Motivated by the above discussions, in this paper, we aim
to handle the fault detection problem for discrete systems
with mixed time-delays and missing measurements under
the RR protocol. Because of the limited communication
resources, we utilize the RR protocol to regulate the order
of data transmission and then reduce the bandwidth usage,
i.e., it is assumed that only one sensor node can transmit
the measurement signal at each moment. A set of mutu-
ally independent Bernoulli random variables is introduced
to describe the phenomenon of the missing measurements
and the uncertain occurrence probabilities are characterized
by known constants. Sufficient conditions are presented to
guarantee that the fault detection system is asymptotically sta-
ble in the mean-square sense and satisfies H∞ performance.
Furthermore, the expression form of the desired filter gains
is derived. The main challenges can be listed as follows:
(1) How to establish appropriate Lyapunov functional that
can reflect the scheduling characteristics of the RR protocol?
(2) How to select suitable method to deal with the impact of
mixed delays and uncertain missing probabilities on system
performance and propose an effective fault detection scheme?
Accordingly, the main contributions of this paper lie in the
following three aspects: (1) the fault detection problem is,
for the first time, discussed for the discrete system subject
to mixed time-delays and missing measurements; (2) in order
to mitigate the communication load of the network with limit
resource, the RR protocol is adopted when handling the fault
detection problem; and (3) the uncertain missing probabilities
are considered to better reflect the engineering reality and
new fault detection scheme with expression form of the fault
detection filter gain is developed.

The remainder of this article is organized as follows.
In Section II, the discrete system model is established that
takes the mixed time-delays, missing measurements and RR
protocol into account, and the H∞ filtering problem is for-
mulated. In Section III, sufficient conditions are obtained to
ensure that the error dynamics system is asymptotically stable
in the mean-square sense and satisfiesH∞ performance. Fur-
thermore, in the same section, the specific expression of the
desired filter gains is given. In Section IV, a numerical exam-
ple is provided to illustrate the effectiveness of the designed
fault detection filtering scheme. This article is concluded in
Section V.
Notations: The following notations are used in this

paper. Rn, Rn×m and Z (Z+, Z−) denote, respectively, the
n-dimensional Euclidean space, the set of all n×m real matri-
ces and the set of integers (nonnegative integers, negative
integers); l2[0,∞) represents the space of square-summable
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vectors over [0,∞); ‖ x ‖ refers to the standard l2 norm of
x, that is, ‖ x ‖= (xT x)1/2; the notation X ≥ Y (respectively,
X > Y ), where X and Y are real symmetric matrices, means
that X − Y is positive semi-definite (respectively, positive
definite); the superscript T and (−1) stand for the matrix
transposition and matrix inverse, respectively; I and 0 rep-
resent the identity matrix and zero matrix with compatible
dimensions; diag{· · · } means a block-diagonal matrix; E{x}
refers to the expectation for a random variable x; Prob{·}
is the occurrence probability of the event ‘‘·′′. In symmetric
block matrices, ‘‘∗′′ is used as an ellipsis for terms induced
by symmetry. Matrices, if they are not explicitly specified,
are assumed to have compatible dimensions.

II. PROBLEM FORMULATION AND PRELIMINARIES
In this paper, the schematic diagram of the protocol-based
fault detection filtering problem for discrete system with
missing measurements is depicted in Fig. 1. For the purpose
of avoiding data conflicts and reducing the communication
load of the communication network, the RR protocol is
adopted. Moreover, a fault detection mechanism is presented
to generate the residual signal in order to detect the faults.

FIGURE 1. The fault detection filtering problem under RR protocol.

Consider the following discrete delayed system subject to
missing measurements under uncertain missing probabilities:

xk+1 = Axk + Ad1xk−τk + Ad2
∑∞

d=1
µdxk−d

+D1vk + Gfk ,
yk = 3Cxk + D2vk ,
xk = ϕk , ∀k ∈ Z−

(1)

where xk ∈ Rn stands for the state vector, yk ∈ Rm represents
the measured output vector, vk ∈ Rs denotes the external
disturbance belonging to l2([0,∞);Rs), and fk ∈ Rl is the
fault to be detected. τk is a time-varying delay which satisfies
τm ≤ τk ≤ τM with τm and τM being the known bounds.
d (d = 1, 2, · · · ,∞) describes the distributed time delay. ϕk
is a given initial sequence. A, Ad1, Ad2, D1, G, C and D2 are
known constant matrices with appropriate dimensions. The
scalars µd ≥ 0 (d = 1, 2, · · · ,∞) satisfy the following

convergence condition:

µ̄ ,
∞∑
d=1

µd ≤

∞∑
d=1

dµd < +∞. (2)

The phenomenon of missing measurements is modeled
by the matrix 3 = diag{λ1, λ2, · · · , λm} =

∑m
i=1 λiEi,

where Ei = diag{0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
m−i

} and λi are mutually

independent Bernoulli random variables having statistical
characteristics:

Prob{λi = 1} = E {λi} = λ̄i +1λ̄i,
Prob{λi = 0} = 1− E {λi} = 1− (λ̄i +1λ̄i), (3)

where E {λi} (i = 1, 2, · · · ,m) denotes the mathematical
expectation of λi and λ̄i are known scalars. Moreover, |
1λ̄i |≤ εi with εi being known scalars.
Remark 1: In some practical situations, it is not easy to

obtain the accurate value of the expectation of λi probably
due to the inaccuracy statistical tests or other reasons. Hence,
1λ̄i is employed to describe the uncertain missing proba-
bility. Thus, the fault detection problem with missing mea-
surements under uncertain missing probabilities is addressed
in this paper. Specifically, a diagonal matrix consisting of a
series of mutually independent Bernoulli random variables
is employed to characterize the case that each sensor could
have individual missing probability, and the uncertain miss-
ing probabilities are depicted by (3) with known bounds εi
of the probabilities. Such an expression can better depict the
situation when the systems operate within changeable com-
munication environment, which often occur in the networked
setting.Moreover, it should be pointed out that the description
of the traditional missing measurements can be easily derived
by setting 1λ̄i = 0.

In order to avoid the data conflicts, it is generally assumed
that only one node is physically allowed to transmit the mea-
surement data over the communication network at each trans-
mission instant. In this case, the RR protocol can be employed
to determine which node gets access to the communication
network at certain transmission step. In particular, the RR
protocol assigns the utilization rights of the communication
network to the network nodes in the chronological order. That
is to say, each node could gain the transmission opportunities
in a cyclical order under this protocol scheduled.

Let hk ∈ {1, 2, · · · ,m} be the node that obtains the
network authority at the k-th instant, and set hk = k when
k ∈ {1, 2, · · · ,m}. Under the RR protocol, the value of hk
obeys the rule hk+m = hk for all k ∈ N+. Therefore, hk can
be defined as follows:

hk = mod(k − 1,m)+ 1.

Denote ȳk = [ȳT1,k ȳT2,k · · · ȳTm,k ]
T as the output after

transmission over the communication network under the RR
protocol. The updating rule of ȳi,k (i = 1, 2, · · · ,m) can be
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given as follows:

ȳi,k =

{
yi,k , if i = hk ,

ȳi,k−1, otherwise.
(4)

Based on above updating rule (4), the actual received mea-
surement can be described by the following form:

ȳk = 8hk yk + (I −8hk )ȳk−1
= 8hk 3̃Cxk +8hk (3− 3̃)Cxk +8hkD2vk
+ (I −8hk )ȳk−1, (5)

where8hk = diag{δhk ,1, δhk ,2, · · · , δhk ,m} denotes the update
matrix and δhk ,i ∈ {0, 1} is the Kronecker delta function.
Moreover, 3̃ = diag{λ̄1 + 1λ̄1, · · · , λ̄m + 1λ̄m} is the
mathematical expectation of 3. Then, it is easy to see that
E{3− 3̃} = 0.
Denote

3̃ = diag{λ̄1, · · · , λ̄m} + diag{1λ̄1, · · · ,1λ̄m}

= 3̄+13̄.

According to | 1λ̄i |≤ εi and letting

31 = diag{ε1, · · · , εm},

32 = diag{ς1, · · · , ςm}, | ςi |≤ εi,

then, 13̄ can be described as 13̄ = 32, where 32 ∈

[−31, 31]. It is worth noting that 32 ∈ [−31, 31] means
ςi ∈ [−εi, εi]. Defining 0 = 323

−1
1 , the matrix 13̄ can be

further written as follows:

13̄ = 031, 0
T0 = 00T ≤ I .

Therefore,

3̃ = 3̄+ 031. (6)

Remark 2: Under the RR protocol, only the measurement
of the node has the access right that can be transmitted to
the filter at each instant. For the measurements collected
by m sensors, the i-th (i = 1, 2, · · · ,m) mode is used to
reflect that the i-th sensor has the transmission permission,
i.e., ȳi,k = yi,k . Meanwhile, by utilizing a zero-order holder
(ZOH), themeasurement which does not acquire the authority
to access the communication network will be compensated
by the received measurement signals stored at the receiver
side, namely ȳi,k = ȳi,k−1, which can effectively reduce the
total amount of data transmission. It is not difficult to see
from (5) that ȳk contains the term (I −8hk )ȳk−1, which will
bring difficulties to the later analysis. In addition, it’s worth
noting that the RR protocol provides a deterministic periodic
scheduling scheme. However, the stochastic communication
protocol (SCP) performs a random way to determining the
node which can send the measurement signal over the net-
work at each communication time step, and some interesting
fault detection methods can be expected.

Define x̄k = [xTk ȳTk−1]
T
∈ Rn+m. Combining (1) with (5)

yields the following augmented system:
x̄k+1 = (Āhk ,1 + Āhk ,2 + Āhk ,3)x̄k + Ād1x̄k−τk

+Ād2
∑∞

d=1
µd x̄k−d + D̄hk vk + Ḡfk ,

ȳk = (C̄hk ,1 + C̄hk ,2 + C̄hk ,3)x̄k +8hkD2vk ,

(7)

where

Āhk ,1 =
[

0 0
8hk (3− 3̃)C 0

]
, Āhk ,2 =

[
A 0
0 I −8hk

]
,

Āhk ,3 =
[

0 0
8hk 3̃C 0

]
, Ād1 =

[
Ad1 0
0 0

]
,

Ād2 =
[
Ad2 0
0 0

]
, D̄hk =

[
D1

8hkD2

]
, Ḡ =

[
G
0

]
,

C̄hk ,1 =
[
8hk (3− 3̃)C 0

]
, C̄hk ,2 =

[
0 I −8hk

]
,

C̄hk ,3 =
[
8hk 3̃C 0

]
.

According to the previous analysis, we can obtain that

E{Āhk ,1} = 0 and E{C̄hk ,1} = 0.

Remark 3: According to (5), we can see that the measure-
ment ȳk contains ȳk−1. Therefore, the augmentationmethod is
used here to help subsequent analysis, i.e., x̄k = [xTk ȳTk−1]

T ,
then the dynamics system (7) can be obtained.

In order to detect the fault of the augmented system (7)
subject to the RR protocol, we construct the following dis-
crete fault detection filter:{

ˆ̄xk+1 = Āhk ,F ˆ̄xk + B̄hk ,F ȳk ,
rk = D̄hk ,F ˆ̄xk + Ēhk ,F ȳk ,

(8)

where ˆ̄xk ∈ Rn+m is the state of the fault detection filter, rk ∈
Rl is the so-called residual that is compatible with fk , Āhk ,F ,
B̄hk ,F , D̄hk ,F and Ēhk ,F are appropriately dimensioned filter
matrices to be determined.

Let ηk = [x̄Tk ˆ̄x
T
k ]

T , r̄k = rk−fk andϑk = [vTk f Tk ]T . From
(7) and (8), we have the following error dynamics system:

ηk+1 = (Ãhk ,1 + Ãhk ,2 + Ãhk ,3)ηk + Ãd1ηk−τk
+ Ãd2

∑∞

d=1
µdηk−d + D̃hk ,1ϑk ,

r̄k = (C̃hk ,1 + C̃hk ,2 + C̃hk ,3)ηk + D̃hk ,2ϑk ,

(9)

where

Ãhk ,1 =
[

Āhk ,1 0
B̄hk ,F C̄hk ,1 0

]
, Ãhk ,3 =

[
Āhk ,3 0

B̄hk ,F C̄hk ,3 0

]
,

Ãhk ,2 =
[

Āhk ,2 0
B̄hk ,F C̄hk ,2 Āhk ,F

]
, Ãd1 =

[
Ād1 0
0 0

]
,

Ãd2 =
[
Ād2 0
0 0

]
, D̃hk ,1 =

[
D̄hk Ḡ

B̄hk ,F8hkD2 0

]
,

D̃hk ,2 =
[
Ēhk ,F8hkD2 −I

]
,

C̃hk ,1 =
[
Ēhk ,F C̄hk ,1 0

]
,

C̃hk ,2 =
[
Ēhk ,F C̄hk ,2 D̄hk ,F

]
,

C̃hk ,3 =
[
Ēhk ,F C̄hk ,3 0

]
.
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Then, it is straightforward to see that E{Ãhk ,1} = 0 and
E{C̃hk ,1} = 0.
From the above discussions, the original problem of fault

detection filter for discrete systems with mixed time-delays
and missing measurements under the RR protocol can be
transformed into an H∞ filtering problem, i.e., we aim to
construct a filter of the form (8) such that the resulted filtering
error dynamics system attains a prescribed H∞ attenuation
level. Namely, the purpose of this paper is to find the filter
parameters Āhk ,F , B̄hk ,F , D̄hk ,F and Ēhk ,F such that the fol-
lowing two requirements are satisfied simultaneously:

(R1) When ϑk = 0, the error dynamics system (9) is
asymptotically stable in the mean-square sense.

(R2) When ϑk 6= 0, under zero-initial condition, the error
r̄k satisfies

∞∑
k=0

E
{
‖ r̄k ‖2

}
≤ γ 2

∞∑
k=0

E
{
‖ ϑk ‖

2
}
, (10)

where γ is a positive scalar.
We further give a residual evaluation function Jk and a

threshold Jth of the following form:

Jk =

{
k∑

h=0

rTh rh

}1/2

, Jth = sup
vk∈l2,fk=0

E{Jk}. (11)

According to (11), the occurrence of faults can be detected by
comparing Jk with Jth under the following rule:

Jk > Jth ⇒ a fault is detected ⇒ alarm

Jk ≤ Jth ⇒ no fault ⇒ no alarm

III. MAIN RESULTS
In this section, our main goal is to derive the sufficient
conditions to guarantee that the augmented system (9) with
ϑk = 0 is asymptotically stable in the mean-square sense and
satisfies (10) under the zero-initial condition for all nonzero
ϑk . Subsequently, the fault detection filter parameters are
designed in terms of certain matrix inequalities.

Before giving our main results, let us introduce the follow-
ing lemmas.
Lemma 1 [20]: LetM ∈ Rn×n be a positive semi-definite

matrix, xi ∈ Rn (i = 1, 2, · · · ), and constants ai > 0 (i =
1, 2, · · · ). If the series concerned is convergent, then the
following inequality always holds:(

∞∑
i=1

aixi

)T
M

(
∞∑
i=1

aixi

)
≤

(
∞∑
i=1

ai

)
∞∑
i=1

aixTi Mxi.

Lemma 2 [36] (Schur Complement): For a given matrix

S =

[
S11 S12
ST12 S22

]
with ST11 = S11 and ST22 = S22, then the

following conditions are equivalent:

(1) S < 0;

(2) S11 < 0, S22 − ST12S
−1
11 S12 < 0;

(3) S22 < 0, S11 − S12S
−1
22 S

T
12 < 0.

Lemma 3 [20]: Let N = NT , H and E be real matrices
with appropriate dimensions, and let FTk Fk ≤ I . Then,
the inequality N +HFkE + (HFkE)T < 0 if and only if there
exists a positive scalar ε such that

N + ε−1HHT
+ εETE < 0.

In what follows, a sufficient condition is given to ensure
the asymptotically mean-square stability of the resulted error
dynamics system (9) with prescribed H∞ performance.
Theorem 1: Let the filter parameters Āi,F , B̄i,F , D̄i,F and

Ēi,F be given. For given positive scalars τm, τM and a pre-
scribed H∞ index γ > 0, the error dynamics system (9)
with ϑk = 0 is asymptotically stable in the mean-square
sense and satisfies (10) under the zero-initial condition for all
nonzero ϑk , if there exist symmetric positive definite matrices
Pi (i = 1, 2, · · · ,m), Q1, Q2, Q3 and R satisfying

4̂i
=


4i

11 + L
i
1 ∗ ∗ ∗ ∗ ∗

0 − Q1 ∗ ∗ ∗ ∗

4i
31 0 4i

33 ∗ ∗ ∗

0 0 0 − Q3 ∗ ∗

4i
51 0 4i

53 0 4i
55 ∗

4i
61 + L

i
2 0 4i

63 0 4i
65 4i

66 + L
i
3


< 0, (12)

where

4i
11 = −Pi + Q1 + (τM − τm + 1)Q2 + Q3

+ µ̄R+
m∑
j=1

σ̄ 2
j (Ã

j
i,1)

TPi+1(Ã
j
i,1)

+ (Ãi,2 + Ãi,3)TPi+1(Ãi,2 + Ãi,3),

4i
31 = ÃTd1Pi+1(Ãi,2 + Ãi,3),

4i
33 = −Q2 + ÃTd1Pi+1Ãd1,

4i
51 = ÃTd2Pi+1(Ãi,2 + Ãi,3), 4i

53 = ÃTd2Pi+1Ãd1,

4i
55 = −

1
µ̄
R+ ÃTd2Pi+1Ãd2, 4i

66 = D̃Ti,1Pi+1D̃i,1,

4i
61 = D̃Ti,1Pi+1(Ãi,2 + Ãi,3), 4i

63 = D̃Ti,1Pi+1Ãd1,

4i
65 = D̃Ti,1Pi+1Ãd2,

L i1 =
m∑
j=1

σ̄ 2
j (C̃

j
i,1)

T (C̃ j
i,1)+ (C̃i,2 + C̃i,3)T (C̃i,2 + C̃i,3),

L i2 = D̃Ti,2(C̃i,2 + C̃i,3), L
i
3 = −γ

2I + D̃Ti,2D̃i,2,

Ãji,1 =

[
Āji,1 0

B̄i,F C̄
j
i,1 0

]
, Āji,1 =

[
0 0

8iEjC 0

]
,

C̃ j
i,1 =

[
Ēi,F C̄

j
i,1 0

]
, C̄ j

i,1 =
[
8iEjC 0

]
,

σ̄ 2
j = min{

1
4
, (λj + εj)(1− λj + εj)} (13)

with Pm+i = Pi for all i ∈ {1, 2, · · · ,m}.
Proof: In order to prove our result, we choose the following

Lyapunov functional for system (9):

Vk =
3∑
i=1

Vi,k , (14)

76620 VOLUME 6, 2018



W. Chen et al.: Protocol-Based Fault Detection for Discrete Delayed Systems With Missing Measurements

where

V1,k = ηTk Phkηk ,

V2,k =
k−1∑

i=k−τm

ηTi Q1ηi +

k−1∑
i=k−τk

ηTi Q2ηi

+

k−1∑
i=k−τM

ηTi Q3ηi +

−τm∑
j=−τM+1

k−1∑
i=k+j

ηTi Q2ηi,

V3,k =
∞∑
d=1

µd

k−1∑
i=k−d

ηTi Rηi.

For hk = i, hk+1 = i + 1, we compute the mathematical
expectation of the difference of Vk along the trajectory of the
augmented system (9) with ϑk = 0. In terms of E{1Vi,k} =
E{Vi,k+1} − E{Vi,k}, we have

E {1Vk} = E
{
1V1,k +1V2,k +1V3,k

}
,

where

E
{
1V1,k

}
= E

{
ηTk+1Pi+1ηk+1 − η

T
k Piηk

}
= E

{[
ηTk (Ãi,1 + Ãi,2 + Ãi,3)

T
+ ηTk−τk Ã

T
d1

+

(
∞∑
d=1

µdηk−d

)T
ÃTd2 + ϑ

T
k D̃

T
i,1

]
Pi+1

×

[
(Ãi,1 + Ãi,2 + Ãi,3)ηk + Ãd1ηk−τk

+ Ãd2
∞∑
d=1

µdηk−d + D̃i,1ϑk
]
− ηTk Piηk

}

=

m∑
j=1

σ 2
j η

T
k (Ã

j
i,1)

TPi+1(Ã
j
i,1)ηk

+ ηTk (Ãi,2 + Ãi,3)
TPi+1(Ãi,2 + Ãi,3)ηk

+ ηTk−τk Ã
T
d1Pi+1Ãd1ηk−τk + ϑ

T
k D̃

T
i,1Pi+1D̃i,1ϑk

+

(
∞∑
d=1

µdηk−d

)T
ÃTd2Pi+1Ãd2

(
∞∑
d=1

µdηk−d

)
+ 2ηTk (Ãi,2 + Ãi,3)

TPi+1Ãd1ηk−τk

+ 2ηTk (Ãi,2 + Ãi,3)
TPi+1Ãd2

(
∞∑
d=1

µdηk−d

)
+ 2ηTk (Ãi,2 + Ãi,3)

TPi+1D̃i,1ϑk

+ 2ηTk−τk Ã
T
d1Pi+1Ãd2

(
∞∑
d=1

µdηk−d

)
+ 2ηTk−τk Ã

T
d1Pi+1D̃i,1ϑk − η

T
k Piηk

+ 2

(
∞∑
d=1

µdηk−d

)T
ÃTd2Pi+1D̃i,1ϑk , (15)

E
{
1V2,k

}
≤ ηTk [Q1 + (τM − τm + 1)Q2 + Q3]ηk
− ηTk−τmQ1ηk−τm − η

T
k−τkQ2ηk−τk

− ηTk−τMQ3ηk−τM , (16)

E
{
1V3,k

}
= µ̄ηTk Rηk −

∞∑
d=1

µdη
T
k−dRηk−d . (17)

Here, σ 2
j = (λ̄j +1λ̄j)(1− λ̄j −1λ̄j), Ã

j
i,1 is given in (13).

Noting that σ 2
j ≤ σ̄

2
j , we obtain

E
{
1V1,k

}
≤

m∑
j=1

σ̄ 2
j η

T
k (Ã

j
i,1)

TPi+1(Ã
j
i,1)ηk

+ ηTk (Ãi,2 + Ãi,3)
TPi+1(Ãi,2 + Ãi,3)ηk

+ ηTk−τk Ã
T
d1Pi+1Ãd1ηk−τk + ϑ

T
k D̃

T
i,1Pi+1D̃i,1ϑk

+

(
∞∑
d=1

µdηk−d

)T
ÃTd2Pi+1Ãd2

(
∞∑
d=1

µdηk−d

)
+ 2ηTk (Ãi,2 + Ãi,3)

TPi+1Ãd1ηk−τk

+ 2ηTk (Ãi,2 + Ãi,3)
TPi+1Ãd2

(
∞∑
d=1

µdηk−d

)
+ 2ηTk (Ãi,2 + Ãi,3)

TPi+1D̃i,1ϑk

+ 2ηTk−τk Ã
T
d1Pi+1Ãd2

(
∞∑
d=1

µdηk−d

)
+ 2ηTk−τk Ã

T
d1Pi+1D̃i,1ϑk − η

T
k Piηk

+ 2

(
∞∑
d=1

µdηk−d

)T
ÃTd2Pi+1D̃i,1ϑk .

Furthermore, according to Lemma 1, it can be easily seen
that

−

∞∑
d=1

µdη
T
k−dRηk−d

≤ −
1
µ̄

(
∞∑
d=1

µdηk−d

)T
R

(
∞∑
d=1

µdηk−d

)
, (18)

where µ̄ is defined in (2). Then, we can obtain

E
{
1V3,k

}
≤ µ̄ηTk Rηk −

1
µ̄

(
∞∑
d=1

µdηk−d

)T
R

(
∞∑
d=1

µdηk−d

)
. (19)

For convenience, we define the following notations:

ζk =
[
ηTk ηTk−τm ηTk−τk ηTk−τM

(∑
∞

d=1 µdηk−d
)T ]T

,

ξk =
[
ζ Tk ϑTk

]T
.
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Now, we are ready to prove the asymptotic stability in the
mean-square sense of the system (9) with ϑk = 0. Obviously,
the combination of (15)-(19) results in

E{1Vk} ≤ E{ζ Tk 4
iζk}, (20)

where

4i
=


4i

11 ∗ ∗ ∗ ∗

0 − Q1 ∗ ∗ ∗

4i
31 0 4i

33 ∗ ∗

0 0 0 − Q3 ∗

4i
51 0 4i

53 0 4i
55

.
It follows immediately from (12) that 4i < 0. Then, from
the Lyapunov stability theorem, it is easy to find that the
asymptotic stability in the mean-square sense of system (9)
can be confirmed when ϑk = 0.

Next, we will analyze the H∞ performance of the system
(9) with ϑk 6= 0 under the zero-initial condition. We consider
the following index:

JN = E

{
N∑
k=0

[
r̄Tk r̄k − γ

2ϑTk ϑk

]}

= E

{
N∑
k=0

[
r̄Tk r̄k − γ

2ϑTk ϑk +1Vk
]}
− E {VN+1}

≤ E

{
N∑
k=0

[
r̄Tk r̄k − γ

2ϑTk ϑk +1Vk
]}

=

N∑
k=0

ξTk 4̂
iξk , (21)

where 4̂i is defined in (12). According to the previous anal-
ysis and (12), we can derive that JN ≤ 0. Letting N → ∞,
it is easy to see that

∞∑
k=0

E
{
‖ r̄k ‖2

}
≤ γ 2

∞∑
k=0

E
{
‖ ϑk ‖

2
}
, (22)

which is equivalent to (10). Thus, the proof of Theorem 1 is
complete.
Remark 4: In Theorem 1, the asymptotically mean-square

stability with satisfactory H∞ performance of the resulted
filtering error system can be guaranteed when the fault detec-
tion filter parameters is given. In the following Theorem,
we provide a sufficient condition in terms of linear matrix
inequality technique that can be readily solved by Matlab
software. Thus, the explicit expression of the proposed fault
detection filter parameters can be derived.
Theorem 2: For given positive scalars τm, τM and a pre-

scribed H∞ index γ > 0, the error dynamics system (9) with
ϑk = 0 is asymptotically stable in the mean-square sense and
satisfies (10) under the zero-initial condition for all nonzero
ϑk , if there exist symmetric positive definite matrices Pi (i =
1, 2, · · · ,m), Q1, Q2, Q3 and R, positive scalar ρ, any appro-
priate dimensional matrices Xi and Ki,2 (i = 1, 2, · · · ,m)

satisfying

4̃i
=

[
2i

11 ∗

2i
21 222

]
< 0, (23)

where

2i
11 =


9 i

∗ ∗ ∗ ∗

4̃i
21 + ϒ

i
21 − Pi+1 ∗ ∗ ∗

4̃i
31 + ϒ

i
31 0 − I ∗ ∗

4̃i
41 0 0 − Pi+1 ∗

4̃i
51 0 0 0 − I

,

2i
21 =

[
0 4̃i

62 8̂T
i,2K

T
i,2 0 0

ρ3̌1 0 0 0 0

]
,

222 =

[
−ρI ∗

0 − ρI

]
,

9 i
= diag{−Pi + Q1 + (τM − τm + 1)Q2 + Q3

+ µ̄R,−Q1,−Q2,−Q3,−
1
µ̄
R,−γ 2I },

4̃i
21 =

[
Pi+1Âi,2 + XiĈi,2 0 Pi+1Ãd1 0

Pi+1Ãd2 Pi+1D̂i,1 + XiD̂i,2
]
,

4̃i
31 =

[
Ki,2Ĉi,2 0 0 0 0 Ki,2D̂i,2 − ÊT

]
,

4̃i
41 =

[
Pi+1Â

j
i,1 + XiĈ

j
i,1 0 0 0 0 0

]
,

4̃i
51 =

[
Ki,2Ĉ

j
i,1 0 0 0 0 0

]
,

4̃i
62 = 8̂

T
i,1Pi+1 + 8̂

T
i,2X

T
i ,

3̌1 =
[
3̂1 0 0 0 0 0

]
,

ϒ i
21 =

[
Pi+16i,1 + Xi6i,2 0 0 0 0 0

]
,

ϒ i
31 =

[
Ki,26i,2 0 0 0 0 0

]
,

Âji,1 =

[∑m
j=1 σ̄j(Ā

j
i,1) 0

0 0

]
, Âi,2 =

[
Āi,2 0
0 0

]
,

Âi,3 =
[
Āi,3 0
0 0

]
, Ĉ j

i,1 =

[
0 0∑m

j=1 σ̄j(C̄
j
i,1) 0

]
,

Ĉi,2 =
[

0 I
C̄i,2 0

]
, Ĉi,3 =

[
0 0
C̄i,3 0

]
, D̂i,1 =

[
D̄i Ḡ
0 0

]
,

D̂i,2 =
[

0 0
8iD2 0

]
, Ê =

[
0
I

]
, 8̂i,1 =

[
8̄i,1
0

]
,

8̄i,1 =

[
0
8i

]
, 8̂i,2 =

[
0
8i

]
, 3̂1 =

[
3̄1 0

]
,

3̄1 =
[
31C 0

]
, 6i,1 =

[
�i,1 0
0 0

]
, 6i,2 =

[
0 0
�i,2 0

]
,

�i,1 =

[
0 0

8i3̄C 0

]
, �i,2 =

[
8i3̄C 0

]
, (24)

with Pm+i = Pi for all i ∈ {1, 2, · · · ,m}. Furthermore,
the filter parameters in the form of (8) are given as follows:[

Āi,F B̄i,F
]
= (ÊTPi+1Ê)−1ÊTXi,[

D̄i,F Ēi,F
]
= Ki,2. (25)
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Proof: First, we rewrite the parameters in Theorem 1 as the
following form:

m∑
j=1

σ̄j(Ã
j
i,1) = Âji,1 + ÊKi,1Ĉ

j
i,1,

Ãi,2 = Âi,2 + ÊKi,1Ĉi,2,

Ãi,3 = Âi,3 + ÊKi,1Ĉi,3,
m∑
j=1

σ̄j(C̃
j
i,1) = Ki,2Ĉ

j
i,1,

C̃i,2 = Ki,2Ĉi,2, C̃i,3 = Ki,2Ĉi,3,

D̃i,1 = D̂i,1 + ÊKi,1D̂i,2,

D̃i,2 = Ki,2D̂i,2 − ÊT ,

Ki,1 =
[
Āi,F B̄i,F

]
. (26)

By using Lemma 2 and (26), (12) can be rewritten as
9 i

∗ ∗ ∗ ∗

4̌i
21 − P

−1
i+1 ∗ ∗ ∗

4̌i
31 0 − I ∗ ∗

4̌i
41 0 0 − P−1i+1 ∗

4̃i
51 0 0 0 − I

 < 0, (27)

where

4̌i
21 =

[
Âi,2 + ÊKi,1Ĉi,2 + Âi,3 + ÊKi,1Ĉi,3 0 Ãd1

0 Ãd2 D̂i,1 + ÊKi,1D̂i,2
]
,

4̌i
31 =

[
Ki,2Ĉi,2 + Ki,2Ĉi,3 0 0 0 0 Ki,2D̂i,2 − ÊT

]
,

4̌i
41 =

[
Âji,1 + ÊKi,1Ĉ

j
i,1 0 0 0 0 0

]
.

Pre- and post-multiplying the (27) by diag{I ,Pi+1,
I ,Pi+1, I } and defining Xi = Pi+1ÊKi,1, we can directly
derive that

9 i
∗ ∗ ∗ ∗

4̃i
21 + ϒ̌

i
21 − Pi+1 ∗ ∗ ∗

4̃i
31 + ϒ̌

i
31 0 − I ∗ ∗

4̃i
41 0 0 − Pi+1 ∗

4̃i
51 0 0 0 − I

 < 0, (28)

where

ϒ̌ i
21 =

[
Pi+1Âi,3 + XiĈi,3 0 0 0 0 0

]
,

ϒ̌ i
31 =

[
Ki,2Ĉi,3 0 0 0 0 0

]
.

We are now in a position to deal with the system subject to
uncertainties described in (6). Let us use 3̄+031 replace 3̃
in Âi,3 and Ĉi,3. According to (28), we can get

2i
11 + H̃i03̃1 + (H̃i03̃1)T < 0, (29)

where

H̃i =
[
0 (Pi+18̂i,1 + Xi8̂i,2)T 8̂T

i,2K
T
i,2 0 0

]T
,

3̃1 =
[
3̌1 0 0 0 0

]
.

Here, 2i
11, 8̂i,1, 8̂i,2 and 3̌1 are defined in (24).

Based on Lemma 3, we can easily obtain that (29) holds if
and only if there exists a positive scalar ρ such that

2i
11 + ρ

−1H̃iH̃T
i + ρ3̃

T
1 3̃1 < 0. (30)

According to Lemma 2 and (23) yield (30), which ends the
proof.
Remark 5: Up to now, we have studied the protocol-

based fault detection problem for discrete system with mixed
time-delays and missing measurements, where the missing
probabilities could be uncertain. It should be noted that
the protocol-dependent Lyapunov functional has been con-
structed in (14) with hope to better depict the characteristic
of RR protocol. Based on the Lyapunov stability theorem,
new probability-dependent sufficient conditions have been
proposed to guarantee that the error dynamics system is
asymptotically stable in the mean-square sense and satisfies
H∞ performance. Moreover, the concrete expression of the
filter gains has been given.

IV. A NUMERICAL EXAMPLE
In this section, a numerical simulation example is given to
demonstrate the effectiveness of the proposed fault detection
approach.
Example 1: Consider the discrete delayed system (1) sub-

ject to missing measurements with the following system
parameters:

A =
[
0.6 0.2
0 0.7

]
, Ad1 =

[
0.03 0
0.02 0.03

]
,

Ad2 =
[
0.01 0
0 0.01

]
, D1 =

[
0.8
0.3

]
, G =

[
−1
0.6

]
,

C =
[
0.2 −0.1
0.3 −0.2

]
, D2 =

[
0.6
0.7

]
.

Let the time-varying delays satisfy 1 ≤ τk ≤ 3 and
assume that λ̄i = 0.9, εi = 0.05 (i = 1, 2). Choosing the
constant µd = 2−3−d , we have µ̄ =

∑
∞

d=1 µd = 2−3 <∑
∞

d=1 dµd = 2−2 < +∞, which satisfies the convergence
condition in (2). Let the performance index given in (10) be
γ = 1.4.
According to Theorem 2, the fault detection filter parame-

ters can be gained as follows:

Ā1,F =


0.0066 0.0160 0.0017 − 0.0020
0.0012 0.319 − 0.0014 0.0017
0.0006 0.0006 0.0002 − 0.0003
−0.0007 − 0.0007 − 0.0002 0.0002

,

B̄1,F =


−0.0011 0.0003
−0.0001 0.0002
−0.1623 − 0.0225
−0.0225 − 0.1552

,
D̄1,F =

[
−2.6302 − 0.7613 − 0.9010 1.0561

]
,

Ē1,F =
[
−0.0619 0.0281

]
,
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FIGURE 2. Residual signal rk without vk .

FIGURE 3. Evolution of residual evaluation function Jk without vk .

Ā2,F =


0.0098 0.0169 − 0.0001 0.0001
0.0074 0.0300 0.0002 − 0.0001
−0.0025 0.0047 0.0001 − 0.0001
0.0029 − 0.0054 − 0.0001 0.0002

,

B̄2,F =


−0.0001 − 0.0005
0.0003 0.0001
−0.1050 − 0.0895
−0.0893 − 0.0771

,
D̄2,F =

[
−4.1794 1.7205 0.1026 − 0.1170

]
,

Ē2,F =
[
0.0128 − 0.0750

]
.

We assume the initial conditions as x̄0 = [ 0.2 − 0.3 0.2
0.1 ]T and ˆ̄x0 = [ 0 0 0 0 ]T . In order to further elaborate
the effectiveness of the designed fault detection filter, for
k = 0, 1, · · · , 150, let the fault signal fk be given by:

fk =

{
1, 50 ≤ k ≤ 100
0, else

On one hand, in the case that the external disturbance vk = 0,
the residual signal rk and evolution of residual evaluation
function Jk are depicted in Figs. 2 and 3, respectively, which
imply that the filter designed in this paper can effectively
detect the faults when it occurs. On the other hand, suppose

FIGURE 4. Residual signal rk with vk .

FIGURE 5. Evolution of residual evaluation function Jk with vk .

FIGURE 6. The selected node hk .

that the disturbance is given by

vk =

{
0.2× rand[0, 1], 30 ≤ k ≤ 60
0, else

where the rand[0, 1] represents the arrays of random numbers
whose elements are uniformly distributed over the interval
[0, 1]. The residual signal rk and evolution of residual evalua-
tion function Jk are plotted in Figs. 4 and 5, respectively. The
threshold can be chosen as Jth = supf=0 E{

∑150
l=0 r

T
l rl}

1/2.
After running the simulation 100 times, we get the average
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value of Jth = 0.0748. According to Fig. 5, it is easy to
find that 0.0737 = J (52) < Jth < J (53) = 0.0891, which
indicates that the fault can be detected in 3 time steps after
its occurrence. Furthermore, the selected node at each trans-
mission step under the RR protocol is shown in Fig. 6. It is
straightforward to see from Fig. 6 that under the RR protocol,
only one node can transmit the data at each transmission time.

V. CONCLUSION
In this paper, we have investigated the protocol-based fault
detection problem for discrete systems subject to mixed
time-delays andmissingmeasurements under uncertain miss-
ing probabilities, where the uncertain missing probabilities
of missing measurements have been characterized and the
RR protocol has been utilized to save the communication
resources. By utilizing the Lyapunov approach, some suffi-
cient conditions have been obtained in terms of certain LMIs,
which ensure that the error dynamics system is asymptoti-
cally stable in the mean-square sense and satisfies H∞ per-
formance. Furthermore, the specific expression of the desired
filter gains has been presented. Finally, a numerical simula-
tion example has been given to show the effectiveness of the
proposed fault detection filtering method. Further research
topics based on the proposed results include the designs of
fault detection filters for networked systems with different
transmission protocols (e.g. stochastic communication pro-
tocol, the weighted try-once-discard protocol) or dynamic
event-triggered scheme.
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