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ABSTRACT Prediction accuracy (true positives, false positives, and so on) is the usual way for evaluating
disk-failure prediction models. Realistically however, we aim not only to correctly predict failures, but
also to protect data against failure, i.e., we need to take appropriate action after a failure prediction.
In the context of storage systems, protecting data requires that we migrate at-risk data, but this consumes
network and disk bandwidth, which is particularly problematic for large-scale and cloud systems. This
paper consolidates and builds on Li et al. (2016), where we propose using two new metrics, migration
rate (MR) and mismigration rate (MMR), to measure the quality of disk failure prediction: MR measures
how much at-risk data is migrated (and therefore protected) as a result of correct failure predictions,
while MMR measures how much data is migrated needlessly as a result of incorrect failure predictions.
In this paper, we additionally propose measuring quality in terms of migration time and mismigration
time, which measure the time spent migrating at-risk disks, and the time spent mismigrating healthy disks
caused by false alarms, respectively. To demonstrate these metrics’ usefulness, we use them to compare
disk-failure prediction methods: we compare: 1) a classification tree (CT) model against a state-of-the-art
recurrent neural network (RNN) model and 2) a gradient-boosted regression tree (GBRT) model (which
predicts residual life) against RNN. We observe that while RNN performs best in the prediction accuracy
experiments, the CT and GBRT models sometimes outperform RNN in the resource-dependent migration-
rate experiments. We conclude that prediction accuracy is sometimes misleading: correct predictions do not
necessarily imply protected data. We additionally present an improved GBRTmodel (GBRT+), which offers
a practical improvement in disk residual-life prediction accordingly to the newly proposed metrics.

INDEX TERMS Disk failure prediction, evaluation metrics, migration accuracy, resource consumption,
cloud storage system.

I. INTRODUCTION
Data centers are arguably the most important infrastructure
in the era of cloud computing, with hard disks ordinarily
being their primary data storage devices [1]–[3]. However,
hard disks are subject to disk failure, which leads to reduced
service availability (e.g., downtime), and possibly even in
permanent loss of data, which hurt the user experience.
Therefore, reliability is by far the most serious concern in
current data centers. In addition to reactive fault tolerance
techniques (typically erasure codes and data replication),
proactive fault tolerance is used to improve a storage system’s

reliability: instead of waiting for failures to occur and then
responding, with proactive fault tolerance we predict failures
in advance, and thereby enable the system or operator to
respond appropriately.

Prior work proposed various statistical and machine-
learning methods for building disk-failure prediction mod-
els which utilize SMART (Self-Monitoring, Analysis and
Reporting Technology) attributes [4]–[17]. To summarize the
situation:
• Previous research [4]–[15] focused on predicting
whether or not a disk will fail in the near future.
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Failure detection rate (FDR) and false alarm rate (FAR)
are used to measure a model’s classification accuracy
(as binary classifiers); FDR measures the proportion of
at-risk disks that are predicted to fail in the near future,
and FAR measures the proportion of failure predictions
which are false (i.e., the disks are healthy).

• Later prediction models [16], [17] predict the remaining
working time (i.e., residual life) of a disk, so that system
administrators can allocate system resources more effec-
tively in response to a disk failure pre-warning, ensuring
the reliability and availability of system. An accuracy of
residual-life level assessment (ACC) is used to measure
a model’s classification accuracy (as multiple classi-
fiers); the remaining working time predictions are parti-
tioned into levels (or intervals), and the ACC is defined
as the proportion of predictions which fall into the
correct interval.

The existing metrics mainly measure a model’s classi-
fication accuracy using general prognostic techniques, iso-
lated from their application. In the context of large-scale
and cloud storage systems, disk failures and their corre-
sponding failure-warnings occur sufficiently frequently so
that pre-warning migration is a continuous resource drain.
All else being equal, a higher classification accuracy is
always beneficial. However, in practice improving classi-
fication accuracy involves various trade-offs, such as the
time in advance (TIA), i.e., the mean warning time. For
example, prediction accuracy may be artificially inflated to
nearly 100% at the expense of TIA, e.g. by reducing it to
one hour. In this case, the at-risk data is incapable of being
completely protected before failure, even if the failure is pre-
dicted in advance. Thus, classification accuracy alone does
not give the whole picture: there are other relevant factors
involved.

Moreover, when an alarm is raised, the system migrates
at-risk data to other healthy disks through the network (even
crossing top-of-rack switches, if disks are stored in different
racks), which increases the network load, thereby decreasing
the bandwidth available for user services. With more band-
width available for migration (or higher migration transfer
rates), we protect more at-risk data before actual failure
occurs, but we incur worse effects on the quality of user
services. In other words, migration resource consumption
determines not only the amount of data protected by predic-
tion models, but also the impact of migrations on the quality
of user services. Therefore, it is useful to also take resource
consumption into consideration when evaluating disk-failure
prediction models.

This paper expands on previous work involving most of the
present authors’ [18]. In [18], (a) we propose measuring the
data protection of disk failure prediction models in terms of
migration rate (MR) and mismigration rate (MMR), defined
as the proportion of data on at-risk disks that are successfully
migrated, and the proportion of data on healthy disks which
are needlessly migrated, respectively, and (b) we propose

a residual-life prediction model based on gradient-boosted
regression trees (GBRTs). We make the following additional
contributions:
• Motivated by how data protection depends on resource
consumption, we further propose measuring the
resource consumption of migrating data due to disk
failure predictions, in terms of migration time (MT) and
mismigration time (MMT), defined as the mean time to
migrate data from an at-risk disk, and the mean time to
migrate data from a disk falsely predicted to fail. These
metrics reflect the mean migration transfer rate and the
impact of migrations on user services. Data-protection
performance, however it is measured, varies as the
migration rate varies. This property is accounted for in
migration accuracy (MR and MMR) and in migration
time (MT and MMT).

• With the aim of protecting more at-risk data (i.e., higher
migration accuracy) with less resource consumption
(i.e., longer migration time), we modify the training
algorithm for the GBRT model to focus on accurately
protecting data rather than only predicting the residual
life for each disk (Section III-C.3). Moreover, based on
experiments on a real-world dataset, we observe that the
modified GBRT model (GBRT+) outperforms the orig-
inal GBRT in terms of migration accuracy and resource
consumption (Table 8).

• We enhance the exposition and give explicit formulas for
MR and MMR; see (2) and (3).

• We discuss the trade-off between data protection and
resource consumption for disk failure prediction models
(Section V-A.3).

For general prognostic models, Saxena et al. [19], [20] (see
also [21]) surveyed many metrics for measuring accuracy in
various ways for various applications; they assigned them to
three categories: accuracy, precision, and cost/benefit. In this
paper, we focus on cost/benefit metrics: the benefit is avoid-
ing data loss at the cost of unnecessary resource utilization,
which is similar to the ‘‘technical value’’ metric in [22].

The remainder of the paper is organized as follows:
Section II surveys related work on SMART-based disk-
failure prediction and their evaluation metrics. In Section III,
we introduce the four metrics (MR, MMR, MT, and
MMT) and the relevant disk residual-life prediction models.
In Section IV we describe the datasets and their curation.
Section V gives the experimental results, and Section VI
concludes the paper.

II. RELATED WORK
Proactive fault tolerance predicts impending disk failures
enabling the system (or an operator) to take actions in advance
to prevent data loss (ordinarily data migration), thereby
enhancing the reliability and availability of storage system
significantly. Prior work focused on SMART-based disk fail-
ure prediction. However, SMART threshold-based inbuilt
failure prediction is capable of only achieving an FDR of
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around 3% to 10% with a FAR of around 0.1% [4], assuming
a practicable (and hence conservative) FAR.

Prediction performance has been enhanced in various
ways, such as adopting Bayesian approaches [4], [5], hid-
den Markov models [8], applying the Wilcoxon rank-sum
test [6], [7], Mahalanobis distance [10], exploring Backprop-
agation artificial neural networks [9], a Gaussian mixture
model [23], and classification trees [12], [15], [24]. Almost
all prior research treats disk failure prediction as a simple
binary classification: a disk is either ‘‘healthy’’ or ‘‘at-risk’’.
The quality of previously proposed methods has been mea-
sured by correctly identifying failures (in terms of FDR),
while avoiding false positives (in terms of FAR) and having a
practicable time in advance (TIA), which is neither too long
nor too short.

In practice, disk failures tend to occur gradually (see
e.g. [9], [12]) and signs of deterioration are present in some
SMART attributes. In previous work involving the present
authors, we explored a regression-tree-based disk health-
degree prediction model [12] where a disk’s ‘‘health degree’’
was defined as its failure probability. Furthermore, a com-
bined Bayesian network model [17] was explored predicting
the residual life of a disk, measured using classification pre-
cision, which was defined as the proportion of disks predicted
into correct residual-life level. Motivated by the observation
that the health statuses of disks have long-range dependency,
Xu et al. [16] proposed a recurrent neural network (RNN)
based method, measured using health-level classification
accuracy.

All previous work treated disk failure prediction as a
binary or multiple classification issue, and the metrics used
in them are assessed according to whether or not their clas-
sifications are accurate (measuring true positives and false
positives [21]), which isolated the prediction models from the
practical application in industry: ‘‘accuracy’’ does not entail
‘‘usefulness’’. The usual way of overcoming this problem
is by also measuring the warning time (time in advance,
TIA) but this is a problematic metric [25]. To illustrate, if we
predict every disk will fail and simply wait until they all fail,
we obtain perfect accuracy with huge TIA. However, while
this method is 100% ‘‘accurate’’, it is worse than useless:
it incurs unnecessary migration and disk replacement costs.

Ultimately the goal predicting disk failure is to avoid or
reduce data loss, which requires two steps: (1) correctly pre-
dicting which disks are about to fail; and (2) timely complet-
ing the resource-dependent pre-warning migration processes.
Or more generally:

The ultimate goal of prognostics algorithms is
to reduce the occurrence of unscheduled mainte-
nance. –Leao et al. [26]

When building disk-failure prediction models for practical
storage systems, we benefit from using an evaluation metric
which incorporates the completion status and resource con-
sumption for disk pre-warning migration.

Some researchers have focused on pre-warning migra-
tion strategies after disk failure prediction: IDO [27] was

proposed identifying impending failures and migrating
at-risk data in ‘‘hot zones’’ to some substitute RAID set;
Ma et al. [13] designed RAIDSHIELD to replace at-risk
disks according to a joint failure probability; and Fatman [27]
proactivelymigrates at-risk data in a hybrid system using both
replicated ‘‘hot’’ data and erasure-coded ‘‘cold’’ data. The
aforementioned work did not endeavor to reduce the impact
of migrations on the user service, but simply migrated the
data on disks which will potentially fail, as predicted by the
models. Addressing migration costs, Ji et al. [28] proposed a
pre-warning migration technique which manages the priori-
tization of pre-warning migrations, and ProCode (proactive
erasure coding scheme) was proposed by Li et al. [29] to
increase the number of replicas of data blocks’ on at-risk
disks.

Leao et al. [26, eq. (7)] modeled converting accuracy
metrics to cost/benefit metrics. However, it differs from the
present work in that their cost is directly financial, whereas
the ‘‘cost’’ in this work is the system’s resources. Dzakowic
and Valentine [22, eq. (9)] described a ‘‘technical value’’ met-
ric, whichmodels the financial cost of prognostics; it incorpo-
rates fault isolation which we do not require (since we do not
isolate at-risk disks), so ignoring those terms, the technical
value is

PfDα − (1− Pf )PDφ (1)

where Pf is the probability of being in failure mode, D is
the overall detection confidence, α is the savings when pre-
detecting a fault, PD is the false positive rate, and φ is the
cost of false positives. The proposed metrics are similar to the
terms PfD (for MR/MT) and (1− Pf )PD (for MMR/MMT).
However, the proposed metrics deviate from [22] (and [26])
in several ways:

1) the proposed metrics incorporate dynamic responses
to failure predictions (i.e., with different levels of
urgency), not just having ‘‘maintenance’’ as on/off;

2) the proposed metrics incorporate the possibility of
incomplete migration due to failure occurring or due
to changing predictions;

3) we measure ‘‘cost’’ in two ways: the quantity of migra-
tion (i.e., data amount) and the time spent migrat-
ing, which are related to the responsiveness of system
(instead of financial costs); and

4) we do not assume a system with a single ‘‘failure
mode’’, but rather we admit the possibility that disk-
failure predictions and migrations overlap with one
another (which better models cloud and other large-
scale storage systems).

In this paper, we analyze two groups of new metrics
for evaluating disk-failure prediction models, and build a
residual-life prediction model which improves the GBRT
model according to these metrics. The proposed metrics are
application-specific: they are tailored to the problem of disk-
failure prediction in large storage systems, where resource
costs incurred by migration are not negligible nor ‘‘once in
a while’’ considerations.
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III. THE PROPOSED METHOD
A. PRE-WARNING HANDLING
In practice, disk failure prediction models running on storage
systems monitor the working disks in real time, and output
their health states periodically (such as hourly). After a disk
is predicted to fail (in the near future), the at-risk data are
ordinarily migrated to other spare or healthy disks. To reduce
the impact on the user service, system operators limit the
resources (network and disk bandwidth) used for pre-warning
migrations. Thesemechanisms can be adapted to dynamically
adjust the transfer rate for pre-warning migrations based on
urgency, but this requires accurate residual-life prediction.

Suppose a disk s with m TB capacity will fail in h hours.
To optimize the balance between the user service (i.e., ensur-
ing the system’s responsiveness) and pre-warning migration,
we could set the transfer rate to around m/h TBs per hour.
Provided nothing unexpected occurs, migration of the data
on disk s would complete just before failure actually occurs.
If migrating data directly from an at-risk disk increases the
load on the disk thereby increasing the risk of failure, we may
alternatively use a healthy data replica with a low load as
migration source (in a replication system), or reconstruct
the at-risk data using healthy redundant information (in an
erasure code system), like in [29].

To avoid incomplete migration arising from inaccurate
predictions, we adopt the method proposed in [16] to divide
the possible residual life into several levels according to its
urgency, andmigrate data according to a predetermined trans-
fer rate for each level, as listed in Table 1, motivated by [28].
For example, level 1 has the highest urgency, and implies
the disk’s residual life is less than one day. For longer (less
urgent) residual life predictions, we choose slower transfer
rates.

Table 1 is just a simple partition example, although it is
not unreasonable in practice, as we see in the experiments
in Section V. If the strategy in Table 1 is unsuitable, system
operators can design a pre-warning handling strategy accord-
ing to their system’s configuration and the demand for system
reliability.

TABLE 1. Example migration transfer rates. The disk capacity is
denoted m.

In contrast, in a system using a binary classifier for
disk failure prediction, all the at-risk disks are ordinarily
migrated with equal urgency (i.e., their data are migrated at
a uniform transfer rate). Due to the possibility of detection
errors, an individual detection is insufficient to give a reliable

disk-failure warning. Thus, we do not immediately raise an
alarm, and instead continue to monitor the disk. Likewise,
we do not immediately halt migration due to a contrary
prediction.

B. NEW METRICS
When a failure is predicted, the migration for at-risk data
ideally completes before failure actually occurs (whichmeans
the migration time should be shorter than the residual life
of the at-risk disk), otherwise the erased data are recov-
ered according to the reactive fault tolerance method used
(or are permanently lost if recovery is not possible).We depict
the possible scenarios in Figure 1: a disk may or may not
encounter (a) failure prediction, (b) migration completion
(after a failure prediction), and (c) actual failure.

FIGURE 1. Timelines for the six operating scenarios we consider.
We measure migration either in terms of data transfers (MR and MMR) or
time (MT and MMT), after being averaged over all relevant disks. The
traditional metrics FDR and FAR treat ‘‘incomplete migration’’ as
‘‘complete migration’’; they also do not incorporate the possibility of
multiple separate failure predictions for a single disk.

With the advent of cloud computing and the global growth
of data, current storage systems (as opposed to traditional
storage systems) differ in some ways: (a) an increasingly
large scale (e.g., there are hundreds of millions of disks in
Azure, a typical cloud storage system [30]); (b) disk failures
(and disk-failure predictions) are more frequent; and (c) disks
and bandwidth resources play a major role in maintaining
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a quality user service. Therefore, allocating network and
disk I/O for all pre-warning migrations significantly reduces
system availability.

To ensure a quality user service, system operators need
to limit resources used for pre-warning migrations, which
increases the possibility of incomplete migration. In other
words, throttling migration to conserve resources results
in more incomplete migrations prior to disk failure (as in
Figure 1). This is particularly pertinent when failure predic-
tions and data migrations are the norm, as in large-scale and
cloud storage systems.

To measure the data-migration resource consumption due
to failure prediction (and thereby measure its effect on the
quality user service), we propose two additional metrics,
migration time and mismigration time, which are introduced
in the introduction. Migration time (MT) and mismigration
time (MMT) are a function of disk capacity and migration
transfer rates (which are influenced by the available network
and disk bandwidth). For example, in a cloud storage sys-
tem with disks of some specific capacity, its migration time
reflects the bandwidth cost for pre-warning handling.

In a systemwith disk residual-life prediction, the migration
transfer rate may change as the residual life of the disk
(predicted by model) varies; see Section III-A. So for a pre-
warning handling process, there may be several transfer rates,
but only a single migration time (corresponding to the mean
transfer rate), which we illustrate in Figure 2.

FIGURE 2. A hypothetical disk’s timeline: we migrate data (blue) at a rate
corresponding to the failure prediction level.

In Figure 2 we depict a toy example timeline of a disk
which is predicted to fail: initially the prediction is at level 4,
so we migrate data at the rate m/168 (as per Table 1).
This is subsequently updated to level 3, so we increase the
migration transfer rate to m/72, and again updated to level 2,
so we increase the migration transfer rate to m/24. Dynamic
migration transfer rates imply that the time spent migrating
data may not correspond directly with the amount of data
migrated, so we measure ‘‘migration time’’ separately from
‘‘migration rate’’.

Let F and G respectively denote the sets of all failed and
all healthy disks in the system. Let F∗ denote the failed-
disks set for which the content is migrated to healthy disks.
Let G∗ denote the set of healthy disks falsely predicted to
fail. To measure the time spent on pre-warning migration,
we define the migration time

MT =
1
|F∗|

∑
s∈F∗

ms(P,H ),

and the mismigration time

MMT =
1
|G∗|

∑
s∈G∗

ms(P,H ),

wherems denotes the time spent onmigrating data from disk s
based on a prediction result P and a pre-warning strategy H .
Pre-warning migration only contributes to the migration

time when the transfer rate is non-zero. Thus, if the migration
process is interrupted (ordinarily due to a level-6 prediction,
as per Table 1), the time during the interruption is not counted
towards MT or MMT. We define MT as the average time
to completely migrate data from a disk. In order to incor-
porate partially migrated disks, which fail before migration
is complete, we scale its actual process time to the expected
completion time.

To measure the migration accuracy of a failure prediction
model, migration rate (MR) and mismigration rate (MMR)
are defined as in [18], namely

MR =

∑
s∈F Ms(P,H )∑

s∈F Cs
, (2)

and

MMR =

∑
s∈GMs(P,H )∑

s∈G Cs
, (3)

where Cs is the quantity of data on disk s, andMs(P,H ) is the
quantity of data migrated from disk s (before it fails) based
on a prediction result P and a pre-warning strategy H . Thus,
the numerator of (2) (resp. (3)) is the quantity of datamigrated
from failed disks (resp. healthy disks) which are predicted to
fail. And the denominator of (2) (resp. (3)) is the total quantity
of data on failed disks (resp. healthy disks).

In practice, migration accuracy of a prediction model is
affected bymigration transfer rates, thus the values ofMR and
MMR depend on the prediction result P (which indicates a
level of urgency) and pre-warning handling strategyH (which
indicates what to do for a given level of urgency). This is
reflected in the equations (2) and (3), but not reflected in the
traditional metrics.

The two groups of measures (MR and MMR, and MT and
MMT) have the following properties: (a) They are meaning-
ful and understandable; specifically, MR/MMRmeasures the
quantity of at-risk/healthy data that is successfully migrated
(protected), and MT/MMT measures the resource consump-
tion of migrating data. (b) They are defined proportionally,
which matches how a larger system is capable of handling
a greater migration load. (c) They enable comparing disk
failure prediction models according to migration accuracy
and resource consumption.

A higher MR generally implies more at-risk data are
protected successfully, lower MMR implies less bandwidth
resources are wasted on false failure predictions, and longer
MT and MMT imply a smaller bandwidth cost and a lesser
resource burden for pre-warning handling. Further, higher
migration transfer rates (reflected as shorter MT and MMT)
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imply higher MR and MMR. If all the migrations complete,
then MR is equal to MMR, and MMR is equal to FAR.

C. PREDICTION MODEL
We predict a disk’s remaining operating life based on its
SMART records; we formulate this prediction as a regression
problem. In this section, we introduce a modified model
based on gradient-boosted regression trees (GBRTs) [31],
which outputs a quantitative target value to describe the
remaining operating life. Table 2 lists the main notation used
in this section.

TABLE 2. Table of notation.

1) REGRESSION TREES
GBRT is an ensemble method using regression trees as weak
learners; the training algorithm for regression trees is given
in [12, Algorithm 2]. We use the disks’ SMART attributes
as input vectors together with their remaining working time
as the target values. For a given SMART attribute vector x,
the regression tree maps it to a quantitative value (the output)
by passing x down the tree: the path followed is determined
by the feature values of x and the output is the weight of the
leaf node that is reached.

Figure 3 depicts a toy example of a regression tree for
predicting disk residual life; we use it to illustrate how we
determine the weights of each node. Throughout this process,
healthy samples are ascribed a residual life of 1000 hours
(i.e., 41 days and 16 hours, despite most disks likely surviving
for years). When predicting a disk’s residual life, we start at
the root node (node 1), which is weightedwith themean resid-
ual life (516.3 hours) of all samples. Node 1 splits according
to the SMART attribute ‘‘Power On Hours’’: if a sample’s
value is≤ 95, it moves to node 2 (these samples have a mean
residual life of 359.1 hours), otherwise it moves to node 9
(with a mean residual life of 910.2 hours). Nodes 2 and 9
instead split according to the value of the SMART attribute
‘‘Reallocated Sectors Count (raw value)’’. This continues
until the maximum tree depth d has been reached (in this
example, we have d = 4).

FIGURE 3. A toy example regression tree: nodes are labeled 1 through 15,
and node weights (in hours) are determined by the mean residual life of
disks at that node. We use the weights of the leaf nodes to predict the
residual life of a disk. The SMART attributes are: ‘‘POH’’ = ‘‘Power On
Hours’’, ‘‘RSCr’’ = ‘‘Reallocated Sectors Count (raw value)’’, ‘‘TC’’ =
‘‘Temperature Celsius’’, ‘‘SUT’’ = ‘‘Spin Up Time’’, ‘‘ECC’’ = ‘‘Hardware ECC
Recovered’’. The theoretical maximum node weight is 1000 hours.

TABLE 3. Details of the datasets ‘‘W’’, ‘‘M’’, and ‘‘S’’.

We choose the best way to split a node (e.g. the condition
POH ≤ 95 on node 1 in Figure 3) by minimizing

sq :=
∑
j

(yj − y)2, (4)

where yj is the remaining life of the disk in sample j at the time
the sample is taken, and y = avej(yj). A sample comprises the
SMART attributes of a disk at a given time point; in this work,
we take samples hourly for each disk. The sum (4) is over all
samples j that satisfy the splitting conditions of each ancestor
node (e.g. at node 6 in Figure 3, the samples are those which
satisfy both POH ≤ 95 and RSCr > 37). This approach
deviates from using the ‘‘greatest gain in information’’, which
is ordinarily used for classification methods.

Regression trees tend to overfit when limited to data with
few samples in a high-dimensional space (i.e., large numbers
of features). In our data set (see Tables 3 and 4), there are mil-
lions of samples and dozens of features, implying regression
trees do not encounter this problem.

2) ORIGINAL GBRT MODEL
Like other boosting methods, a GBRT is built by performing
gradient descent in a function space. For i ≥ 1, we define the
model T (i) at the i-th iteration by

T (i)
= T (i−1)

+ α ti,

=

∑
i

α ti, (5)
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TABLE 4. Basic features (i.e., SMART attributes) for the ‘‘W’’, ‘‘M’’, and ‘‘S’’ datasets.

with node-wise addition and scalar multiplication, where
ti is a regression tree and α is a learning rate defined by
user. In each iteration (we use 500 iterations), the regression
tree ti is selected to minimize a loss function L for the
given model T (i−1). This paper uses the square loss L :=
1
2

∑
j(T

(i)[j]− yj)2 as the loss function, where T (i)[j] denotes
the prediction result of the j-th sample by T (i), and yj is the
tagged (target) value for the j-th sample, which achieves the
minimum when T (i)[j] = yj for all samples.
As deduced by [32, eqs. (2) and (3)] and [15], the gradient

for a sample j is the residual (i.e., the prediction error) vs.
the tagged value yj from the previous iteration ). Specifically,
we can give the residuals from the i-th model (determining
the (i+ 1)-th regression tree) by

r (i+1)[j] = yj − T (i)[j],

= r (i)[j]− α ti[j], (6)

where ti[j] is the prediction result for the j-th sample from the
i-th tree, and r (1)[j] = yj, and (4) generalizes to

sq =
∑
j

(
r (i)[j]− r (i)

)2
. (7)

When training the GBRT models, like in our previous
work [15], we use disks’ SMART attributes along with their
change rates (the critical features) as the input vectors; we use
the disks’ residual-life times as the target values. The details
of the GBRT training process are given in Algorithm 1.

3) IMPROVED GBRT MODEL
In the original GBRT algorithm, each SMART record (i.e., the
collection of a disk’s SMART attribute values at some time
point) is treated as a single input sample, and when training,
the ultima aim of the prediction is fitting the tagged value
(i.e., the prediction result) of each sample to its tagged value.
Therefore, at each iteration, we add a new tree to reduce the
error between the tagged value and current prediction result
for each sample. The original GBRT algorithm thereby only
focuses on predicting the residual life for each disk based on
one sample, rather than protecting at-risk data in system.

Algorithm 1 GBRT Model Training Procedure
Input: Training set (SMART attributes; residual life yj for

each sample j), learning rate α, tree depth d , number of
regression trees c

Output: disk residual-life prediction model GBRT T (c)

1: initialize r (1)[j]← yj for each sample j
2: for regression tree i from 1 to c do F build regression

tree ti of depth d
3: assign the root node of ti the weight r (i)

4: for k from 1 to d do
5: for each node V at depth k do
6: for each possible split at V do
7: compute sqL+ sqR from (7), where L and

R are V ’s proposed child nodes
8: end for
9: split V to minimize sqL + sqR
10: assign V ’s child nodes with weight

aves(r (i)[s]), where the average is over all
disks s which satisfy the splitting conditions
of its ancestor nodes

11: end for
12: end for
13: update r (i+1)[j]← r (i)[j]− α ti[j] for each sample j
14: end for
15: T (c)

=
∑c

i=1 α ti

In order to maximize MR, minimize MMR, and maximize
MT and MMT,we modify the loss function to improve the
training algorithm of GBRT model. We use migration errors
instead of prediction errors as loss in the function. To this
end (a) we use each training disk (rather than an individual
sample) as one multiple-sample instance, i.e., the SMART
samples from a single disk are treated as a whole instance;
and (b) we incorporate some pre-warning handling strate-
gies H (such as the method proposed in Section III-A) into
the modified loss function.

Specially, the loss function is modified as

L ′ =
∑
s

(
Ys −Ms(T (i),H )

)2
,
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where Ys is the migration target of disk s (if s is an at-risk
disk, Ys is the capacity of s; if s is a healthy disk, Ys = 0),
and Ms = Ms(T (i),H ) is the amount of data migrated from
s based on T (i) (the prediction from the i-th additive model)
and pre-warning handling strategyH . If all the at-risk data are
successfully migrated to health disks and no data on healthy
disks are mismigrated (i.e., Ys = Ms for all disks), then L ′

achieves its theoretical minimum.
To minimize L ′, target residuals are modified to be calcu-

lated per disk (instead of per sample): if the disk meets its
migration target based on the current prediction and the pre-
warning handling strategy, the residuals of the samples from
this disk are set to zero; otherwise, they are given by (6).

Specifically, for GBRT training algorithm, we change (6)
so that

r (i+1)[j] := 0 (8)

at whatever time the existing regression trees and pre-warning
handling strategy correctly handles the data for the j-th input
sample (migrating those data if and only if it is necessary, and
at a suitable rate).

In each iteration, a new tree is introduced to adjust for
migration errors (or residuals) for every disk vs. the migration
target Y from the previous prediction model (rather than
adjusting according to prediction errors). That is, only those
disks which do not meet their migration targets (based on the
prediction from the current model) need further prediction
through a new tree. By this means, the new tree focuses on the
samples that are not predicted appropriately by the existing
predictors (and result in improper pre-warning handling for
the corresponding disks).

IV. DATASETS
A. DESCRIPTION
There are three main types of disk failures: (a) permanent
whole-disk failures, where a disk stops working permanently
and needs to be replaced; (b) transient performance problems,
where a disk is only temporarily inaccessible and can be
accessed after several connection attempts; (c) partial-disk
failures, where some sectors on a disk cannot be accessed but
which can be corrected by a redundancy mechanism inside
the disk, e.g. error correcting codes. We focus on permanent
whole-disk failures, which are the most harmful.

To validate the proposed metrics and prediction model,
we collect disk SMART records from two large-scale data
centers. We take hourly samples of each working disk, each
containing a disk’s SMART values at that time point. The
statistics of the datasets are listed in Table 3.

We use ‘‘W’’ to denote the dataset1 used in [9], which was
collected from one data center. This dataset has 23,395 disks
data from a single disk model recorded in ‘‘W’’, which are
labeled ‘‘good’’ or ‘‘failed’’. One week of SMART samples
are recorded for each good disk, and nearly 20 days worth of

1The dataset is available from http://pan.baidu.com/share/
link?shareid=189977&uk=4278294944.

samples (those prior to failure) are recorded for each failed
disk.

We use ‘‘M’’ and ‘‘S’’ to denote the additional two
datasets2 collected from a second data center, which were
used in [16]. They contain 49,146 disks in total, including
two Seagate disk models (different to the model in ‘‘W’’).
One week of samples were taken for each good disk, and
about 25 days worth of samples before failure for each failed
disk.

Each disk in ‘‘W’’ reports 23 SMART attributes. We filter
out those which are irrelevant (i.e., they do not vary), after
which there are only 10 attributes remaining. Each SMART
attribute has two values: a 6-byte raw value, and a 1-byte
normalized value calculated from the raw value. Since some
raw values are more sensitive to disk failure prediction,
we additionally choose two raw values as basic features.
We select in total 12 basic features for the ‘‘W’’ dataset, which
are listed in Table 4. For disks in the ‘‘S’’ and ‘‘M’’ datasets,
due to the lack of information, we only choose the 7 basic
features indicated in Table 4 to build prediction models.

B. DATA PREPROCESSING
To reflect how SMART samples vary over time, we incorpo-
rate changes in SMART attributes. As in the authors’ previous
work [12], we define a change feature for each basic feature:
the absolute differences between the current value and its
corresponding value 6 hours prior. We apply rank-sum test,
arrangement test, and z-scores [4], [12] to select the critical
features from the basic and change attributions.
For the ‘‘W’’ dataset, the basic features 1 through 9 and 11

(as in Table 4), together with the change features calculated
from 1, 9, and 11, are selected as the critical features. For
datasets ‘‘M’’ and ‘‘S’’, the selected critical features are
instead features 1 through 5, 8, and 10, along with the change
features for 1 and 3.

To model the online disk failure prediction (i.e., to train
the prediction model using historical data), we divide the
datasets into training and test sets with respect to time: for
healthy disks, the training data comprises the earlier 70%
of the samples, and the test data comprises the later 30%.
Since the datasets didn’t record the chronological order of
disk failures, we randomly divide the failed disks in them into
training and test sets in a 7 to 3 ratio.

Because healthy disks are far more numerous than failed
disks (from 53 times to 228 times more numerous in the
datasets ‘‘W’’, ‘‘M’’, and ‘‘S’’), we use a restricted set of
healthy samples for training the GBRT models. Specifically,
for each healthy disks in the training set, we randomly select
3 samples for the dataset ‘‘W’’ and 1 sample for the datasets
‘‘S’’ and ‘‘M’’ as healthy training samples. The test data set
remains unchanged.

We perform all experiments on a standard desktop
personal computer, since they do not require significant

2The datasets are available from https://github.com/nkdsliu/
diskdata.
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TABLE 5. Migration performance of the models CT and RNN on the ‘‘W’’ dataset, in terms of MR and MMR, for various migration times (equal to both MT
and MMT). The row labeled ‘‘(FDR/FAR)’’ is equivalent to when migration is instantaneous (i.e., a 0 migration time), in which case FDR = MR and
FAR = MMR.

computational resources. Training the GBRT model finishes
within ten minutes, and residual-life prediction is performed
for nearly 10,000 disks per second. Thus, the overhead of the
modified GBRTmethod is unproblematic for online and real-
time running in large-scale and cloud storage systems.

V. EXPERIMENTAL RESULTS
A. METRIC COMPARISON
Here, we describe how to evaluate the performance of disk-
failure prediction models (both binary classification and
residual-life prediction) using the proposed new metrics
(evaluating migration accuracy and migration time) instead
of the previous metrics (evaluating classification accuracy).
We also discuss the trade-off between the two groups of new
metrics. The ‘‘W’’ dataset is used in these experiments.

1) BINARY CLASSIFICATION MODEL
This experiment gives an example demonstration of how we
envisage evaluating binary classification models using MR,
MMR, MT, and MMT, and compare them to the traditional
metrics FDR, FAR, and TIA.

The research [12], [16] indicated that the classification
tree (CT) model and recurrent neural network (RNN) model
outperform other binary classification models at predicting
disk failure. We evaluate the performance of these models
using new metrics of MR, MMR, MT, and MMT, along with
traditional metrics of FDR, FAR, and TIA, and adopt the
practices in [12] and [16] to preprocess data and build the CT
and RNN models, respectively.

When training the CT model, we set the time window to
168 hours: the last 168 samples prior to actual failure per
failed disks in the training set are used as failed training
samples. We describe the preprocessing of healthy disks in
the training set in Section IV-B. When detecting failures,
we use a simple detection method where we predict a disk is
about to fail if the model classifies any one sample as failed.
We observe that the CT model reaches a FDR of 95.49% at
0.09% FAR, with a TIA of 354.6 hours [12, Table 4]. When
testing RNN model, we likewise use this simple detection

method, and the RNN model attains a FDR of 98.47% at
0.51% FAR, with a TIA of 294.0 hours.
To test the models, we sequentially process the samples of

each disk in the test set. If a disk is detected to fail, its data
is be migrated to other healthy disks at a transfer rate, until
the disk fails or its data has been completely migrated, while
measuring the models’ performance onMR andMMR. Since
the prediction results are binary values (indicating the disk is
or not about to fail), the migration transfer rate is fixed for
all pre-warning migrations, and, for an m TB disk, we set it
to one of {m/2, m/7, m/24, m/72, m/120, m/168, m/240,
m/336} TB/h, so consequently the migration time from an
at-risk disk (MT and MMT) is one of {2, 7, 24, 72, 120, 168,
240, 336} hours accordingly.
Table 5 lists the migration performance (measured by

MR and MMR) of the CT and RNN models as binary
classification models as the migration times (equal toMT and
MMT) vary. We see the migration accuracy of both models
changes as themigration time varies, which indicates thatMR
and MMR vary with MT and MMT.

The metrics FDR and FAR are also included in Table 5,
which is equivalent to MR and MMR respectively, when all
at-risk data are migrated successfully. When the migration
time is 2 hours for the CT model and ≤ 7 hours for the RNN
model, MR is close to the FDR (i.e., approximately all data
are successfullymigrated after a failure prediction). However,
such low migration times are achieved at the expense of
high network and disk bandwidth consumption, reducing the
quality of service, especially during simultaneous failures.

Practically, cloud and large storage systems are usually
unable to assign such sufficient resources to ensure all pre-
warning migrations are successful; they can only afford a
relatively low migration bandwidth (implying a long MT
and MMT). As such, there will be some at-risk data can
not be completely migrated before failure, although they are
successfully detected by prediction model, as per Table 5
where we see that MR deteriorates as MT increases.

In addition, we observe that the RNN model outperforms
CT model in terms of FDR, which implies that the RNN
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TABLE 6. Performance of the GBRT and RNN models on the ‘‘W’’ dataset in terms of MR, MMR, MT, MMT, ACCh, and ACCf.

model predicts at-risk disks more accurately. However, with
a migration time of ≥ 168 hours, the CT model achieves
a better MR, that implies it could protect (i.e., success-
fully migrate) more data from the at-risk disks. Importantly,
in some cases migration is not completed in sufficient time,
such as within a 168-hour window, as we use in this paper.
Thus, the previous metrics (i.e., FDR and FAR) evaluat-
ing prediction accuracy have misleading results: the RNN
model significantly outperforms the CT model (in terms of
FDR), despite successfully migrating (and thus protecting)
less at-risk data.

In comparison with the previous metrics (i.e., FDR and
FAR), the new proposed metrics (i.e., MR and MMR along
with MT and MMT) give system operators a more clear
and realistic indication of how a binary classification model
protects data (with certain resource consumption) for cloud
and large storage systems.

When testing the models, we have experimented the
voting-based detection method as used in [12] and [16], and
the results are similar to Table 5; we omit the full details.

2) RESIDUAL-LIFE PREDICTION MODEL
This experiment gives an example demonstration of how
we envisage comparing residual-life predictors using the
new proposed metrics, MR, MMR, MT, and MMT, vs. the
previous metric ACC.

The research [16] also indicated the RNN model outper-
forms other prediction models in term of ACC at predicting
disk health status. Thus, the RNNmodel is used as the control
group to evaluate the proposed GBRTmodel in disk residual-
life prediction issues. And, we adopt the practices in [16] to
preprocess data and build the RNN prediction models.

When training the GBRT models, to reduce mismigration,
the residual-life interval of healthy disks is adjusted from
‘‘> 500 hours’’ to ‘‘> 800 hours’’. However, when testing
the GBRT and RNN models, the residual life of 500 hours
continues to be used as the boundary between healthy and
failed.

When testing the residual-life predictors, we sequentially
process the samples of each disk in the test set, and use the
pre-warning handling strategy listed in Table 1. If the pre-
dicted residual life of a disk is in level 6, then no pre-warning
migration is performed. Otherwise, its data is migrated to
other healthy disks at the rate specified in Table 1, until its
data has been completelymigrated, whilemeasuring themod-
els’ performance on MR and MMR. Meanwhile, we record
the migration time for each disk that is predicted to fail,
measuring the MT and MMT. For a partially migrated disk,

which fails before migration is complete, we scale its actual
process time to the expected completion time. Unless other-
wise stated, we use the same pre-warning handling strategy
in the following experiments.

Moreover, for healthy disks, we compute the proportion of
healthy samples which are predicted into level 6 as the value
of ACCh. And for failed disk, we compute the proportion
of failed samples which are predicted into the right intervals
(levels 1 through 5), as the value of ACCf.
The residual-life intervals in Table 1 are not equal, so an

imbalanced number of training samples fall into different
intervals, which may negatively impact GBRT-model pre-
dictions. Therefore, for every failed disk in the training set,
we select two SMART records from each interval as training
samples to train the GBRT models (unless otherwise stated
below). When building the GBRT models, we set the follow-
ing parameters: learning rate α = 0.1, tree-depth d = 4, and
number of iterations c = 500.
Table 6 lists the performance of the GBRT and RNN mod-

els as disk residual-life predictors, in terms of MR, MMR,
MT, MMT, ACCh, and ACCf.

We observe that the RNNmodel has a higher ACCf than the
GBRT model, i.e., the RNN model more frequently predicts
the failed samples within the correct urgent level. However,
the GBRT model has a better MR, i.e., the GBRT model suc-
cessfully migrates more data from at-risk disks. The GBRT
model outperforms the RNN model on what actually mat-
ters: protecting data. We attribute this behavior to how most
samples that are correctly predicted by the RNN model are
less urgent (mostly levels 5 or 4) with a low migration rate,
resulting in RNN having an inflated ACCf.

Importantly, this is an example of how the previous
metric (ACCf or ACCh), gives misleading results: the
RNN model significantly outperforms the GBRT model
(in terms of ACCf), despite successfully migrating (and thus
protecting) less at-risk data.

The new evaluation metrics (MR, MMR, MT, and MMT),
which measure a prediction model’s ability to protect data
and bandwidth cost, are more naturally meaningful than the
previous metrics (ACCf and ACCh). The implications of the
trade-off between ACCf and ACCh are not apparent, whereas
MR/MT directly indicates howmuchwe successfullymigrate
and MMR/MMT directly indicates how much we waste.

Moreover, since the new metrics measure the actual results
of the failure prediction models, we can also use them to com-
pare the performance of binary classification models against
residual-life prediction models, which is not possible using
the previous metrics.
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TABLE 7. Migration performance of the GBRT model on the ‘‘W’’ dataset
as the migration time varies.

TABLE 8. Migration performance of the original and improved GBRT
models on the ‘‘W’’ dataset. ‘‘GBRT+’’ denotes the modified GBRT model.

3) TRADE-OFF BETWEEN THE NEW METRICS
Using more bandwidth for pre-warning handling prior to an
incomplete migration implies that more of the data is pro-
tected. Consequently, the shorter the migration time (MT and
MMT), the higher the migration rate (MR and MMR).

In this section, we observe how the migration performance
of GBRTmodel changes as the migration time varies. We use
the partition for disk residual life in Table 1, and change the
migration time by multiplying the migration transfer rate by
k ∈ {0.8, 1.0, 1.2, 1.4, 1.6}. As k increases, the migration
transfer rate increases, and thus the migration time decreases.
The results are listed in Table 7.

As migration time decreases (thereby increasing resource
consumption), the GBRT model’s ability to protect data
improves, leading to a trade-off between data protection and
resource consumption, and system operators may adjust the
migration rates to achieve suitable levels of reliability and
availability. Moreover, we conclude that the metrics MR
and MMR alone are incapable of giving a comprehensive
evaluation for disk failure prediction models, as they do not
incorporate resource costs.

B. EVALUATING THE IMPROVED GBRT ALGORITHM
In Section III-C.3 we propose a modification (8) to the target
residual (error) computation which improves residual life
prediction; we call this method GBRT+. In each iteration,
we update the residuals of all samples from a single disk
together: if the disk is handled correctly based on the cur-
rent prediction and pre-warning handling strategy, the target
residuals are set to 0; otherwise, the target residuals are set
to the prediction errors vs. the target value from the current
prediction by (6).

We use the ‘‘W’’ dataset in the experiments in this section.
When building the GBRT+model, we set the learning rate α
to 0.12. In Table 8 we list the experimental results.

As expected, the GBRT+model has better migration accu-
racy and less resource costs than the original GBRT model.
While the improvements are relatively minor, the cloud and
large-scale storage systems makes even minor improvements
in migration accuracy and resource costs worthwhile.

TABLE 9. Migration performance of the GBRT+ model on the
‘‘M’’ and ‘‘S’’ datasets.

TABLE 10. Migration performance of the GBRT+ model on small-sized
synthesized datasets.

C. VERIFYING PRACTICAL USABILITY
We want to verify the practical usability of GBRT+ by sim-
ulating its application in a real-world data center, which may
involve various disk families or multiple disk models, and we
also investigate its use for small-scale data centers.

1) PERFORMANCE ON ‘‘M’’ AND ‘‘S’’ DATASETS
The different characteristics of various disk models (even
those by the same manufacturers) potentially affect their
reliability. Consequently, it is important to verify that hard-
disk failure prediction models remain effective over varying
disk models. For this reason, we evaluate the improved model
GBRT+ on the ‘‘M’’ and ‘‘S’’ datasets, which have differ-
ent disk models from those of the ‘‘W’’ dataset. For every
failed disk in the training sets, we select three samples from
each residual-life interval, as the training samples to train
the GBRT+ model. In Table 9 we list the results of these
experiments.

On the ‘‘M’’ and ‘‘S’’ datasets, we observe that GBRT+
maintains comparable performance with that on the ‘‘W’’
dataset, on both migration accuracy (in terms of MR and
MMR) and resource cost (in terms of MT and MMT). The
experimental results verify the effectiveness of our proposed
GBRT+ model with different disk models.

2) PERFORMANCE ON SMALL DATASETS
The datasets ‘‘W’’, ‘‘M’’, and ‘‘S’’ each have a large number
of hard disks, and, while disk failure prediction models are
also used in small and medium-sized data centers. In order
to verify the effectiveness of the improved GBRT+ model in
these environments, we evaluate it using four small synthe-
sized datasets, denoted W1, W2, W3, and W4, by randomly
choosing 10%, 25%, 50%, and 75% respectively from all the
disks (both healthy and failed) from the ‘‘W’’ dataset. The
smallest datasetW1 has only 2,296 healthy disks and 43 failed
disks.We list the experimental results in Table 10.We observe
that with all the four datasets, the improved GBRT+ model
achieves acceptable migration performance.

3) PERFORMANCE ON HYBRID DATASET
As a data center grows, it may be cost effective to usemultiple
distinct disk models, and this situation is not uncommon in

VOLUME 6, 2018 76637



J. Li et al.: New Metrics for Disk Failure Prediction That Go Beyond Prediction Accuracy

TABLE 11. Migration performance of the GBRT+ model on the ‘‘MS’’
dataset.

real-world data centers. Building a prediction model for each
possible disk model is impractical, so it is necessary to use
samples from multiple disk models to train failure predic-
tion models. Thus, we merge the ‘‘M’’ and ‘‘S’’ datasets
to generate a hybrid dataset (which we denote ‘‘MS’’). For
every failed disk in training set, three samples from each
residual-life interval are selected as the training samples to
train the GBRT+model. In Table 11 we list the performance
of GBRT+ on the ‘‘MS’’ dataset; we see this setup is also
practicable.

VI. CONCLUSIONS
This paper contend that the existing metrics (i.e., FDR, FAR,
and ACC) used for evaluating disk failure prediction models
are inadequate for comparing and selecting models, particu-
larly for cloud and large storage systems.

To address these limitations, we present:
• migration rate (MR) and mismigration rate (MMR),
as proposed by some of the present authors in [18],
which measure how much at-risk data is protected (suc-
cessfully migrated) and how much data is unnecessarily
protected, respectively; and

• migration time (MT) and mismigration time (MMT),
which measure how long it takes to complete migration
for an at-risk disk and how long it takes to complete the
migration for a false alarm, respectively.

MT and MMT reflect the mean migration transfer rate and
are used to measure the consumption of resources used in
protecting at-risk data.

We compare the proposed GBRT model and the RNN
model (as disk residual-life prediction models) and encounter
an undesirable property: the RNN model achieves better
prediction performance (and thus has better ACC) but suc-
cessfully migrates less data from at-risk disks (worse MR)
and unnecessarily migrates more data from healthy disks
(worse MMR). It is therefore misleading to only compare the
models using ACC: we are prematurely declaring migrations
as successful before the data are actually migrated. This
becomes evenmore problematic whenwe note that prediction
models might be designed to optimize ACC, or some other
prediction accuracy metric.

The models may have different performance on MR and
MMR as migration time (MT and MMT) varies. That is,
MT and MMT describe the resource cost to achieve the
certain MR and MMR. Thus, these two groups of metrics
should be used together to measure the practical usage of disk
failure prediction models in cloud storage systems.

While there are known methods for comparing the accu-
racy of prognostic metrics (such as [33]), this paper changes
the criterion from ‘‘accuracy’’ to ‘‘resource cost’’ (in terms

of unnecessary migration). For the problem of disk-failure
prediction, one of the main messages of this paper is that
‘‘accuracy’’ and ‘‘cost’’ do not have a simple relationship:
greater accuracy does not necessary imply less resource cost,
an assumption which is inherent in e.g. (1). Contributing
to this complicated accuracy-cost relationship, we incorpo-
rate dynamic forms of maintenance (varying migration rates
based on urgency) and incomplete maintenance (i.e., incom-
plete migration), both of which entail different predictions
incurring different resource costs.

The proposed GBRT+ model predicts the residual life for
each disk, enabling system operators to migrate data from
the at-risk disks based on their urgency, which can ensure
both the reliability and the availability of storage systems.
Moreover, in cloud computing platforms, such as Microsoft
Azure, ranking disks according to their residual life (or error-
proneness) [30] can help the service systems to allocate a
virtual machine to a much healthier one, therefore improving
service availability. Experimental results show that the GBRT
and GBRT+ models are useful and applicable to real-world
data centers.

Among those metrics listed by Saxena et al. [19], two
stand out as promising candidates for capturing the notion of
accuracy while approaching the point of failure: ‘‘timeliness’’
and ‘‘convergence’’. Both of these metrics weigh more heav-
ily inaccurate predictions close to the time of failure. As a
future research direction, we propose using these two metrics
for urgency-weighted evaluations of disk-failure prediction
models. Alsowith thismotivation, wemay adjust themachine
learning process to consider poor predictions nearing actual
failure more severe.

ACKNOWLEDGEMENTS
The authors would like to thank the anonymous referees
of this article for their valuable feedback, particularly for
drawing to our attention the relevant prognostics literature
which has helped place this work in a broader context.

REFERENCES
[1] Q. Xin, E. L. Miller, and S. J. T. J. E. Schwarz, ‘‘Evaluation of distributed

recovery in large-scale storage systems,’’ in Proc. IEEE HPDC, Jun. 2004,
pp. 172–181.

[2] F. Mahdisoltani, I. Stefanovici, and B. Schroeder, ‘‘Proactive error predic-
tion to improve storage system reliability,’’ in Proc. USENIX ATC, 2017,
pp. 391–402.

[3] J. Xiao, Z. Xiong, S. Wu, Y. Yi, H. Jin, and K. Hu, ‘‘Disk failure prediction
in data centers via online learning,’’ in Proc. ICPP, 2018, pp. 1–10.

[4] J. F. Murray, G. F. Hughes, and K. Kreutz-Delgado, ‘‘Machine learning
methods for predicting failures in hard drives: A multiple-instance appli-
cation,’’ J. Mach. Learn. Res., vol. 6, pp. 783–816, May 2005.

[5] G. Hamerly and C. Elkan, ‘‘Bayesian approaches to failure prediction for
disk drives,’’ in Proc. Conf. Mach. Learn., 2001, pp. 202–209.

[6] G. F. Hughes, J. F. Murray, K. Kreutz-Delgado, and C. Elkan, ‘‘Improved
disk-drive failure warnings,’’ IEEE Trans. Rel., vol. 51, no. 3, pp. 350–357,
Sep. 2002.

[7] J. F. Murray, G. F. Hughes, and K. Kreutz-Delgado, ‘‘Hard drive failure
prediction using non-parametric statistical methods,’’ inProc. Artif. Neural
Netw., 2003, pp. 1–4.

[8] Y. Zhao, X. Liu, S. Gan, and W. Zheng, ‘‘Predicting disk failures with
HMM- and HSMM-based approaches,’’ in Proc. Ind. Conf. Data Mining
Adv. Data Mining. Appl. Theor. Aspects. Berlin, Germany: Springer, 2010,
pp. 390–404.

76638 VOLUME 6, 2018



J. Li et al.: New Metrics for Disk Failure Prediction That Go Beyond Prediction Accuracy

[9] B. Zhu, G. Wang, X. Liu, D. Hu, S. Lin, and J. Ma, ‘‘Proactive drive failure
prediction for large scale storage systems,’’ in Proc. MSST, May 2013,
pp. 1–5.

[10] Y. Wang, Q. Miao, and M. Pecht, ‘‘Health monitoring of hard disk drive
based on Mahalanobis distance,’’ in Proc. Prognostics Syst. Health Man-
age. Conf., 2011, pp. 1–8.

[11] Y. Wang, Q. Miao, E. W. M. Ma, K.-L. Tsui, and M. G. Pecht, ‘‘Online
anomaly detection for hard disk drives based on Mahalanobis distance,’’
IEEE Trans. Rel., vol. 62, no. 1, pp. 136–145, Mar. 2013.

[12] J. Li et al., ‘‘Hard drive failure prediction using classification and regres-
sion trees,’’ in Proc. 44th Annu. IEEE/IFIP Int. Conf. Dependable Syst.
Netw., Jun. 2014, pp. 383–394.

[13] A. Ma, F. Douglis, G. Lu, D. Sawyer, S. Chandra, and W.
Hsu, ‘‘RAIDShield: characterizing, monitoring, and proactively
protecting against disk failures,’’ in Proc. USENIX FAST, 2015,
pp. 241–256.

[14] S. Wu, H. Jiang, B. Mao, ‘‘Proactive data migration for improved storage
availability in large-scale data centers,’’ IEEE Trans. Comput., vol. 64,
no. 8, pp. 2637–2651, 2015.

[15] J. Li, R. J. Stones, G. Wang, X. Liu, Z. Li, M. Xu, ‘‘Hard drive failure
prediction using decision trees,’’ Rel. Eng. Syst. Saf., vol. 164, pp. 55–65,
Aug. 2017.

[16] C. Xu, G. Wang, X. Liu, D. Guo, and T.-Y. Liu, ‘‘Health status
assessment and failure prediction for hard drives with recurrent neu-
ral networks,’’ IEEE Trans. Comput., vol. 65, no. 11, pp. 3502–3508,
Nov. 2016.

[17] S. Pang, Y. Jia, R. Stones, X. Liu, andG.Wang, ‘‘A combined Bayesian net-
work method for predicting drive failure times from SMART attributes,’’
in Proc. IJCNN, Jul. 2016, pp. 4850–4856.

[18] J. Li, R. J. Stones, G. Wang, Z. Li, X. Liu, K. Xiao, ‘‘Being accurate
is not enough: New metrics for disk failure prediction,’’ in Proc. SRDS,
Sep. 2016, pp. 71–80.

[19] A. Saxena et al., ‘‘Metrics for evaluating performance of prognostic tech-
niques,’’ in Proc. ICPHM, Oct. 2008, pp. 1–17.

[20] A. Saxena, J. Celaya, B. Saha, S. Saha, and K. Goebel, ‘‘Evaluating
algorithm performance metrics tailored for prognostics,’’ in Proc. Aerosp.
Conf., Mar. 2009, pp. 1–13.

[21] K. Goebel, A. Saxena, S. Saha, and J. Celaya, ‘‘Prognostic performance
metrics,’’ Mach. Learn. Knowl. Discovery Eng. Syst. Health Manage.,
pp. 147–177, 2011.

[22] J. E. Dzakowic and G. S. Valentine, ‘‘Advanced techniques for the verifi-
cation and validation of prognostics & health management capabilities,’’
in Proc. MFPT, 2007, pp. 1–11.

[23] L. P. Queiroz et al., ‘‘A fault detection method for hard disk drives based
on mixture of Gaussians and nonparametric statistics,’’ IEEE Trans. Ind.
Informat., vol. 13, no. 2, pp. 542–550, Apr. 2016.

[24] C. A. C. Rincón, J.-F. Pâris, R. Vilalta, A. M. K. Cheng, and D. D. E. Long,
‘‘Disk failure prediction in heterogeneous environments,’’ in Proc.
SPECTS, Jul. 2017, pp. 1–7.

[25] B. Schroeder and G. A. Gibson, ‘‘Disk failures in the real world: What
does an MTTF of 1,000,000 hours mean to you?’’ in Proc. FAST, 2007,
pp. 1–13.

[26] B. P. Leao, T. Yoneyama, G. C. Rocha, and K. T. Fitzgibbon, ‘‘Prognostics
performancemetrics and their relation to requirements, design, verification
and cost-benefit,’’ in Proc. PHM, Oct. 2008, pp. 1–8.

[27] A. Qin, D. Hu, J. Liu, W. Yang, D. Tan, ‘‘Fatman: Cost-saving and reliable
archival storage based on volunteer resources,’’ Proc. VLDB Endowment,
vol. 7, no. 13, pp. 1748–1753, 2014.

[28] X. Ji et al., ‘‘A proactive fault tolerance scheme for large scale storage
systems,’’ in Algorithms and Architectures for Parallel Processing. Cham,
Switzerland: Springer, 2015, pp. 337–350.

[29] P. Li, J. Li, R. J. Stones, G. Wang, Z. Li, and X. Liu, ‘‘ProCode: A proac-
tive erasure coding scheme for cloud storage systems,’’ in Proc. SRDS,
Sep. 2016, pp. 219–228.

[30] Y. Xu et al., ‘‘Improving service availability of cloud systems by predicting
disk error,’’ in Proc. USENIX ATC, 2018, pp. 481–494.

[31] J. H. Friedman, ‘‘Greedy function approximation: A gradient boosting
machine,’’ Ann. Statist., vol. 29, no. 5, pp. 1189–1232, 2001.

[32] A. Mohan, Z. Chen, K. Weinberger, Web-search ranking with initialized
gradient boosted regression trees,’’ in Proc. JMLR, Workshop Conf., 2011,
pp. 77–89.

[33] B. P. Leão, J. P. P. Gomes, R. K. H. Galvão, and T. Yoneyama, ‘‘How to
tell the good from the bad in failure prognostics methods,’’ in Proc. Aerosp.
Conf., Mar. 2010, pp. 1–7.

JING LI received the B.Sc. and M.Sc. degrees in
computer science and technology from Shandong
University, Jinan, China, in 2004 and 2007, respec-
tively, and the Ph.D. degree in computer science
from Nankai University, Tianjin, China, in 2016.

She is currently a Teacher at the College of
Computer Science and Technology, Civil Aviation
University of China. Her research interests include
mass data storage and machine learning.

REBECCA J. STONES received the Ph.D. degree
in pure mathematics from Monash University in
2010. She is currently an Associate Professor
at Nankai University. She currently has diverse
research interests, including combinatorics and
graph theory, codes and cryptography, search
engines and data storage, phylogenetics, and quan-
titative psychology.

GANG WANG received the B.Sc., M.Sc., and
Ph.D. degrees in computer science from Nankai
University, Tianjin, China, in 1996, 1999, and
2002, respectively. He is currently a Professor at
the College of Computer and Control Engineering,
Nankai University. His research interests include
storage systems and parallel computing.

ZHONGWEI LI received the Ph.D. degree in com-
puter science and technology from Harbin Engi-
neering University, Harbin, China, in 2006. He is
currently an Associate Professor at the College of
Software, Nankai University, Tianjin, China. His
research interests include machine learning and
mass data storage.

XIAOGUANG LIU received the B.Sc., M.Sc., and
Ph.D. degrees in computer science from Nankai
University, Tianjin, China, in 1996, 1999, and
2002, respectively. He is currently a Professor
in computer science at Nankai University. His
research interests include parallel computing and
storage system.

JIANLI DING received the Ph.D. degree in opera-
tional research and cybernetics from Nankai Uni-
versity, Tianjin, China, in 2004. He is currently a
Professor at the College of Computer Science and
Technology, Civil Aviation University of China.
His research interests include risk monitoring and
control, and reliability analysis.

VOLUME 6, 2018 76639


	INTRODUCTION
	RELATED WORK
	THE PROPOSED METHOD
	PRE-WARNING HANDLING
	NEW METRICS
	PREDICTION MODEL
	REGRESSION TREES
	ORIGINAL GBRT MODEL
	IMPROVED GBRT MODEL


	DATASETS
	DESCRIPTION
	DATA PREPROCESSING

	EXPERIMENTAL RESULTS
	METRIC COMPARISON
	BINARY CLASSIFICATION MODEL
	RESIDUAL-LIFE PREDICTION MODEL
	TRADE-OFF BETWEEN THE NEW METRICS

	EVALUATING THE IMPROVED GBRT ALGORITHM
	VERIFYING PRACTICAL USABILITY
	PERFORMANCE ON ``M'' AND ``S'' DATASETS
	PERFORMANCE ON SMALL DATASETS
	PERFORMANCE ON HYBRID DATASET


	CONCLUSIONS
	REFERENCES
	Biographies
	JING LI
	REBECCA J. STONES
	GANG WANG
	ZHONGWEI LI
	XIAOGUANG LIU
	JIANLI DING


