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ABSTRACT Software refactoring is popular and thus most mainstream IDEs, e.g., Eclipse, provide a top
level menu, especially for refactoring activities. The refactoring menu is designed to facilitate refactorings,
and it has become one of the most commonly used menus. However, to support a large number of refactoring
types, the refactoring menu contains a long list of menu items. As a result, it is tedious to select the intended
menu item from the lengthy menu. To facilitate the menu selection, in this paper, we propose an approach
to dynamic ranking of refactoring menu items for IDE. We put the most likely refactoring menu item on the
top of the refactoring menu according to developers’ source code selection and code smells associated with
the selected source code. The ranking is dynamic because it changes frequently according to the context.
First, we collect the refactoring history of the open source applications and detect the code smells. Based
on the refactoring history, we design questionnaires and analyze the responses from developers to discover
the source code selection patterns for different refactoring types. Subsequently, we analyze the relationship
between code smells associated with the refactoring software entities and the corresponding refactoring
types. Finally, based on the preceding analysis, we calculate the likelihood of different refactoring types to
be applied when a specific part of source code is selected, and rank the menu items according to the resulting
likelihood. We conduct a case study to evaluate the proposed approach. Evaluation results suggest that the
proposed approach is accurate, and in most cases (95.69%), it can put the intended refactoring menu item
on the top of the menu.

INDEX TERMS Software development, software refactoring, menu ranking, IDE.

I. INTRODUCTION
Software refactoring is a well-known technique that is
widely adopted by software engineers to improve the
design and enable the evolution of a system [1]. Software
refactoring changes the internal structure of software sys-
tems without changing their external behaviors. The major
purpose of software refactoring is to make source code
more reusable, maintainable, extensible, and understand-
able [2]. Most of the modern integrated development envi-
ronments (IDEs), e.g., Eclipse (http://eclipse.org), Visual
Studio (http://microsoft.com/visualstudio) and IntelliJ IDEA
(http://www.jetbrains.com/idea) provide tools support for
software refactoring. For example, Eclipse has a top-level
menu item specially designed for software refactoring. It pro-
vides entries for dozens of software refactorings that are
automated or semi-automated by Eclipse. Tool support is
crucial for the success of software refactoring. Eclipse has

made 27 refactor actions as different types of refactorings are
being added to it occasionally. With such 27 refactor actions
menu, it is often tedious for software engineers to select the
intended menu item.

For example, if developers want to go to Push Down
method, which moves a method from a class to a specific
subclass, the refactoring menu of Eclipse will appear as
shown in Figure 1. Whereby, developer would find that name
in a menu to apply the Push Down method refactoring. This
process of choosing a menu item, appears to be tedious for
developers.

Therefore, we present the dynamic ranking of refactoring
menu items in IDE that the most likely refactoring menu item
is placed on the top of refactoring menu according to source
code selection and code smell associated with the selected
source code. As a result, a developer does not need to go to
the lengthy menu. The ranking is dynamic because it changes
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FIGURE 1. Refactoring menu of eclipse.

frequently according to the context. However, if we change
the whole menu frequently (according to their likelihood to
be selected), it could be difficult for developers to select the
intended menu item when it is not on the top. Consequently,
we split the whole menu into two parts: the top 1 (changing
menu item, noted as T1) and the others (fixed items, noted
asOT ).OT is identical to the refactoringmenu of Eclipse, and
all items are fixed. Our approach only changes the top 1 menu
item (T1) dynamically. When the ranking result is not correct
(i.e., the top 1 item is not the intended one), developers have
to select the intended menu item from OT that contains all
refactoring actions. The theoretical foundation for such split
menus could be found in [3].

The major contribution of this paper includes:
• An approach of dynamically ranking refactoring menu
items for IDE based on source code element and code
smells.

• The results showed that the proposed approach is
accurate.

The rest of the paper is structured as follows. Section II
illustrates the overview of the research method used in this
paper. Section III presents an evaluation of the proposed
approach on open-source applications. Section IV outlines
some of the limitations to this research. Section V discusses
related issues. Section VI provides conclusions and potential
future work.

II. METHODOLOGY
A. OVERVIEW
An overview of the proposed approach is presented
in Figure 2. As suggested by the figure, the proposed

FIGURE 2. Overview of the proposed approach.

TABLE 1. Subject applications.

approach works as follows: First, we collect the refactoring
history of the open source applications and detect the code
smells. Based on the refactoring history, we design question-
naires and analyze the responses from developers to discover
the source code selection pattern for different refactoring
types. And then, we analyze the relationship between code
smells associated with the refactored software entities and
the corresponding refactoring types. Finally, we calculate the
likelihood of different refactoring types and rank the menu
items according to the resulting likelihood.

B. SUBJECT APPLICATIONS
An overview of the subject applications is presented
in Table 1. These applications are as follows:
• Hibernate [4] is an open-source application developed
in Red Hat. The purpose of this project is to provide
an easy way to achieve persistence in Java. Source code
of this application was downloaded from SourceForge
(http://sourceforge.net/projects/hibernate). We analyzed
the last 31 versions (from version 4.0.0 to version 5.6.1).
The size of this application varies from 68,929 to
176,879 LOC.

• Phex [5] is a peer to peer file sharing client for the
gnutella network. It is free software and distributed
under the GNU General Public License (GPL). Source
code of this application was downloaded from Source-
Forge (http://sourceforge.net/projects/phex). We ana-
lyzed 11 versions (from version 2.8.4.93 to version
3.4.2.116). The size of this application ranges from
37,489 to 249,691 LOC.

• Weka [6] is an open-source application developed
by the machine learning group at the University
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of Waikato. It implements in Java a set of well-
known machine learning algorithms. Source code of
this application was downloaded from its SVN server
(http://svn.cms.waikato.ac.nz/svn/weka). We analyzed
the last 38 versions (from version 3.1.7 to
version 3.7.11). The size of this application ranges from
38,890 to 272,212 LOC.

We selected such subjects because of the following rea-
sons. First, all of them are open-source applications and their
source code is publicly available. Second, these applications
were developed by different developers. Third, these applica-
tions are well-known and popular. Thus, it brings some sort
of diversity on the different styles of coding and refactoring.
And then, it would limit and bridge the gap to the external
threats which might be available. Notably, we also consider
the domains (to cover different domains) while selecting such
applications.

C. DISCOVERY OF REFACTORING
In order to collect the refactoring histories for the dynamic
ranking of refactoring menu items, we leveraged refactoring
recovery tools to discover the evolutionary history of software
application.

First, we employed Refactoring Crawler [7], a well-known
refactoring discovery tool, to detect a set of potential pre-
viously applied refactorings. The tool uses a combination
of a fast syntactic analysis to detect candidates and a more
expensive semantic analysis to refine the results.

Second, we also applied Logical Structural Diff (LSDiff),
another well-known refactoring discovery tool, to the subject
applications and it generates a set of potential refactorings
as well. LSDiff makes it easier for developers to understand
code changes by grouping related differences as a single rule
and by finding exceptions that indicate missed or inconsistent
updates [8]. Third, wemerge these two data sets andmanually
check each of the potential refactorings and associated code
smells with the program code. The process of collecting
the various refactoring histories involved the following three
basic steps:

• Importing the various versions of the chosen software
subjects into eclipse.

• Selecting the subjects that represented two successive
version of the software for refactoring discovery by
using Refactoring Crawler and LSDiff.

• Checking whether the discovered refactoring was an
actual refactoring or not.

We discovered 279, 189 and 143 refactorings from Hiber-
nate, Phex and Weka, respectively. In total, 611 refactor-
ings were discovered from these subject applications as
shown in Table 2. Table 3 shows the total number of each
type of refactoring that were collected from the subject
applications.

In Table 4, we identified and analyzed 611 refactorings
classified in 17 commonly used refactoring types. 14 code
smell types are used to classify the collected refactorings.

TABLE 2. Discovered refactorings (by subject applications).

TABLE 3. Discovered refactorings (by refactoring type).

These code smell types are selected because they are con-
ceptually associated with the definition of the refactoring
types that is each refactoring type is explicitly associated with
one or more code smells. Code smells have been associated
with refactorings when they were proposed by the experts
who defined such code smells [9].

For each discovered refactoring, we manually check
whether the refactored software entity is associated with
code smells. We associated the identified code smell with
the discovered refactoring if the refactoring is one of the
solutions for the code smells [9]. Notably, researchers have
proposed a number of automatic tools to identify such code
smells, e.g., InsRefactor [10] and JDeodorant [11]. We do
not use these tools in this paper because of the following
reasons. First, such tools maymiss some code smells or report
false negatives. Second, we want to keep the paper simple
and focused, excluding the impact of smell detection tools
on the proposed approach. However, such tools could be
employed in practice because it could be time consuming
and even impractical if developers have to manually identify
code smells before refactoring menus could be ordered and
shown up.
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TABLE 4. Relation between code smells and refactoring number.

We present the likelihood of relation between code smells
and refactoring number in Table 4. The likelihood P(ri/Cj) for
a specific refactoring type ri to be selected when a specific
code smell Cj is associated with the selected element.

• Let Mn(Cj,ri) be the total number of refactoring type ri
that are associated with code smell Cj and

• Let M(Cj) be the total number of refactorings associated
with Cj, then

The likelihood of P(ri/Cj) is calculated as follows:

P(ri/Cj) = Mn(Cj, ri)/M (Cj) (1)

As an example, we calculate the likelihood of Inline method
and Rename method when Speculative generality is associ-
ated with the selected element. Since, there are two types of
refactorings associated with Speculative generality then:

Mn = M1 +M2

= 23+ 6

= 29 (2)

P(Inline method/Speculative generality)=(23/29)=79.31%
P(Rename method/Speculative generality)=(6/29) =20.69%
When the code smell of Speculative generality is 79.31%

likelihood, that Inline method will be applied, and thus
it is the most likely refactoring in this case. In Table 4,
we observed that Move method refactoring is the one which
is related to most of the available code smell than other
refactorings.

D. QUESTIONNAIRES
In this section, we design questionnaires to investigate
developers’ source code element selection to carry out
different kinds of refactorings. Each question concerns
with a refactoring selected from the 611 refactorings
discovered from the subject applications. A sample
questionnaire is available online in https://github.
com/liuhuigmail/FeatureEnvy/blob/master/Questio nnaire.
pdf [12]. Before distributing the questionnaires, we consulted
three developers who have aminimumof five years of general
programming experience about potential source code selec-
tion patterns for different kinds of refactorings. This was done
so as to provide the correct source code selection patterns in
the questionnaires associated with a particular refactoring.
Participants had 50 questions and there were different sets of
questionnaires assigned to different respondents to make sure
that all discovered refactorings are involved in the question-
naires. The purpose of this questionnaires is just to understand
and get a clear picture of what kind of elements you would
select as a developer to carry out a certain refactoring and to
know what kind of code smells would be associated with that
selected element for that specific refactoring.

• What kind of element would you select to rename the
class?

• What kind of element would you select to rename the
method?

• What kind of element would you select to pull up the
method?

• What kind of element would you select to move the
method?

• What kind of element would you select to change the
method parameter?

• What kind of element would you select to push down the
method?
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• What kind of element would you select to rename the
package?

• Which code smell would you make to select that
element?

The respondents were supposed to indicate which element
they would select to change the parameter type of the method
in question. Their choice was to be indicated by providing the
name of the element they would select against the question in
cases where their element of choice was not included in the
given options. The questionnaires were distributed to a group
of 42 students studying in computer science and technology at
a University. This group consists of Master and PhD students.
All of the 42 students responses were valid and useful.

The results from the questionnaires were collected and
analyzed as follows. First, we checked for each refactoring
types which source code element the respondents would use
to apply a particular refactoring. Second, all the refactor-
ings which have the same source code element are grouped
together. Third, for each of the refactorings with the same
source code element, the likelihood of applying a particular
refactoring was calculated when the type of source code is
selected. That is, when that particular source code element is
selected each refactoring is the intended one. These calcula-
tions were done as follows:
• Let Ni,j(ej,ri) be the total number of respondents who
selected the particular source code element of type ej for
a specific refactoring type ri.

• Let Ni(ej) be the total number of respondents who
selected the particular source code element of type ej to
apply refactorings.

• Let P(ri,ej) be the likelihood of applying a particular
refactoring type ri while the source code element of
type ej is selected.

P(ri, ej) = Ni,j(ej, ri)/Ni(ej) (3)

As an example, whenA set ofmethods are selected, we calcu-
late the likelihood of Extract interface and Extract superclass.
There are two refactoring types under which a developer
would select A set of methods then:

Ni = N1 + N2

= 17+ 6

= 23 (4)

P(Extract interface, A set of methods) = (17/23) = 73.91%
P(Extract superclass, A set of methods) = (6/23) = 26.09%
This means that when A set of methods are selected there

is 73.91% likelihood that the intended refactoring to be
applied is Extract interface. The rest of the results from the
questionnaires are presented in Table 5.

From Table 5, we observe that Method name is the source
code element associated with the greatest number of the
refactorings. This makes it to be the main source code selec-
tion when applying a refactoring. Based on the questionnaire
responses, we predict which refactorings should be ranked
on top of a refactoring menu. The prediction is based on the

TABLE 5. Relation between selected element and intended refactoring.

selected source code element and the code smell. We only
consider the selection patterns associated with a code smell.
The refactorings included in the questionnaire had an associ-
ation with a code smell from the initial discovery of refactor-
ings. The calculations were carried out as follows:

• Let N(ej,Cj,ri) be the total number of selection source
code element of type ej when the source code is
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associated with code smells of type Cj and the applied
refactoring type ri.

• Let N(ej,Cj) be the total number of selection source code
element of type ej that are associated with code smells
of type Cj.

Then the likelihood of a refactoring ri to be ranked on top
of the refactoring menu will be given by:

P(ri, ej,Cj) = N (ej,Cj, ri)/N (ej,Cj) (5)

As an example, we consider the selection pattern of Package
name which is associated with comments smell:
• There are 16 comments smells associated with package
name, then N(ej,Cj) = 16

• There is only Rename Package refactoring associated
with this selection, then N(ej, Cj, ri) = 16

The likelihood of Rename Package refactoring to be ranked
on top of the refactoring menu will be given by: P(Rename
package,Package name,comment)=(16/16)=100%
Since there is no other refactoring which has a Pack-

age name source code selection associated with comments,
it means upon such a selection Rename package refactoring
will be the most likely refactoring to be on the refactoring
menu. If there were more refactorings associated with such,
the menu will be ranked according to which refactoring has
the highest likelihood. Table 6 shows all of such refactoring
menu rankings.

III. EVALUATION
A. RESEARCH QUESTIONS
In this section, we investigate the following questions:
• RQ1: How often are the intended refactoringmenu items
ranked on the top of themenu by the proposed approach?

• RQ2: How important are code smells and source code
elements selections in the dynamic ranking of refactor-
ing menu items IDE?

RQ1 explores the accuracy of the proposed approach in rank-
ing the correct refactoring which a developer would want to
carry out at a particular point in time. RQ2 explores which
element between code smell and source code element is the
best to use when ranking and recommending refactorings on
a refactoring menu. These research questions are important
because the proposed approach will not be useful if it rec-
ommends refactorings which a developer does not want to
carry out at a particular point in time. Investigating these
questions would reveal whether or not the proposed approach
is significant.

B. SET UP
Apache Derby [13] and FindBugs [14] were chosen as testing
data sets for our approach and details are presented as follows:
• Apache Derby [13] is an Apache DB subproject spon-
sored by Apache Software Foundation. It is an open-
source relational database implemented entirely in Java.

TABLE 6. Top refactoring for different selections.
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TABLE 6. Continued. Top refactoring for different selections.

We analyzed 11 versions of this application (from
version 10.6.1.0 to version 10.12.1.1). The size of
Apache Derby varies from 258,295 to 626,560 LOC.
The source files of this application was downloaded
from (http://svn.apache.org/repos/asf/db/derby).

• FindBugs [14] is a bug detection tool. It uses static anal-
ysis to identify bugs in Java code. Source code of this
application was downloaded from SourceForge.We ana-
lyzed the last 9 versions (from version 1.3.5 to ver-
sion 3.0.0). The size of FindBugs varies from 81,563 to
123,259 LOC. The source files of this application was
downloaded from (http://findbugs.sourceforge.net).

These applications were chosen for the following reasons.
First, they are open source software and such the source
code is readily available. Second, these applications were
developed by different developers from the other applications
used to come with the approach for the dynamic ranking
of refactoring menu. Finally, Apache Derby and FindBugs
applications have a long evolutionary history, it is highly

TABLE 7. Refactorings (derby and findbugs).

possible that a good number of refactoring histories could be
discovered.

The discovered refactorings shown in Table 7 were
assigned to five years experiences Java developers who work
independently to repeat the discovered refactorings. All of
them have at least five years of software development expe-
rience. We assessed the accuracy of the recommendation by
comparing the type of the refactoring and the recommenda-
tion of the refactoring menu. The recommendation is correct
if and only if they match.

In total, 339 refactorings were discovered from Apache
Derby and FindBugs, we therefore assessed to deduce how
many of them will be recommended based on the source
code element and code smell associated with the source code
element according to the refactoring menu.

C. RESULTS
To calculate the accuracy in recommending the correct refac-
torings, we considered the total number of refactorings which
will be carried out by each of these developers, that is,
(5*339) which gave us about 1695 refactorings. Out of these
1695 refactorings, 1622 (95.69%) refactorings were recom-
mended based on both code smell and source code element,
1419 (83.72%) refactorings were recommended based on
the code smell and 1268 (74.80%) refactorings were recom-
mended based on the source code element. The result of these
recommendations is shown in Table 8, 9 and 10 respectively.

Table 8 suggests that if we recommend menu items based
on both code smells and source code, on 1622 out of the
1695 cases our recommendation is correct. Consequently,
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TABLE 8. Accuracy in recommendation (based on both code smells and
source code).

TABLE 9. Accuracy in recommendation (based on code smell only).

the accuracy of the recommendation is 1622 / 1695 =
95.69%. Moreover, Table 9 suggests that if we recommend
menu items based on the code smell only, on 1419 out of the
1695 cases our recommendation is correct. The accuracy of
the recommendation is 1419 / 1695= 83.72%. Table 10 sug-
gests that if we recommend menu items based on selected
source code element only, on 1268 out of the 1695 cases our
recommendation is correct. The accuracy of the recommen-
dation is 1268 / 1695 = 74.80%. All such three approaches
work on the same testing samples (1695 refactorings).

However, recommending refactorings can not only be
based on code smells, because at times a developer would

carry out a refactoring even if a code smell does not exist,
in which case the source code selected would determine
which kind of refactoring to apply. So, when ranking and
recommending of refactoringmenu, wewould better consider
both the code smell and source code element. Therefore,
the approach for the dynamic ranking of a refactoring menu
needs to use both the code smell and source code element.

IV. THREATS TO VALIDITY
The first threat to external validity is that only two appli-
cations were used to validate the accuracy of the approach.
There is a need to employ a good number of applications to
confirm the validity of the approach in other applications.

The second threat is that only 5 developers were used to
see and discuss on the source code elements and code smells
to be associated with a particular refactoring. This was due
to time constraints on the other developers who could have
taken part in these discussions. There is a need to involve a
wide range of developers from different sectors to make an
overall and complete validation of the approach.

The last threat to external validity is that the validation of
the approach was based on the Refactoring menu in Eclipse.
There is a need to consider other Refactoring menus in the
different available IDEs that support refactoring; because
how the refactoring menu is implemented in Eclipse could
not be the same as how it is implemented in other available
IDEs e.g. Visual Studio.

A threat to internal validity is that the discovered refac-
torings from Derby and FindBugs might be inaccurate. The
refactoring detectors used in the evaluation i.e., Refactor-
ing Crawler and LSDiff, might result in false positives and
false negatives. Even though the discovered refactorings were
checked manually to get the actual refactorings; this manual
process is usually error prone.

V. RELATED WORK
This section reviews the related literature in three different
areas. The first group of related papers focuses on menu item
organization. The second group focuses on identification of
refactoring opportunities. The third group focuses on detec-
tion of refactoring.

A. MENU ORGANIZATION
Vanderdonckt et al. [15] presented Cloud Menus, a new type
of adaptive split menu in which predicted menu items are
arranged in a circular word cloud superimposed on the static
menu.

Murphy-Hill et al. [16] proposed a mapping from ges-
tures to refactorings and an implementation of that mapping
in the form of marking menus. This result suggested that
programmers can conclude the gesture that will invoke the
appropriate refactoring tools, even if they do not know the
name of the refactoring. Heo et al. [17] presented Melod-
icTap, a novel hotkey technique utilizing fingering gestures
for touchscreen tablets and described the design and imple-
mentation of MelodicTap and our findings gained from the
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TABLE 10. Accuracy in recommendation (based on source code element
only).

user study. MelodicTap have three advantages: the use of
finger tap sequences allows users to access a large number of
menu items, the user of finger-mapped buttons enables eye-
free operation and the sequential traversal of the hierarchical
menu helps users develop an expert skill.

Park et al. [3] investigated the usability of different adapt-
able and adaptive menu interfaces in a desktop environment.
An adaptable menu and two different adaptive menus were
implemented and evaluated. The two adaptive menus consist
of an adaptive split menu that moves frequently used menu
items to the top and an adaptive highlight menu that boldfaces
frequently used menu items. The adaptive split menu, which
dynamically changes the items in the top based on the recent
selection history.

Sears and Shneiderman [18] developed and applied design
guidelines for split menus. They compared with an alphabetic
menu and a frequency-ordered menu, and found that the split
menu was better than others in terms of performance and
satisfaction when the frequently selected items were located
in the middle or bottom of the menu. In this research, split
menus were significantly faster than alphabetic menus and
yielded significantly higher subjective preferences. A pos-
sible resolution to the continuing debate among cognitive
theorists about predicting menu selection times is offered.
Their study offered evidence that, at least when selecting
items from pull-down menus, a logarithmic model applies
to familiar (high-frequency) items, and a linear model to
unfamiliar (low-frequency) items. The results of the con-
trolled experiment demonstrated not only the time savings
and higher preference ratings split menus create, but also
the value of the proposed guideline for creating split menus.
Inspired by their evaluation results, we create split menus for
refactorings.

Kandari and Jain [19] analyzed the organization of parent
and child menu items on a user interface and is an empirical
study to determine the best positions of anchoring points

between the parent and child menus. The result of these
analysis aimed at the most effective use of the menu traversal
and access time, the findings obtained from the current study
proves highly effective and saving increases multi-hold as
application usage increases.

Liu et al. [20] explored the effects of frequency distribution
on average menu performance and individual item perfor-
mance. The results showed that user’s behavior is sensitive to
different frequency distributions at both menu and item level.
The most surprising result is that individual item selection
time depends on not only its own frequency but also the
frequency of other items in the menu.

B. IDENTIFICATION OF REFACTORING OPPORTUNITIES
Silva et al. [21] presented JExtract, a recommendation sys-
tem based on structural similarity that identifies Extract
Method refactoring opportunities that are directly automated
by IDE-based refactoring tools. Refactoring recommendation
approaches for extract class refactoring have also been pro-
posed and presented by [22], [23], and [24].

Bavota et al. [22] proposed an Extract Class refactor-
ing method based on graph theory that exploits structural
and semantic relationships between methods. The proposed
approach used a weighted graph to represent a class to be
refactored, where each node represents a method of the class.
The weight of an edge that connects two nodes (methods) is a
measure of the structural and semantic relationship between
two methods that contribute to class cohesion.

Bavota et al. [23] proposed a method for automating the
Extract Class refactoring. The proposed approach analyzed
(structural and semantic) relationships between the methods
in a class to identify chains of strongly related methods. The
identified method chains are used to define new classes with
higher cohesion than the original class, while preserving the
overall coupling between the new classes and the classes
interacting with the original class.

Bavota et al. [24] proposed an approach based on game
theory that recommend extract-class refactoring opportuni-
ties. The approach modeled a non-cooperative game where
two players contend for the methods of the original class to
build two new classes with higher cohesion than the original
class. The results achieved in a preliminary evaluation sup-
ported the applicability and superiority of game theory. These
researchers have employed the notions of graph theory [22],
[23] and game theory [24] respectively to decompose large
class.

Terra et al. [25] presented a recommmendation approach
that suggests Move Method refactorings using the static
dependencies established by methods. They also com-
pared the recommendations provided by JMove, JDeodorant,
Methodbook, and inCode in two open-source systems, and
results suggest that JMove is more accurate [25].

Charalampidou et al. [26] introduced an approach (accom-
panied by a tool) that aims at identifying source code chunks
that collaborate to provide a specific functionality, and pro-
posed their extraction as separate methods. They proposed an
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approach for identifying Extract Method opportunities in the
source code of Long Methods (namely SEMI), and ranking
them according to the benefit that they yield in terms of
cohesion.

Fokaefs et al. [27] proposed a novel method to improve
the design quality of an object-oriented system by applying
Extract Class refactorings. This could produce meaningful
and conceptually correct suggestions and extract classes that
developers would recognize as meaningful concepts.

Chandran and Varghese [28] conducted a survey on various
clustering techniques for identifying the extract class oppor-
tunities. The survey showed that there are several cluster-
ing approaches for the identification. Among the techniques
reviewed, hierarchical clustering technique identifies better
extract class opportunities for performing extract class refac-
toring than partitioned or any other clustering algorithms.

Tsantalis and Chatzigeorgiou [29] proposed a method-
ology for the identification of Move Method refactoring
opportunities that constitute a way for solving many common
Feature Envy bad smells.

All these contributions towards the identification of refac-
toring opportunities are all address the same problem, that is,
tomake it easy for a developer to identify a particular refactor-
ing. This is different from this research in that an assumption
is made that the developer already knows and is aware of the
refactoring they need to apply. Our main focus is to make the
application of these refactorings easy and less involving for
the program by ranking the most likely refactoring on the top
of a refactoring menu. This approach suggests which menu
item should be used from the refactoring menu.

C. DETECTION OF REFACTORING
Dig et al. [7] proposed refactoring crawler to detect refactor-
ing history by comparing Java source code of two successive
versions of the same application. The algorithm used by
refactoring crawler uses two techniques; syntactic analysis to
detect refactoring candidates and semantic analysis to refine
the results. Refactoring crawler mainly identifies refactorings
that took place during component evolution.

Loh and Kim [8], proposed LSDiff, a program differencing
technique that automatically identifies systematic structural
differences as logic rules. This tool can be implemented as
an Eclipse plug-in and provides a summary of systematic
structural differences along with textual differences within
an Eclipse integrated development environment. Developers
would use program differencing tools to understand what
changed between two versions while carrying out peer code
reviews, resolving parallel edit conflicts or isolating failure
inducing changes and also high level software changes such
as refactorings could be detected using such a tool.

Khelladi et al. [30] presented AD-ROOM, a tool for an
automatic detection of refactorings in Object Oriented Mod-
els(OOMs). AD-ROOM is designed to detect all applied
refactorings during an OOM evolution and implemented as
a plugin for the Eclipse IDE, a wide-spread development
environment for software developers.

Tsantalis et al. [31] introduced RefactoringMiner that was
later extend by Silva et al. [32] to mine refactorings in
large scale in git repositories by analyzing the differences
between the source code of two revisions. RefactoringMiner
provides an API and can be used as an external library
independently from an IDE. This tool is capable of identify-
ing 14 high-level refactoring types: Package/Class/Method,
Move Class/Method/Field, Pull Up Method/Field, Push
Down Method/Field, Extract Method, Inline Method and
Extract Superclass/Interface. Prete et al. [33] introduced Ref-
Finder approach that identifies complex refactorings between
two program versions using a template based refactoring
reconstruction and expressed each refactoring type in terms
of template logic rules and uses a logic programming engine
to infer concrete refactoring instances.

All these tools could be used to mine and discover the
refactorings which might have taken place within an appli-
cation. But they cannot provide any way or technique on how
to recommend refactorings or predict on how refactorings
should be ranked dynamically on a refactoring menu which
is the objective of this research.

VI. CONCLUSIONS AND FUTURE WORK
The main idea of this research is to put the most likely
refactoring on top of the refactoring menu according to the
developers’ source code selection and code smell associated
with the selected source code. It would make the refactoring
process less wearisome and enjoyable for software developers
and minimize the time for developers spend on choosing
a refactoring from the lengthy refactorings menu items in
the available various IDEs. We calculate the likelihood of
different refactoring types to be applied when a specific
part of source code is selected and rank the menu items
according to the resulting likelihood. The evaluation results
suggest that the approach is accurate, in most cases, it can
put the intended refactoring menu item on the top of the
menu.

In future, to make the study more convincing, we would
like to analyze more applications, interview more devel-
opers with a much longer experience with the refac-
toring and compare speed and accuracy of refactoring
menus.

In this paper, we have not evaluated the usefulness or the
efficiency of the technique of the proposed approach.
Researchers in [3] and [18] have proved empirically that
accurate ranking of dynamic menu items is useful. Based
on such research results, in this paper, we proved that the
proposed approach for the dynamic ranking of refactoring
menu items accurately, and thus it could be useful. In future,
however, we should evalute the usefulness of the proposed
approach empirically. The best way to evaluate it is to inte-
grate the proposed technique to Eclipse IDE as an alter-
native menu: static or dynamic refactoring ranking may be
selected by developer. The number of developers adopting
the technique would be relevant to evaluate the impact of the
proposed technique.
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